Properties

Label 759.2.a.b
Level $759$
Weight $2$
Character orbit 759.a
Self dual yes
Analytic conductor $6.061$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 759 = 3 \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 759.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(6.06064551342\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} - q^{4} - 2q^{5} - q^{6} + 3q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} - q^{4} - 2q^{5} - q^{6} + 3q^{8} + q^{9} + 2q^{10} + q^{11} - q^{12} - 2q^{13} - 2q^{15} - q^{16} + 2q^{17} - q^{18} - 4q^{19} + 2q^{20} - q^{22} - q^{23} + 3q^{24} - q^{25} + 2q^{26} + q^{27} - 2q^{29} + 2q^{30} - 5q^{32} + q^{33} - 2q^{34} - q^{36} - 10q^{37} + 4q^{38} - 2q^{39} - 6q^{40} - 6q^{41} - 12q^{43} - q^{44} - 2q^{45} + q^{46} - q^{48} - 7q^{49} + q^{50} + 2q^{51} + 2q^{52} + 14q^{53} - q^{54} - 2q^{55} - 4q^{57} + 2q^{58} - 4q^{59} + 2q^{60} + 6q^{61} + 7q^{64} + 4q^{65} - q^{66} - 4q^{67} - 2q^{68} - q^{69} - 8q^{71} + 3q^{72} - 6q^{73} + 10q^{74} - q^{75} + 4q^{76} + 2q^{78} + 8q^{79} + 2q^{80} + q^{81} + 6q^{82} + 4q^{83} - 4q^{85} + 12q^{86} - 2q^{87} + 3q^{88} - 14q^{89} + 2q^{90} + q^{92} + 8q^{95} - 5q^{96} + 2q^{97} + 7q^{98} + q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 −1.00000 −2.00000 −1.00000 0 3.00000 1.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(11\) \(-1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 759.2.a.b 1
3.b odd 2 1 2277.2.a.b 1
11.b odd 2 1 8349.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
759.2.a.b 1 1.a even 1 1 trivial
2277.2.a.b 1 3.b odd 2 1
8349.2.a.d 1 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(759))\):

\( T_{2} + 1 \)
\( T_{5} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + 2 T^{2} \)
$3$ \( 1 - T \)
$5$ \( 1 + 2 T + 5 T^{2} \)
$7$ \( 1 + 7 T^{2} \)
$11$ \( 1 - T \)
$13$ \( 1 + 2 T + 13 T^{2} \)
$17$ \( 1 - 2 T + 17 T^{2} \)
$19$ \( 1 + 4 T + 19 T^{2} \)
$23$ \( 1 + T \)
$29$ \( 1 + 2 T + 29 T^{2} \)
$31$ \( 1 + 31 T^{2} \)
$37$ \( 1 + 10 T + 37 T^{2} \)
$41$ \( 1 + 6 T + 41 T^{2} \)
$43$ \( 1 + 12 T + 43 T^{2} \)
$47$ \( 1 + 47 T^{2} \)
$53$ \( 1 - 14 T + 53 T^{2} \)
$59$ \( 1 + 4 T + 59 T^{2} \)
$61$ \( 1 - 6 T + 61 T^{2} \)
$67$ \( 1 + 4 T + 67 T^{2} \)
$71$ \( 1 + 8 T + 71 T^{2} \)
$73$ \( 1 + 6 T + 73 T^{2} \)
$79$ \( 1 - 8 T + 79 T^{2} \)
$83$ \( 1 - 4 T + 83 T^{2} \)
$89$ \( 1 + 14 T + 89 T^{2} \)
$97$ \( 1 - 2 T + 97 T^{2} \)
show more
show less