Properties

Label 2-2277-1.1-c1-0-88
Degree $2$
Conductor $2277$
Sign $-1$
Analytic cond. $18.1819$
Root an. cond. $4.26402$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.14·2-s + 2.60·4-s − 2.30·5-s + 1.71·7-s + 1.30·8-s − 4.94·10-s − 11-s − 5.20·13-s + 3.67·14-s − 2.41·16-s − 2.40·17-s − 5.97·19-s − 6.00·20-s − 2.14·22-s + 23-s + 0.307·25-s − 11.1·26-s + 4.46·28-s − 5.57·29-s + 6.55·31-s − 7.79·32-s − 5.15·34-s − 3.94·35-s − 0.451·37-s − 12.8·38-s − 3.00·40-s − 0.0529·41-s + ⋯
L(s)  = 1  + 1.51·2-s + 1.30·4-s − 1.03·5-s + 0.647·7-s + 0.460·8-s − 1.56·10-s − 0.301·11-s − 1.44·13-s + 0.983·14-s − 0.604·16-s − 0.582·17-s − 1.36·19-s − 1.34·20-s − 0.457·22-s + 0.208·23-s + 0.0615·25-s − 2.18·26-s + 0.844·28-s − 1.03·29-s + 1.17·31-s − 1.37·32-s − 0.884·34-s − 0.667·35-s − 0.0742·37-s − 2.07·38-s − 0.474·40-s − 0.00826·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2277 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2277 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2277\)    =    \(3^{2} \cdot 11 \cdot 23\)
Sign: $-1$
Analytic conductor: \(18.1819\)
Root analytic conductor: \(4.26402\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2277,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + T \)
23 \( 1 - T \)
good2 \( 1 - 2.14T + 2T^{2} \)
5 \( 1 + 2.30T + 5T^{2} \)
7 \( 1 - 1.71T + 7T^{2} \)
13 \( 1 + 5.20T + 13T^{2} \)
17 \( 1 + 2.40T + 17T^{2} \)
19 \( 1 + 5.97T + 19T^{2} \)
29 \( 1 + 5.57T + 29T^{2} \)
31 \( 1 - 6.55T + 31T^{2} \)
37 \( 1 + 0.451T + 37T^{2} \)
41 \( 1 + 0.0529T + 41T^{2} \)
43 \( 1 - 6.61T + 43T^{2} \)
47 \( 1 - 12.1T + 47T^{2} \)
53 \( 1 + 1.67T + 53T^{2} \)
59 \( 1 + 0.751T + 59T^{2} \)
61 \( 1 + 12.5T + 61T^{2} \)
67 \( 1 - 4.92T + 67T^{2} \)
71 \( 1 - 4.97T + 71T^{2} \)
73 \( 1 - 4.33T + 73T^{2} \)
79 \( 1 + 14.1T + 79T^{2} \)
83 \( 1 + 11.9T + 83T^{2} \)
89 \( 1 + 7.20T + 89T^{2} \)
97 \( 1 + 0.228T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.437821098099281105574416360300, −7.62415643461190048265110461333, −7.03361331714382684887953074910, −6.08631760969086317116138151911, −5.19809700911460628503687560683, −4.41415079810112398528826875884, −4.12739405520044860020741282036, −2.89389397621718255751563942071, −2.12912243375545003101016481759, 0, 2.12912243375545003101016481759, 2.89389397621718255751563942071, 4.12739405520044860020741282036, 4.41415079810112398528826875884, 5.19809700911460628503687560683, 6.08631760969086317116138151911, 7.03361331714382684887953074910, 7.62415643461190048265110461333, 8.437821098099281105574416360300

Graph of the $Z$-function along the critical line