Defining parameters
Level: | \( N \) | \(=\) | \( 2277 = 3^{2} \cdot 11 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2277.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 20 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2277))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 296 | 92 | 204 |
Cusp forms | 281 | 92 | 189 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(11\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(34\) | \(8\) | \(26\) | \(33\) | \(8\) | \(25\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(36\) | \(10\) | \(26\) | \(34\) | \(10\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(40\) | \(10\) | \(30\) | \(38\) | \(10\) | \(28\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(38\) | \(8\) | \(30\) | \(36\) | \(8\) | \(28\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(38\) | \(13\) | \(25\) | \(36\) | \(13\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(36\) | \(15\) | \(21\) | \(34\) | \(15\) | \(19\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(36\) | \(12\) | \(24\) | \(34\) | \(12\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(38\) | \(16\) | \(22\) | \(36\) | \(16\) | \(20\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(144\) | \(43\) | \(101\) | \(137\) | \(43\) | \(94\) | \(7\) | \(0\) | \(7\) | |||||
Minus space | \(-\) | \(152\) | \(49\) | \(103\) | \(144\) | \(49\) | \(95\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2277))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2277))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2277)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(253))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(759))\)\(^{\oplus 2}\)