Properties

Label 2277.2.a
Level $2277$
Weight $2$
Character orbit 2277.a
Rep. character $\chi_{2277}(1,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $20$
Sturm bound $576$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(576\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2277))\).

Total New Old
Modular forms 296 92 204
Cusp forms 281 92 189
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(11\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(34\)\(8\)\(26\)\(33\)\(8\)\(25\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(36\)\(10\)\(26\)\(34\)\(10\)\(24\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(40\)\(10\)\(30\)\(38\)\(10\)\(28\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(38\)\(8\)\(30\)\(36\)\(8\)\(28\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(38\)\(13\)\(25\)\(36\)\(13\)\(23\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(36\)\(15\)\(21\)\(34\)\(15\)\(19\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(36\)\(12\)\(24\)\(34\)\(12\)\(22\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(38\)\(16\)\(22\)\(36\)\(16\)\(20\)\(2\)\(0\)\(2\)
Plus space\(+\)\(144\)\(43\)\(101\)\(137\)\(43\)\(94\)\(7\)\(0\)\(7\)
Minus space\(-\)\(152\)\(49\)\(103\)\(144\)\(49\)\(95\)\(8\)\(0\)\(8\)

Trace form

\( 92 q - 2 q^{2} + 94 q^{4} - 8 q^{5} + 4 q^{7} - 12 q^{8} - 16 q^{10} + 4 q^{13} + 90 q^{16} - 4 q^{17} + 12 q^{19} - 12 q^{20} + 6 q^{23} + 80 q^{25} - 2 q^{26} - 4 q^{28} - 20 q^{29} - 16 q^{31} + 34 q^{32}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2277))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 11 23
2277.2.a.a 2277.a 1.a $1$ $18.182$ \(\Q\) None 759.2.a.a \(1\) \(0\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}-2q^{7}-3q^{8}-q^{11}+2q^{13}+\cdots\)
2277.2.a.b 2277.a 1.a $1$ $18.182$ \(\Q\) None 759.2.a.b \(1\) \(0\) \(2\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+2q^{5}-3q^{8}+2q^{10}+\cdots\)
2277.2.a.c 2277.a 1.a $2$ $18.182$ \(\Q(\sqrt{2}) \) None 759.2.a.d \(-2\) \(0\) \(-4\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}+(1-2\beta )q^{4}-2q^{5}+\cdots\)
2277.2.a.d 2277.a 1.a $2$ $18.182$ \(\Q(\sqrt{3}) \) None 2277.2.a.d \(0\) \(0\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{4}-2\beta q^{5}-2\beta q^{7}-\beta q^{8}+\cdots\)
2277.2.a.e 2277.a 1.a $2$ $18.182$ \(\Q(\sqrt{3}) \) None 2277.2.a.d \(0\) \(0\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{4}-2\beta q^{5}+2\beta q^{7}-\beta q^{8}+\cdots\)
2277.2.a.f 2277.a 1.a $2$ $18.182$ \(\Q(\sqrt{5}) \) None 759.2.a.c \(1\) \(0\) \(2\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1+\beta )q^{4}+q^{5}+(1+2\beta )q^{7}+\cdots\)
2277.2.a.g 2277.a 1.a $3$ $18.182$ \(\Q(\zeta_{18})^+\) None 253.2.a.b \(-3\) \(0\) \(-3\) \(3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1-2\beta _{1}+\beta _{2})q^{4}+\cdots\)
2277.2.a.h 2277.a 1.a $3$ $18.182$ 3.3.148.1 None 759.2.a.f \(1\) \(0\) \(2\) \(-6\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{4}+(1-\beta _{1})q^{5}+\cdots\)
2277.2.a.i 2277.a 1.a $3$ $18.182$ 3.3.148.1 None 759.2.a.e \(1\) \(0\) \(4\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{4}+(1+\beta _{1})q^{5}+\cdots\)
2277.2.a.j 2277.a 1.a $3$ $18.182$ 3.3.169.1 None 253.2.a.a \(1\) \(0\) \(5\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1}+\beta _{2})q^{2}+(2-2\beta _{1}+\beta _{2})q^{4}+\cdots\)
2277.2.a.k 2277.a 1.a $5$ $18.182$ 5.5.1563364.1 None 759.2.a.g \(2\) \(0\) \(-4\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(-1-\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
2277.2.a.l 2277.a 1.a $5$ $18.182$ 5.5.170701.1 None 253.2.a.c \(4\) \(0\) \(3\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-\beta _{1}-\beta _{3}+\beta _{4})q^{4}+\cdots\)
2277.2.a.m 2277.a 1.a $6$ $18.182$ 6.6.8639957.1 None 253.2.a.d \(-3\) \(0\) \(-3\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1-\beta _{3}+\beta _{5})q^{4}+\cdots\)
2277.2.a.n 2277.a 1.a $6$ $18.182$ 6.6.4222000.1 None 759.2.a.h \(-2\) \(0\) \(-6\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{4}+(-1+\beta _{3}+\cdots)q^{5}+\cdots\)
2277.2.a.o 2277.a 1.a $8$ $18.182$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 759.2.a.j \(-2\) \(0\) \(0\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{6}q^{5}+(1-\beta _{3}+\cdots)q^{7}+\cdots\)
2277.2.a.p 2277.a 1.a $8$ $18.182$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 759.2.a.i \(-2\) \(0\) \(-6\) \(-6\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(-1-\beta _{4})q^{5}+\cdots\)
2277.2.a.q 2277.a 1.a $8$ $18.182$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 2277.2.a.q \(0\) \(0\) \(-8\) \(-6\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1-\beta _{1}-\beta _{7})q^{5}+\cdots\)
2277.2.a.r 2277.a 1.a $8$ $18.182$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 2277.2.a.q \(0\) \(0\) \(8\) \(-6\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1+\beta _{1}+\beta _{7})q^{5}+\cdots\)
2277.2.a.s 2277.a 1.a $8$ $18.182$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 2277.2.a.s \(0\) \(0\) \(0\) \(10\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{5}q^{5}+(1-\beta _{1}+\cdots)q^{7}+\cdots\)
2277.2.a.t 2277.a 1.a $8$ $18.182$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 2277.2.a.s \(0\) \(0\) \(0\) \(10\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{5}q^{5}+(1-\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2277))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2277)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(253))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(759))\)\(^{\oplus 2}\)