Properties

Label 2-2277-1.1-c1-0-36
Degree $2$
Conductor $2277$
Sign $-1$
Analytic cond. $18.1819$
Root an. cond. $4.26402$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.25·2-s − 0.423·4-s − 4.04·5-s + 0.798·7-s + 3.04·8-s + 5.07·10-s − 11-s − 3.19·13-s − 1.00·14-s − 2.97·16-s − 0.503·17-s + 3.98·19-s + 1.71·20-s + 1.25·22-s + 23-s + 11.3·25-s + 4.00·26-s − 0.338·28-s + 6.16·29-s − 3.28·31-s − 2.35·32-s + 0.632·34-s − 3.22·35-s + 5.17·37-s − 5.00·38-s − 12.3·40-s + 11.8·41-s + ⋯
L(s)  = 1  − 0.887·2-s − 0.211·4-s − 1.80·5-s + 0.301·7-s + 1.07·8-s + 1.60·10-s − 0.301·11-s − 0.885·13-s − 0.267·14-s − 0.743·16-s − 0.122·17-s + 0.913·19-s + 0.383·20-s + 0.267·22-s + 0.208·23-s + 2.26·25-s + 0.786·26-s − 0.0639·28-s + 1.14·29-s − 0.589·31-s − 0.415·32-s + 0.108·34-s − 0.545·35-s + 0.851·37-s − 0.811·38-s − 1.94·40-s + 1.84·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2277 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2277 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2277\)    =    \(3^{2} \cdot 11 \cdot 23\)
Sign: $-1$
Analytic conductor: \(18.1819\)
Root analytic conductor: \(4.26402\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2277,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + T \)
23 \( 1 - T \)
good2 \( 1 + 1.25T + 2T^{2} \)
5 \( 1 + 4.04T + 5T^{2} \)
7 \( 1 - 0.798T + 7T^{2} \)
13 \( 1 + 3.19T + 13T^{2} \)
17 \( 1 + 0.503T + 17T^{2} \)
19 \( 1 - 3.98T + 19T^{2} \)
29 \( 1 - 6.16T + 29T^{2} \)
31 \( 1 + 3.28T + 31T^{2} \)
37 \( 1 - 5.17T + 37T^{2} \)
41 \( 1 - 11.8T + 41T^{2} \)
43 \( 1 + 7.08T + 43T^{2} \)
47 \( 1 + 1.22T + 47T^{2} \)
53 \( 1 - 3.00T + 53T^{2} \)
59 \( 1 + 9.03T + 59T^{2} \)
61 \( 1 - 2.63T + 61T^{2} \)
67 \( 1 - 8.99T + 67T^{2} \)
71 \( 1 + 9.80T + 71T^{2} \)
73 \( 1 - 1.31T + 73T^{2} \)
79 \( 1 - 15.6T + 79T^{2} \)
83 \( 1 - 2.92T + 83T^{2} \)
89 \( 1 + 6.20T + 89T^{2} \)
97 \( 1 + 15.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.514765829113674114804234573465, −7.77102190826889724857042522925, −7.61317028090936899661049357944, −6.70114709444151963171690598110, −5.14900372679214825747502399748, −4.60000217342846184519729989834, −3.79181305607087287151801061700, −2.71510154327812049327345348550, −1.06852986206175635826927411006, 0, 1.06852986206175635826927411006, 2.71510154327812049327345348550, 3.79181305607087287151801061700, 4.60000217342846184519729989834, 5.14900372679214825747502399748, 6.70114709444151963171690598110, 7.61317028090936899661049357944, 7.77102190826889724857042522925, 8.514765829113674114804234573465

Graph of the $Z$-function along the critical line