Properties

Label 2-2277-1.1-c1-0-77
Degree $2$
Conductor $2277$
Sign $-1$
Analytic cond. $18.1819$
Root an. cond. $4.26402$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.735·2-s − 1.45·4-s + 1.54·5-s + 0.781·7-s − 2.54·8-s + 1.13·10-s − 11-s − 1.76·13-s + 0.575·14-s + 1.04·16-s − 7.26·17-s + 6.84·19-s − 2.25·20-s − 0.735·22-s + 23-s − 2.61·25-s − 1.30·26-s − 1.14·28-s − 5.92·29-s − 9.96·31-s + 5.85·32-s − 5.34·34-s + 1.20·35-s + 0.378·37-s + 5.03·38-s − 3.92·40-s − 1.53·41-s + ⋯
L(s)  = 1  + 0.520·2-s − 0.729·4-s + 0.690·5-s + 0.295·7-s − 0.899·8-s + 0.359·10-s − 0.301·11-s − 0.490·13-s + 0.153·14-s + 0.261·16-s − 1.76·17-s + 1.56·19-s − 0.503·20-s − 0.156·22-s + 0.208·23-s − 0.523·25-s − 0.255·26-s − 0.215·28-s − 1.10·29-s − 1.79·31-s + 1.03·32-s − 0.916·34-s + 0.204·35-s + 0.0622·37-s + 0.816·38-s − 0.621·40-s − 0.239·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2277 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2277 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2277\)    =    \(3^{2} \cdot 11 \cdot 23\)
Sign: $-1$
Analytic conductor: \(18.1819\)
Root analytic conductor: \(4.26402\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2277,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + T \)
23 \( 1 - T \)
good2 \( 1 - 0.735T + 2T^{2} \)
5 \( 1 - 1.54T + 5T^{2} \)
7 \( 1 - 0.781T + 7T^{2} \)
13 \( 1 + 1.76T + 13T^{2} \)
17 \( 1 + 7.26T + 17T^{2} \)
19 \( 1 - 6.84T + 19T^{2} \)
29 \( 1 + 5.92T + 29T^{2} \)
31 \( 1 + 9.96T + 31T^{2} \)
37 \( 1 - 0.378T + 37T^{2} \)
41 \( 1 + 1.53T + 41T^{2} \)
43 \( 1 - 10.9T + 43T^{2} \)
47 \( 1 + 3.89T + 47T^{2} \)
53 \( 1 - 1.42T + 53T^{2} \)
59 \( 1 + 10.6T + 59T^{2} \)
61 \( 1 + 6.49T + 61T^{2} \)
67 \( 1 - 12.2T + 67T^{2} \)
71 \( 1 + 3.69T + 71T^{2} \)
73 \( 1 + 2.10T + 73T^{2} \)
79 \( 1 + 2.20T + 79T^{2} \)
83 \( 1 + 15.7T + 83T^{2} \)
89 \( 1 + 11.4T + 89T^{2} \)
97 \( 1 + 4.59T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.880633780599066546744512289258, −7.80517066528617714042195548412, −7.09215127671009378432024010702, −5.97361095457430291454652307575, −5.41160205324747458072386886101, −4.70639212953795368502367923327, −3.83826149579392056951730324511, −2.79632091215673012273795461562, −1.72193358405821942957389150410, 0, 1.72193358405821942957389150410, 2.79632091215673012273795461562, 3.83826149579392056951730324511, 4.70639212953795368502367923327, 5.41160205324747458072386886101, 5.97361095457430291454652307575, 7.09215127671009378432024010702, 7.80517066528617714042195548412, 8.880633780599066546744512289258

Graph of the $Z$-function along the critical line