Properties

Label 2277.2.a.m.1.6
Level $2277$
Weight $2$
Character 2277.1
Self dual yes
Analytic conductor $18.182$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,5,-3,0,-1,-3,0,-6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.8639957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 10x^{3} + 6x^{2} - 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(3.14649\) of defining polynomial
Character \(\chi\) \(=\) 2277.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.14649 q^{2} +2.60742 q^{4} -2.30383 q^{5} +1.71408 q^{7} +1.30383 q^{8} -4.94515 q^{10} -1.00000 q^{11} -5.20211 q^{13} +3.67927 q^{14} -2.41619 q^{16} -2.40321 q^{17} -5.97011 q^{19} -6.00707 q^{20} -2.14649 q^{22} +1.00000 q^{23} +0.307640 q^{25} -11.1663 q^{26} +4.46935 q^{28} -5.57442 q^{29} +6.55851 q^{31} -7.79399 q^{32} -5.15847 q^{34} -3.94896 q^{35} -0.451431 q^{37} -12.8148 q^{38} -3.00381 q^{40} -0.0529225 q^{41} +6.61909 q^{43} -2.60742 q^{44} +2.14649 q^{46} +12.1993 q^{47} -4.06191 q^{49} +0.660347 q^{50} -13.5641 q^{52} -1.67927 q^{53} +2.30383 q^{55} +2.23488 q^{56} -11.9654 q^{58} -0.751014 q^{59} -12.5170 q^{61} +14.0778 q^{62} -11.8973 q^{64} +11.9848 q^{65} +4.92036 q^{67} -6.26620 q^{68} -8.47641 q^{70} +4.97794 q^{71} +4.33662 q^{73} -0.968992 q^{74} -15.5666 q^{76} -1.71408 q^{77} -14.1995 q^{79} +5.56649 q^{80} -0.113598 q^{82} -11.9442 q^{83} +5.53660 q^{85} +14.2078 q^{86} -1.30383 q^{88} -7.20560 q^{89} -8.91687 q^{91} +2.60742 q^{92} +26.1857 q^{94} +13.7541 q^{95} -0.228005 q^{97} -8.71886 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 5 q^{4} - 3 q^{5} - q^{7} - 3 q^{8} - 6 q^{10} - 6 q^{11} - 3 q^{13} + 8 q^{14} - q^{16} - 5 q^{17} + q^{19} + 7 q^{20} + 3 q^{22} + 6 q^{23} + 3 q^{25} - 15 q^{26} - 6 q^{29} - 8 q^{31}+ \cdots - 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.14649 1.51780 0.758899 0.651208i \(-0.225737\pi\)
0.758899 + 0.651208i \(0.225737\pi\)
\(3\) 0 0
\(4\) 2.60742 1.30371
\(5\) −2.30383 −1.03030 −0.515152 0.857099i \(-0.672265\pi\)
−0.515152 + 0.857099i \(0.672265\pi\)
\(6\) 0 0
\(7\) 1.71408 0.647863 0.323932 0.946081i \(-0.394995\pi\)
0.323932 + 0.946081i \(0.394995\pi\)
\(8\) 1.30383 0.460974
\(9\) 0 0
\(10\) −4.94515 −1.56380
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −5.20211 −1.44281 −0.721403 0.692515i \(-0.756503\pi\)
−0.721403 + 0.692515i \(0.756503\pi\)
\(14\) 3.67927 0.983326
\(15\) 0 0
\(16\) −2.41619 −0.604047
\(17\) −2.40321 −0.582865 −0.291432 0.956591i \(-0.594132\pi\)
−0.291432 + 0.956591i \(0.594132\pi\)
\(18\) 0 0
\(19\) −5.97011 −1.36964 −0.684819 0.728713i \(-0.740119\pi\)
−0.684819 + 0.728713i \(0.740119\pi\)
\(20\) −6.00707 −1.34322
\(21\) 0 0
\(22\) −2.14649 −0.457633
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 0.307640 0.0615281
\(26\) −11.1663 −2.18989
\(27\) 0 0
\(28\) 4.46935 0.844627
\(29\) −5.57442 −1.03514 −0.517572 0.855640i \(-0.673164\pi\)
−0.517572 + 0.855640i \(0.673164\pi\)
\(30\) 0 0
\(31\) 6.55851 1.17794 0.588972 0.808154i \(-0.299533\pi\)
0.588972 + 0.808154i \(0.299533\pi\)
\(32\) −7.79399 −1.37779
\(33\) 0 0
\(34\) −5.15847 −0.884671
\(35\) −3.94896 −0.667497
\(36\) 0 0
\(37\) −0.451431 −0.0742147 −0.0371074 0.999311i \(-0.511814\pi\)
−0.0371074 + 0.999311i \(0.511814\pi\)
\(38\) −12.8148 −2.07883
\(39\) 0 0
\(40\) −3.00381 −0.474944
\(41\) −0.0529225 −0.00826510 −0.00413255 0.999991i \(-0.501315\pi\)
−0.00413255 + 0.999991i \(0.501315\pi\)
\(42\) 0 0
\(43\) 6.61909 1.00940 0.504701 0.863294i \(-0.331603\pi\)
0.504701 + 0.863294i \(0.331603\pi\)
\(44\) −2.60742 −0.393084
\(45\) 0 0
\(46\) 2.14649 0.316483
\(47\) 12.1993 1.77945 0.889727 0.456493i \(-0.150895\pi\)
0.889727 + 0.456493i \(0.150895\pi\)
\(48\) 0 0
\(49\) −4.06191 −0.580273
\(50\) 0.660347 0.0933872
\(51\) 0 0
\(52\) −13.5641 −1.88101
\(53\) −1.67927 −0.230665 −0.115333 0.993327i \(-0.536793\pi\)
−0.115333 + 0.993327i \(0.536793\pi\)
\(54\) 0 0
\(55\) 2.30383 0.310649
\(56\) 2.23488 0.298648
\(57\) 0 0
\(58\) −11.9654 −1.57114
\(59\) −0.751014 −0.0977737 −0.0488868 0.998804i \(-0.515567\pi\)
−0.0488868 + 0.998804i \(0.515567\pi\)
\(60\) 0 0
\(61\) −12.5170 −1.60264 −0.801320 0.598237i \(-0.795868\pi\)
−0.801320 + 0.598237i \(0.795868\pi\)
\(62\) 14.0778 1.78788
\(63\) 0 0
\(64\) −11.8973 −1.48717
\(65\) 11.9848 1.48653
\(66\) 0 0
\(67\) 4.92036 0.601118 0.300559 0.953763i \(-0.402827\pi\)
0.300559 + 0.953763i \(0.402827\pi\)
\(68\) −6.26620 −0.759888
\(69\) 0 0
\(70\) −8.47641 −1.01313
\(71\) 4.97794 0.590773 0.295387 0.955378i \(-0.404552\pi\)
0.295387 + 0.955378i \(0.404552\pi\)
\(72\) 0 0
\(73\) 4.33662 0.507563 0.253782 0.967262i \(-0.418326\pi\)
0.253782 + 0.967262i \(0.418326\pi\)
\(74\) −0.968992 −0.112643
\(75\) 0 0
\(76\) −15.5666 −1.78561
\(77\) −1.71408 −0.195338
\(78\) 0 0
\(79\) −14.1995 −1.59757 −0.798785 0.601617i \(-0.794523\pi\)
−0.798785 + 0.601617i \(0.794523\pi\)
\(80\) 5.56649 0.622352
\(81\) 0 0
\(82\) −0.113598 −0.0125448
\(83\) −11.9442 −1.31104 −0.655521 0.755177i \(-0.727551\pi\)
−0.655521 + 0.755177i \(0.727551\pi\)
\(84\) 0 0
\(85\) 5.53660 0.600528
\(86\) 14.2078 1.53207
\(87\) 0 0
\(88\) −1.30383 −0.138989
\(89\) −7.20560 −0.763792 −0.381896 0.924205i \(-0.624729\pi\)
−0.381896 + 0.924205i \(0.624729\pi\)
\(90\) 0 0
\(91\) −8.91687 −0.934742
\(92\) 2.60742 0.271843
\(93\) 0 0
\(94\) 26.1857 2.70085
\(95\) 13.7541 1.41114
\(96\) 0 0
\(97\) −0.228005 −0.0231504 −0.0115752 0.999933i \(-0.503685\pi\)
−0.0115752 + 0.999933i \(0.503685\pi\)
\(98\) −8.71886 −0.880738
\(99\) 0 0
\(100\) 0.802149 0.0802149
\(101\) −11.9772 −1.19177 −0.595887 0.803068i \(-0.703199\pi\)
−0.595887 + 0.803068i \(0.703199\pi\)
\(102\) 0 0
\(103\) 18.3463 1.80771 0.903855 0.427839i \(-0.140725\pi\)
0.903855 + 0.427839i \(0.140725\pi\)
\(104\) −6.78268 −0.665097
\(105\) 0 0
\(106\) −3.60453 −0.350103
\(107\) 3.13620 0.303188 0.151594 0.988443i \(-0.451559\pi\)
0.151594 + 0.988443i \(0.451559\pi\)
\(108\) 0 0
\(109\) −12.7472 −1.22096 −0.610480 0.792032i \(-0.709023\pi\)
−0.610480 + 0.792032i \(0.709023\pi\)
\(110\) 4.94515 0.471502
\(111\) 0 0
\(112\) −4.14155 −0.391340
\(113\) 9.89636 0.930971 0.465486 0.885055i \(-0.345880\pi\)
0.465486 + 0.885055i \(0.345880\pi\)
\(114\) 0 0
\(115\) −2.30383 −0.214833
\(116\) −14.5349 −1.34953
\(117\) 0 0
\(118\) −1.61204 −0.148401
\(119\) −4.11931 −0.377617
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −26.8677 −2.43248
\(123\) 0 0
\(124\) 17.1008 1.53570
\(125\) 10.8104 0.966912
\(126\) 0 0
\(127\) −13.8315 −1.22734 −0.613672 0.789561i \(-0.710308\pi\)
−0.613672 + 0.789561i \(0.710308\pi\)
\(128\) −9.94959 −0.879427
\(129\) 0 0
\(130\) 25.7253 2.25625
\(131\) −1.83583 −0.160397 −0.0801986 0.996779i \(-0.525555\pi\)
−0.0801986 + 0.996779i \(0.525555\pi\)
\(132\) 0 0
\(133\) −10.2333 −0.887338
\(134\) 10.5615 0.912376
\(135\) 0 0
\(136\) −3.13338 −0.268686
\(137\) 2.65444 0.226784 0.113392 0.993550i \(-0.463828\pi\)
0.113392 + 0.993550i \(0.463828\pi\)
\(138\) 0 0
\(139\) −12.3258 −1.04546 −0.522729 0.852499i \(-0.675086\pi\)
−0.522729 + 0.852499i \(0.675086\pi\)
\(140\) −10.2966 −0.870224
\(141\) 0 0
\(142\) 10.6851 0.896675
\(143\) 5.20211 0.435023
\(144\) 0 0
\(145\) 12.8425 1.06651
\(146\) 9.30852 0.770379
\(147\) 0 0
\(148\) −1.17707 −0.0967547
\(149\) 0.00605095 0.000495713 0 0.000247857 1.00000i \(-0.499921\pi\)
0.000247857 1.00000i \(0.499921\pi\)
\(150\) 0 0
\(151\) 20.1394 1.63892 0.819461 0.573135i \(-0.194273\pi\)
0.819461 + 0.573135i \(0.194273\pi\)
\(152\) −7.78402 −0.631367
\(153\) 0 0
\(154\) −3.67927 −0.296484
\(155\) −15.1097 −1.21364
\(156\) 0 0
\(157\) −4.36068 −0.348020 −0.174010 0.984744i \(-0.555673\pi\)
−0.174010 + 0.984744i \(0.555673\pi\)
\(158\) −30.4791 −2.42479
\(159\) 0 0
\(160\) 17.9560 1.41955
\(161\) 1.71408 0.135089
\(162\) 0 0
\(163\) 24.0218 1.88153 0.940765 0.339059i \(-0.110109\pi\)
0.940765 + 0.339059i \(0.110109\pi\)
\(164\) −0.137991 −0.0107753
\(165\) 0 0
\(166\) −25.6380 −1.98990
\(167\) −10.7369 −0.830849 −0.415424 0.909628i \(-0.636367\pi\)
−0.415424 + 0.909628i \(0.636367\pi\)
\(168\) 0 0
\(169\) 14.0620 1.08169
\(170\) 11.8843 0.911481
\(171\) 0 0
\(172\) 17.2588 1.31597
\(173\) −16.4113 −1.24773 −0.623864 0.781533i \(-0.714438\pi\)
−0.623864 + 0.781533i \(0.714438\pi\)
\(174\) 0 0
\(175\) 0.527322 0.0398618
\(176\) 2.41619 0.182127
\(177\) 0 0
\(178\) −15.4668 −1.15928
\(179\) 7.59999 0.568050 0.284025 0.958817i \(-0.408330\pi\)
0.284025 + 0.958817i \(0.408330\pi\)
\(180\) 0 0
\(181\) −7.93248 −0.589616 −0.294808 0.955556i \(-0.595256\pi\)
−0.294808 + 0.955556i \(0.595256\pi\)
\(182\) −19.1400 −1.41875
\(183\) 0 0
\(184\) 1.30383 0.0961197
\(185\) 1.04002 0.0764638
\(186\) 0 0
\(187\) 2.40321 0.175740
\(188\) 31.8088 2.31990
\(189\) 0 0
\(190\) 29.5231 2.14183
\(191\) 19.7120 1.42631 0.713155 0.701006i \(-0.247266\pi\)
0.713155 + 0.701006i \(0.247266\pi\)
\(192\) 0 0
\(193\) 0.995322 0.0716449 0.0358224 0.999358i \(-0.488595\pi\)
0.0358224 + 0.999358i \(0.488595\pi\)
\(194\) −0.489411 −0.0351377
\(195\) 0 0
\(196\) −10.5911 −0.756509
\(197\) 16.3485 1.16478 0.582392 0.812908i \(-0.302117\pi\)
0.582392 + 0.812908i \(0.302117\pi\)
\(198\) 0 0
\(199\) −24.5484 −1.74019 −0.870096 0.492883i \(-0.835943\pi\)
−0.870096 + 0.492883i \(0.835943\pi\)
\(200\) 0.401111 0.0283628
\(201\) 0 0
\(202\) −25.7089 −1.80887
\(203\) −9.55503 −0.670632
\(204\) 0 0
\(205\) 0.121924 0.00851558
\(206\) 39.3801 2.74374
\(207\) 0 0
\(208\) 12.5693 0.871523
\(209\) 5.97011 0.412961
\(210\) 0 0
\(211\) 25.8454 1.77927 0.889635 0.456673i \(-0.150959\pi\)
0.889635 + 0.456673i \(0.150959\pi\)
\(212\) −4.37857 −0.300721
\(213\) 0 0
\(214\) 6.73183 0.460179
\(215\) −15.2493 −1.03999
\(216\) 0 0
\(217\) 11.2418 0.763146
\(218\) −27.3617 −1.85317
\(219\) 0 0
\(220\) 6.00707 0.404996
\(221\) 12.5018 0.840961
\(222\) 0 0
\(223\) 26.7181 1.78918 0.894589 0.446890i \(-0.147468\pi\)
0.894589 + 0.446890i \(0.147468\pi\)
\(224\) −13.3596 −0.892623
\(225\) 0 0
\(226\) 21.2424 1.41303
\(227\) −26.2689 −1.74353 −0.871764 0.489925i \(-0.837024\pi\)
−0.871764 + 0.489925i \(0.837024\pi\)
\(228\) 0 0
\(229\) −3.52787 −0.233128 −0.116564 0.993183i \(-0.537188\pi\)
−0.116564 + 0.993183i \(0.537188\pi\)
\(230\) −4.94515 −0.326074
\(231\) 0 0
\(232\) −7.26811 −0.477175
\(233\) 8.93025 0.585040 0.292520 0.956259i \(-0.405506\pi\)
0.292520 + 0.956259i \(0.405506\pi\)
\(234\) 0 0
\(235\) −28.1052 −1.83338
\(236\) −1.95821 −0.127469
\(237\) 0 0
\(238\) −8.84206 −0.573146
\(239\) −11.0369 −0.713918 −0.356959 0.934120i \(-0.616186\pi\)
−0.356959 + 0.934120i \(0.616186\pi\)
\(240\) 0 0
\(241\) −22.2940 −1.43608 −0.718041 0.696000i \(-0.754961\pi\)
−0.718041 + 0.696000i \(0.754961\pi\)
\(242\) 2.14649 0.137982
\(243\) 0 0
\(244\) −32.6372 −2.08938
\(245\) 9.35796 0.597858
\(246\) 0 0
\(247\) 31.0572 1.97612
\(248\) 8.55120 0.543001
\(249\) 0 0
\(250\) 23.2044 1.46758
\(251\) 4.15633 0.262345 0.131173 0.991360i \(-0.458126\pi\)
0.131173 + 0.991360i \(0.458126\pi\)
\(252\) 0 0
\(253\) −1.00000 −0.0628695
\(254\) −29.6891 −1.86286
\(255\) 0 0
\(256\) 2.43800 0.152375
\(257\) −25.5049 −1.59095 −0.795477 0.605984i \(-0.792779\pi\)
−0.795477 + 0.605984i \(0.792779\pi\)
\(258\) 0 0
\(259\) −0.773790 −0.0480810
\(260\) 31.2495 1.93801
\(261\) 0 0
\(262\) −3.94059 −0.243451
\(263\) −9.02268 −0.556362 −0.278181 0.960529i \(-0.589732\pi\)
−0.278181 + 0.960529i \(0.589732\pi\)
\(264\) 0 0
\(265\) 3.86875 0.237656
\(266\) −21.9656 −1.34680
\(267\) 0 0
\(268\) 12.8295 0.783685
\(269\) 20.1309 1.22741 0.613703 0.789537i \(-0.289679\pi\)
0.613703 + 0.789537i \(0.289679\pi\)
\(270\) 0 0
\(271\) 13.1224 0.797131 0.398565 0.917140i \(-0.369508\pi\)
0.398565 + 0.917140i \(0.369508\pi\)
\(272\) 5.80661 0.352077
\(273\) 0 0
\(274\) 5.69773 0.344213
\(275\) −0.307640 −0.0185514
\(276\) 0 0
\(277\) −8.77180 −0.527046 −0.263523 0.964653i \(-0.584885\pi\)
−0.263523 + 0.964653i \(0.584885\pi\)
\(278\) −26.4572 −1.58680
\(279\) 0 0
\(280\) −5.14878 −0.307699
\(281\) 5.97847 0.356646 0.178323 0.983972i \(-0.442933\pi\)
0.178323 + 0.983972i \(0.442933\pi\)
\(282\) 0 0
\(283\) 18.3711 1.09205 0.546024 0.837769i \(-0.316141\pi\)
0.546024 + 0.837769i \(0.316141\pi\)
\(284\) 12.9796 0.770199
\(285\) 0 0
\(286\) 11.1663 0.660277
\(287\) −0.0907136 −0.00535466
\(288\) 0 0
\(289\) −11.2246 −0.660269
\(290\) 27.5664 1.61875
\(291\) 0 0
\(292\) 11.3074 0.661716
\(293\) 24.4454 1.42812 0.714059 0.700086i \(-0.246855\pi\)
0.714059 + 0.700086i \(0.246855\pi\)
\(294\) 0 0
\(295\) 1.73021 0.100737
\(296\) −0.588590 −0.0342111
\(297\) 0 0
\(298\) 0.0129883 0.000752393 0
\(299\) −5.20211 −0.300846
\(300\) 0 0
\(301\) 11.3457 0.653954
\(302\) 43.2291 2.48755
\(303\) 0 0
\(304\) 14.4249 0.827325
\(305\) 28.8371 1.65121
\(306\) 0 0
\(307\) 27.6313 1.57700 0.788500 0.615035i \(-0.210858\pi\)
0.788500 + 0.615035i \(0.210858\pi\)
\(308\) −4.46935 −0.254665
\(309\) 0 0
\(310\) −32.4329 −1.84206
\(311\) 7.35608 0.417125 0.208563 0.978009i \(-0.433122\pi\)
0.208563 + 0.978009i \(0.433122\pi\)
\(312\) 0 0
\(313\) 3.38614 0.191396 0.0956981 0.995410i \(-0.469492\pi\)
0.0956981 + 0.995410i \(0.469492\pi\)
\(314\) −9.36017 −0.528225
\(315\) 0 0
\(316\) −37.0242 −2.08277
\(317\) −14.5602 −0.817782 −0.408891 0.912583i \(-0.634084\pi\)
−0.408891 + 0.912583i \(0.634084\pi\)
\(318\) 0 0
\(319\) 5.57442 0.312108
\(320\) 27.4095 1.53224
\(321\) 0 0
\(322\) 3.67927 0.205038
\(323\) 14.3474 0.798313
\(324\) 0 0
\(325\) −1.60038 −0.0887731
\(326\) 51.5625 2.85578
\(327\) 0 0
\(328\) −0.0690020 −0.00381000
\(329\) 20.9107 1.15284
\(330\) 0 0
\(331\) 33.2753 1.82897 0.914487 0.404615i \(-0.132594\pi\)
0.914487 + 0.404615i \(0.132594\pi\)
\(332\) −31.1435 −1.70922
\(333\) 0 0
\(334\) −23.0467 −1.26106
\(335\) −11.3357 −0.619335
\(336\) 0 0
\(337\) −0.512573 −0.0279216 −0.0139608 0.999903i \(-0.504444\pi\)
−0.0139608 + 0.999903i \(0.504444\pi\)
\(338\) 30.1840 1.64179
\(339\) 0 0
\(340\) 14.4363 0.782916
\(341\) −6.55851 −0.355163
\(342\) 0 0
\(343\) −18.9611 −1.02380
\(344\) 8.63017 0.465308
\(345\) 0 0
\(346\) −35.2267 −1.89380
\(347\) −0.949097 −0.0509502 −0.0254751 0.999675i \(-0.508110\pi\)
−0.0254751 + 0.999675i \(0.508110\pi\)
\(348\) 0 0
\(349\) −24.8145 −1.32829 −0.664145 0.747604i \(-0.731204\pi\)
−0.664145 + 0.747604i \(0.731204\pi\)
\(350\) 1.13189 0.0605021
\(351\) 0 0
\(352\) 7.79399 0.415421
\(353\) −14.4798 −0.770680 −0.385340 0.922775i \(-0.625916\pi\)
−0.385340 + 0.922775i \(0.625916\pi\)
\(354\) 0 0
\(355\) −11.4683 −0.608677
\(356\) −18.7881 −0.995765
\(357\) 0 0
\(358\) 16.3133 0.862185
\(359\) 20.0668 1.05909 0.529543 0.848283i \(-0.322364\pi\)
0.529543 + 0.848283i \(0.322364\pi\)
\(360\) 0 0
\(361\) 16.6422 0.875907
\(362\) −17.0270 −0.894919
\(363\) 0 0
\(364\) −23.2501 −1.21863
\(365\) −9.99085 −0.522945
\(366\) 0 0
\(367\) −15.2983 −0.798564 −0.399282 0.916828i \(-0.630741\pi\)
−0.399282 + 0.916828i \(0.630741\pi\)
\(368\) −2.41619 −0.125952
\(369\) 0 0
\(370\) 2.23239 0.116057
\(371\) −2.87841 −0.149440
\(372\) 0 0
\(373\) −10.6040 −0.549052 −0.274526 0.961580i \(-0.588521\pi\)
−0.274526 + 0.961580i \(0.588521\pi\)
\(374\) 5.15847 0.266738
\(375\) 0 0
\(376\) 15.9059 0.820282
\(377\) 28.9988 1.49351
\(378\) 0 0
\(379\) −4.01160 −0.206062 −0.103031 0.994678i \(-0.532854\pi\)
−0.103031 + 0.994678i \(0.532854\pi\)
\(380\) 35.8629 1.83973
\(381\) 0 0
\(382\) 42.3116 2.16485
\(383\) −29.4485 −1.50475 −0.752375 0.658735i \(-0.771092\pi\)
−0.752375 + 0.658735i \(0.771092\pi\)
\(384\) 0 0
\(385\) 3.94896 0.201258
\(386\) 2.13645 0.108742
\(387\) 0 0
\(388\) −0.594506 −0.0301815
\(389\) −35.0463 −1.77692 −0.888460 0.458954i \(-0.848224\pi\)
−0.888460 + 0.458954i \(0.848224\pi\)
\(390\) 0 0
\(391\) −2.40321 −0.121536
\(392\) −5.29605 −0.267491
\(393\) 0 0
\(394\) 35.0920 1.76791
\(395\) 32.7133 1.64598
\(396\) 0 0
\(397\) −19.5343 −0.980399 −0.490199 0.871610i \(-0.663076\pi\)
−0.490199 + 0.871610i \(0.663076\pi\)
\(398\) −52.6930 −2.64126
\(399\) 0 0
\(400\) −0.743316 −0.0371658
\(401\) −29.2730 −1.46183 −0.730913 0.682471i \(-0.760905\pi\)
−0.730913 + 0.682471i \(0.760905\pi\)
\(402\) 0 0
\(403\) −34.1181 −1.69955
\(404\) −31.2296 −1.55373
\(405\) 0 0
\(406\) −20.5098 −1.01788
\(407\) 0.451431 0.0223766
\(408\) 0 0
\(409\) −6.31960 −0.312484 −0.156242 0.987719i \(-0.549938\pi\)
−0.156242 + 0.987719i \(0.549938\pi\)
\(410\) 0.261710 0.0129249
\(411\) 0 0
\(412\) 47.8365 2.35673
\(413\) −1.28730 −0.0633440
\(414\) 0 0
\(415\) 27.5173 1.35077
\(416\) 40.5452 1.98789
\(417\) 0 0
\(418\) 12.8148 0.626792
\(419\) −19.6098 −0.958003 −0.479001 0.877814i \(-0.659001\pi\)
−0.479001 + 0.877814i \(0.659001\pi\)
\(420\) 0 0
\(421\) 0.413874 0.0201710 0.0100855 0.999949i \(-0.496790\pi\)
0.0100855 + 0.999949i \(0.496790\pi\)
\(422\) 55.4769 2.70057
\(423\) 0 0
\(424\) −2.18948 −0.106331
\(425\) −0.739325 −0.0358625
\(426\) 0 0
\(427\) −21.4552 −1.03829
\(428\) 8.17741 0.395270
\(429\) 0 0
\(430\) −32.7324 −1.57850
\(431\) −13.4015 −0.645528 −0.322764 0.946479i \(-0.604612\pi\)
−0.322764 + 0.946479i \(0.604612\pi\)
\(432\) 0 0
\(433\) −22.5136 −1.08194 −0.540968 0.841043i \(-0.681942\pi\)
−0.540968 + 0.841043i \(0.681942\pi\)
\(434\) 24.1305 1.15830
\(435\) 0 0
\(436\) −33.2374 −1.59178
\(437\) −5.97011 −0.285589
\(438\) 0 0
\(439\) 11.1902 0.534081 0.267041 0.963685i \(-0.413954\pi\)
0.267041 + 0.963685i \(0.413954\pi\)
\(440\) 3.00381 0.143201
\(441\) 0 0
\(442\) 26.8350 1.27641
\(443\) −20.5087 −0.974397 −0.487199 0.873291i \(-0.661981\pi\)
−0.487199 + 0.873291i \(0.661981\pi\)
\(444\) 0 0
\(445\) 16.6005 0.786939
\(446\) 57.3502 2.71561
\(447\) 0 0
\(448\) −20.3931 −0.963482
\(449\) −10.8036 −0.509853 −0.254927 0.966960i \(-0.582051\pi\)
−0.254927 + 0.966960i \(0.582051\pi\)
\(450\) 0 0
\(451\) 0.0529225 0.00249202
\(452\) 25.8040 1.21372
\(453\) 0 0
\(454\) −56.3860 −2.64633
\(455\) 20.5430 0.963069
\(456\) 0 0
\(457\) −17.4139 −0.814590 −0.407295 0.913297i \(-0.633528\pi\)
−0.407295 + 0.913297i \(0.633528\pi\)
\(458\) −7.57254 −0.353841
\(459\) 0 0
\(460\) −6.00707 −0.280081
\(461\) −21.5017 −1.00143 −0.500717 0.865611i \(-0.666930\pi\)
−0.500717 + 0.865611i \(0.666930\pi\)
\(462\) 0 0
\(463\) 8.61269 0.400266 0.200133 0.979769i \(-0.435863\pi\)
0.200133 + 0.979769i \(0.435863\pi\)
\(464\) 13.4688 0.625275
\(465\) 0 0
\(466\) 19.1687 0.887973
\(467\) −21.4571 −0.992917 −0.496458 0.868061i \(-0.665366\pi\)
−0.496458 + 0.868061i \(0.665366\pi\)
\(468\) 0 0
\(469\) 8.43392 0.389442
\(470\) −60.3275 −2.78270
\(471\) 0 0
\(472\) −0.979196 −0.0450711
\(473\) −6.61909 −0.304346
\(474\) 0 0
\(475\) −1.83665 −0.0842711
\(476\) −10.7408 −0.492303
\(477\) 0 0
\(478\) −23.6906 −1.08358
\(479\) −1.05146 −0.0480425 −0.0240213 0.999711i \(-0.507647\pi\)
−0.0240213 + 0.999711i \(0.507647\pi\)
\(480\) 0 0
\(481\) 2.34839 0.107078
\(482\) −47.8539 −2.17968
\(483\) 0 0
\(484\) 2.60742 0.118519
\(485\) 0.525285 0.0238520
\(486\) 0 0
\(487\) 10.9677 0.496995 0.248497 0.968633i \(-0.420063\pi\)
0.248497 + 0.968633i \(0.420063\pi\)
\(488\) −16.3201 −0.738775
\(489\) 0 0
\(490\) 20.0868 0.907429
\(491\) 25.4780 1.14981 0.574904 0.818221i \(-0.305040\pi\)
0.574904 + 0.818221i \(0.305040\pi\)
\(492\) 0 0
\(493\) 13.3965 0.603349
\(494\) 66.6640 2.99936
\(495\) 0 0
\(496\) −15.8466 −0.711533
\(497\) 8.53262 0.382740
\(498\) 0 0
\(499\) −17.9068 −0.801618 −0.400809 0.916162i \(-0.631271\pi\)
−0.400809 + 0.916162i \(0.631271\pi\)
\(500\) 28.1873 1.26058
\(501\) 0 0
\(502\) 8.92152 0.398187
\(503\) 12.9389 0.576916 0.288458 0.957493i \(-0.406857\pi\)
0.288458 + 0.957493i \(0.406857\pi\)
\(504\) 0 0
\(505\) 27.5934 1.22789
\(506\) −2.14649 −0.0954232
\(507\) 0 0
\(508\) −36.0645 −1.60010
\(509\) −12.7018 −0.562998 −0.281499 0.959562i \(-0.590832\pi\)
−0.281499 + 0.959562i \(0.590832\pi\)
\(510\) 0 0
\(511\) 7.43334 0.328832
\(512\) 25.1323 1.11070
\(513\) 0 0
\(514\) −54.7461 −2.41475
\(515\) −42.2667 −1.86249
\(516\) 0 0
\(517\) −12.1993 −0.536526
\(518\) −1.66093 −0.0729773
\(519\) 0 0
\(520\) 15.6262 0.685252
\(521\) −31.4279 −1.37688 −0.688440 0.725293i \(-0.741704\pi\)
−0.688440 + 0.725293i \(0.741704\pi\)
\(522\) 0 0
\(523\) −28.6135 −1.25118 −0.625590 0.780152i \(-0.715142\pi\)
−0.625590 + 0.780152i \(0.715142\pi\)
\(524\) −4.78679 −0.209112
\(525\) 0 0
\(526\) −19.3671 −0.844446
\(527\) −15.7615 −0.686582
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 8.30424 0.360713
\(531\) 0 0
\(532\) −26.6825 −1.15683
\(533\) 0.275309 0.0119249
\(534\) 0 0
\(535\) −7.22529 −0.312376
\(536\) 6.41533 0.277100
\(537\) 0 0
\(538\) 43.2109 1.86295
\(539\) 4.06191 0.174959
\(540\) 0 0
\(541\) 34.7309 1.49320 0.746600 0.665273i \(-0.231685\pi\)
0.746600 + 0.665273i \(0.231685\pi\)
\(542\) 28.1672 1.20988
\(543\) 0 0
\(544\) 18.7306 0.803068
\(545\) 29.3674 1.25796
\(546\) 0 0
\(547\) −12.2468 −0.523636 −0.261818 0.965117i \(-0.584322\pi\)
−0.261818 + 0.965117i \(0.584322\pi\)
\(548\) 6.92126 0.295661
\(549\) 0 0
\(550\) −0.660347 −0.0281573
\(551\) 33.2799 1.41777
\(552\) 0 0
\(553\) −24.3392 −1.03501
\(554\) −18.8286 −0.799950
\(555\) 0 0
\(556\) −32.1385 −1.36298
\(557\) −7.51356 −0.318360 −0.159180 0.987250i \(-0.550885\pi\)
−0.159180 + 0.987250i \(0.550885\pi\)
\(558\) 0 0
\(559\) −34.4332 −1.45637
\(560\) 9.54143 0.403199
\(561\) 0 0
\(562\) 12.8327 0.541316
\(563\) −6.44946 −0.271812 −0.135906 0.990722i \(-0.543395\pi\)
−0.135906 + 0.990722i \(0.543395\pi\)
\(564\) 0 0
\(565\) −22.7995 −0.959184
\(566\) 39.4334 1.65751
\(567\) 0 0
\(568\) 6.49040 0.272331
\(569\) −6.42317 −0.269273 −0.134637 0.990895i \(-0.542987\pi\)
−0.134637 + 0.990895i \(0.542987\pi\)
\(570\) 0 0
\(571\) 32.5196 1.36090 0.680450 0.732794i \(-0.261784\pi\)
0.680450 + 0.732794i \(0.261784\pi\)
\(572\) 13.5641 0.567144
\(573\) 0 0
\(574\) −0.194716 −0.00812729
\(575\) 0.307640 0.0128295
\(576\) 0 0
\(577\) 29.3541 1.22203 0.611014 0.791619i \(-0.290762\pi\)
0.611014 + 0.791619i \(0.290762\pi\)
\(578\) −24.0934 −1.00215
\(579\) 0 0
\(580\) 33.4859 1.39043
\(581\) −20.4733 −0.849376
\(582\) 0 0
\(583\) 1.67927 0.0695482
\(584\) 5.65423 0.233973
\(585\) 0 0
\(586\) 52.4719 2.16759
\(587\) −27.9525 −1.15372 −0.576862 0.816841i \(-0.695723\pi\)
−0.576862 + 0.816841i \(0.695723\pi\)
\(588\) 0 0
\(589\) −39.1550 −1.61336
\(590\) 3.71388 0.152898
\(591\) 0 0
\(592\) 1.09074 0.0448292
\(593\) −8.65121 −0.355263 −0.177631 0.984097i \(-0.556843\pi\)
−0.177631 + 0.984097i \(0.556843\pi\)
\(594\) 0 0
\(595\) 9.49020 0.389060
\(596\) 0.0157774 0.000646268 0
\(597\) 0 0
\(598\) −11.1663 −0.456624
\(599\) 42.9367 1.75435 0.877173 0.480174i \(-0.159427\pi\)
0.877173 + 0.480174i \(0.159427\pi\)
\(600\) 0 0
\(601\) 18.7697 0.765633 0.382816 0.923824i \(-0.374954\pi\)
0.382816 + 0.923824i \(0.374954\pi\)
\(602\) 24.3534 0.992570
\(603\) 0 0
\(604\) 52.5120 2.13668
\(605\) −2.30383 −0.0936641
\(606\) 0 0
\(607\) −9.77720 −0.396844 −0.198422 0.980117i \(-0.563582\pi\)
−0.198422 + 0.980117i \(0.563582\pi\)
\(608\) 46.5310 1.88708
\(609\) 0 0
\(610\) 61.8986 2.50620
\(611\) −63.4623 −2.56741
\(612\) 0 0
\(613\) −15.6379 −0.631611 −0.315805 0.948824i \(-0.602275\pi\)
−0.315805 + 0.948824i \(0.602275\pi\)
\(614\) 59.3103 2.39357
\(615\) 0 0
\(616\) −2.23488 −0.0900458
\(617\) −1.08731 −0.0437733 −0.0218866 0.999760i \(-0.506967\pi\)
−0.0218866 + 0.999760i \(0.506967\pi\)
\(618\) 0 0
\(619\) 21.4376 0.861651 0.430825 0.902435i \(-0.358222\pi\)
0.430825 + 0.902435i \(0.358222\pi\)
\(620\) −39.3974 −1.58224
\(621\) 0 0
\(622\) 15.7898 0.633112
\(623\) −12.3510 −0.494833
\(624\) 0 0
\(625\) −26.4436 −1.05774
\(626\) 7.26833 0.290501
\(627\) 0 0
\(628\) −11.3702 −0.453718
\(629\) 1.08488 0.0432572
\(630\) 0 0
\(631\) −31.9020 −1.27000 −0.634998 0.772513i \(-0.718999\pi\)
−0.634998 + 0.772513i \(0.718999\pi\)
\(632\) −18.5138 −0.736438
\(633\) 0 0
\(634\) −31.2533 −1.24123
\(635\) 31.8654 1.26454
\(636\) 0 0
\(637\) 21.1305 0.837222
\(638\) 11.9654 0.473717
\(639\) 0 0
\(640\) 22.9222 0.906078
\(641\) −20.8702 −0.824322 −0.412161 0.911111i \(-0.635226\pi\)
−0.412161 + 0.911111i \(0.635226\pi\)
\(642\) 0 0
\(643\) 3.35892 0.132463 0.0662314 0.997804i \(-0.478902\pi\)
0.0662314 + 0.997804i \(0.478902\pi\)
\(644\) 4.46935 0.176117
\(645\) 0 0
\(646\) 30.7967 1.21168
\(647\) −15.4981 −0.609294 −0.304647 0.952465i \(-0.598538\pi\)
−0.304647 + 0.952465i \(0.598538\pi\)
\(648\) 0 0
\(649\) 0.751014 0.0294799
\(650\) −3.43520 −0.134740
\(651\) 0 0
\(652\) 62.6350 2.45297
\(653\) 28.2669 1.10617 0.553085 0.833125i \(-0.313450\pi\)
0.553085 + 0.833125i \(0.313450\pi\)
\(654\) 0 0
\(655\) 4.22945 0.165258
\(656\) 0.127871 0.00499251
\(657\) 0 0
\(658\) 44.8846 1.74978
\(659\) −33.7629 −1.31522 −0.657608 0.753360i \(-0.728432\pi\)
−0.657608 + 0.753360i \(0.728432\pi\)
\(660\) 0 0
\(661\) 28.8495 1.12212 0.561058 0.827776i \(-0.310394\pi\)
0.561058 + 0.827776i \(0.310394\pi\)
\(662\) 71.4251 2.77601
\(663\) 0 0
\(664\) −15.5732 −0.604357
\(665\) 23.5757 0.914228
\(666\) 0 0
\(667\) −5.57442 −0.215842
\(668\) −27.9957 −1.08319
\(669\) 0 0
\(670\) −24.3320 −0.940026
\(671\) 12.5170 0.483214
\(672\) 0 0
\(673\) −41.8888 −1.61469 −0.807347 0.590076i \(-0.799098\pi\)
−0.807347 + 0.590076i \(0.799098\pi\)
\(674\) −1.10023 −0.0423794
\(675\) 0 0
\(676\) 36.6656 1.41022
\(677\) 23.3644 0.897967 0.448984 0.893540i \(-0.351786\pi\)
0.448984 + 0.893540i \(0.351786\pi\)
\(678\) 0 0
\(679\) −0.390820 −0.0149983
\(680\) 7.21879 0.276828
\(681\) 0 0
\(682\) −14.0778 −0.539066
\(683\) −16.1543 −0.618128 −0.309064 0.951041i \(-0.600016\pi\)
−0.309064 + 0.951041i \(0.600016\pi\)
\(684\) 0 0
\(685\) −6.11539 −0.233657
\(686\) −40.6997 −1.55392
\(687\) 0 0
\(688\) −15.9929 −0.609725
\(689\) 8.73575 0.332805
\(690\) 0 0
\(691\) −17.9699 −0.683606 −0.341803 0.939772i \(-0.611038\pi\)
−0.341803 + 0.939772i \(0.611038\pi\)
\(692\) −42.7912 −1.62668
\(693\) 0 0
\(694\) −2.03723 −0.0773321
\(695\) 28.3965 1.07714
\(696\) 0 0
\(697\) 0.127184 0.00481744
\(698\) −53.2641 −2.01608
\(699\) 0 0
\(700\) 1.37495 0.0519683
\(701\) 8.99333 0.339673 0.169837 0.985472i \(-0.445676\pi\)
0.169837 + 0.985472i \(0.445676\pi\)
\(702\) 0 0
\(703\) 2.69509 0.101647
\(704\) 11.8973 0.448398
\(705\) 0 0
\(706\) −31.0807 −1.16974
\(707\) −20.5299 −0.772106
\(708\) 0 0
\(709\) −7.10172 −0.266711 −0.133355 0.991068i \(-0.542575\pi\)
−0.133355 + 0.991068i \(0.542575\pi\)
\(710\) −24.6167 −0.923849
\(711\) 0 0
\(712\) −9.39489 −0.352088
\(713\) 6.55851 0.245618
\(714\) 0 0
\(715\) −11.9848 −0.448206
\(716\) 19.8164 0.740574
\(717\) 0 0
\(718\) 43.0732 1.60748
\(719\) −17.6914 −0.659776 −0.329888 0.944020i \(-0.607011\pi\)
−0.329888 + 0.944020i \(0.607011\pi\)
\(720\) 0 0
\(721\) 31.4470 1.17115
\(722\) 35.7224 1.32945
\(723\) 0 0
\(724\) −20.6833 −0.768690
\(725\) −1.71492 −0.0636904
\(726\) 0 0
\(727\) −42.4019 −1.57260 −0.786299 0.617846i \(-0.788006\pi\)
−0.786299 + 0.617846i \(0.788006\pi\)
\(728\) −11.6261 −0.430892
\(729\) 0 0
\(730\) −21.4453 −0.793725
\(731\) −15.9071 −0.588344
\(732\) 0 0
\(733\) 6.44691 0.238122 0.119061 0.992887i \(-0.462012\pi\)
0.119061 + 0.992887i \(0.462012\pi\)
\(734\) −32.8376 −1.21206
\(735\) 0 0
\(736\) −7.79399 −0.287290
\(737\) −4.92036 −0.181244
\(738\) 0 0
\(739\) 9.24032 0.339911 0.169955 0.985452i \(-0.445638\pi\)
0.169955 + 0.985452i \(0.445638\pi\)
\(740\) 2.71177 0.0996868
\(741\) 0 0
\(742\) −6.17848 −0.226819
\(743\) −3.52426 −0.129292 −0.0646462 0.997908i \(-0.520592\pi\)
−0.0646462 + 0.997908i \(0.520592\pi\)
\(744\) 0 0
\(745\) −0.0139404 −0.000510736 0
\(746\) −22.7613 −0.833350
\(747\) 0 0
\(748\) 6.26620 0.229115
\(749\) 5.37572 0.196425
\(750\) 0 0
\(751\) 13.1540 0.479996 0.239998 0.970773i \(-0.422853\pi\)
0.239998 + 0.970773i \(0.422853\pi\)
\(752\) −29.4758 −1.07487
\(753\) 0 0
\(754\) 62.2456 2.26685
\(755\) −46.3978 −1.68859
\(756\) 0 0
\(757\) 28.4151 1.03276 0.516382 0.856359i \(-0.327279\pi\)
0.516382 + 0.856359i \(0.327279\pi\)
\(758\) −8.61086 −0.312761
\(759\) 0 0
\(760\) 17.9331 0.650501
\(761\) 11.9813 0.434320 0.217160 0.976136i \(-0.430321\pi\)
0.217160 + 0.976136i \(0.430321\pi\)
\(762\) 0 0
\(763\) −21.8498 −0.791015
\(764\) 51.3976 1.85950
\(765\) 0 0
\(766\) −63.2110 −2.28391
\(767\) 3.90686 0.141069
\(768\) 0 0
\(769\) 16.1101 0.580946 0.290473 0.956883i \(-0.406187\pi\)
0.290473 + 0.956883i \(0.406187\pi\)
\(770\) 8.47641 0.305469
\(771\) 0 0
\(772\) 2.59523 0.0934043
\(773\) 45.1851 1.62519 0.812597 0.582826i \(-0.198053\pi\)
0.812597 + 0.582826i \(0.198053\pi\)
\(774\) 0 0
\(775\) 2.01766 0.0724766
\(776\) −0.297280 −0.0106717
\(777\) 0 0
\(778\) −75.2267 −2.69701
\(779\) 0.315953 0.0113202
\(780\) 0 0
\(781\) −4.97794 −0.178125
\(782\) −5.15847 −0.184467
\(783\) 0 0
\(784\) 9.81434 0.350512
\(785\) 10.0463 0.358567
\(786\) 0 0
\(787\) −38.1660 −1.36047 −0.680235 0.732994i \(-0.738122\pi\)
−0.680235 + 0.732994i \(0.738122\pi\)
\(788\) 42.6275 1.51854
\(789\) 0 0
\(790\) 70.2188 2.49827
\(791\) 16.9632 0.603142
\(792\) 0 0
\(793\) 65.1149 2.31230
\(794\) −41.9302 −1.48805
\(795\) 0 0
\(796\) −64.0082 −2.26871
\(797\) −52.0399 −1.84335 −0.921674 0.387966i \(-0.873178\pi\)
−0.921674 + 0.387966i \(0.873178\pi\)
\(798\) 0 0
\(799\) −29.3176 −1.03718
\(800\) −2.39774 −0.0847730
\(801\) 0 0
\(802\) −62.8343 −2.21876
\(803\) −4.33662 −0.153036
\(804\) 0 0
\(805\) −3.94896 −0.139183
\(806\) −73.2343 −2.57957
\(807\) 0 0
\(808\) −15.6162 −0.549377
\(809\) −23.5786 −0.828981 −0.414490 0.910054i \(-0.636040\pi\)
−0.414490 + 0.910054i \(0.636040\pi\)
\(810\) 0 0
\(811\) −21.7514 −0.763796 −0.381898 0.924204i \(-0.624730\pi\)
−0.381898 + 0.924204i \(0.624730\pi\)
\(812\) −24.9140 −0.874311
\(813\) 0 0
\(814\) 0.968992 0.0339631
\(815\) −55.3421 −1.93855
\(816\) 0 0
\(817\) −39.5167 −1.38251
\(818\) −13.5650 −0.474288
\(819\) 0 0
\(820\) 0.317909 0.0111019
\(821\) 18.0492 0.629922 0.314961 0.949105i \(-0.398009\pi\)
0.314961 + 0.949105i \(0.398009\pi\)
\(822\) 0 0
\(823\) −14.1733 −0.494051 −0.247025 0.969009i \(-0.579453\pi\)
−0.247025 + 0.969009i \(0.579453\pi\)
\(824\) 23.9204 0.833308
\(825\) 0 0
\(826\) −2.76318 −0.0961434
\(827\) 41.8804 1.45632 0.728162 0.685405i \(-0.240375\pi\)
0.728162 + 0.685405i \(0.240375\pi\)
\(828\) 0 0
\(829\) 45.6030 1.58386 0.791928 0.610614i \(-0.209077\pi\)
0.791928 + 0.610614i \(0.209077\pi\)
\(830\) 59.0657 2.05020
\(831\) 0 0
\(832\) 61.8914 2.14570
\(833\) 9.76164 0.338221
\(834\) 0 0
\(835\) 24.7361 0.856028
\(836\) 15.5666 0.538383
\(837\) 0 0
\(838\) −42.0923 −1.45406
\(839\) 11.2025 0.386754 0.193377 0.981125i \(-0.438056\pi\)
0.193377 + 0.981125i \(0.438056\pi\)
\(840\) 0 0
\(841\) 2.07418 0.0715236
\(842\) 0.888378 0.0306155
\(843\) 0 0
\(844\) 67.3899 2.31966
\(845\) −32.3965 −1.11447
\(846\) 0 0
\(847\) 1.71408 0.0588967
\(848\) 4.05742 0.139333
\(849\) 0 0
\(850\) −1.58695 −0.0544321
\(851\) −0.451431 −0.0154748
\(852\) 0 0
\(853\) 26.0454 0.891776 0.445888 0.895089i \(-0.352888\pi\)
0.445888 + 0.895089i \(0.352888\pi\)
\(854\) −46.0534 −1.57592
\(855\) 0 0
\(856\) 4.08908 0.139762
\(857\) 11.2871 0.385559 0.192780 0.981242i \(-0.438250\pi\)
0.192780 + 0.981242i \(0.438250\pi\)
\(858\) 0 0
\(859\) 8.66093 0.295507 0.147754 0.989024i \(-0.452796\pi\)
0.147754 + 0.989024i \(0.452796\pi\)
\(860\) −39.7613 −1.35585
\(861\) 0 0
\(862\) −28.7662 −0.979782
\(863\) −1.68934 −0.0575060 −0.0287530 0.999587i \(-0.509154\pi\)
−0.0287530 + 0.999587i \(0.509154\pi\)
\(864\) 0 0
\(865\) 37.8089 1.28554
\(866\) −48.3253 −1.64216
\(867\) 0 0
\(868\) 29.3123 0.994923
\(869\) 14.1995 0.481685
\(870\) 0 0
\(871\) −25.5963 −0.867298
\(872\) −16.6202 −0.562831
\(873\) 0 0
\(874\) −12.8148 −0.433467
\(875\) 18.5300 0.626427
\(876\) 0 0
\(877\) −23.6638 −0.799068 −0.399534 0.916718i \(-0.630828\pi\)
−0.399534 + 0.916718i \(0.630828\pi\)
\(878\) 24.0198 0.810628
\(879\) 0 0
\(880\) −5.56649 −0.187646
\(881\) 52.6497 1.77381 0.886907 0.461949i \(-0.152850\pi\)
0.886907 + 0.461949i \(0.152850\pi\)
\(882\) 0 0
\(883\) 0.0150906 0.000507838 0 0.000253919 1.00000i \(-0.499919\pi\)
0.000253919 1.00000i \(0.499919\pi\)
\(884\) 32.5975 1.09637
\(885\) 0 0
\(886\) −44.0217 −1.47894
\(887\) −4.97866 −0.167167 −0.0835835 0.996501i \(-0.526637\pi\)
−0.0835835 + 0.996501i \(0.526637\pi\)
\(888\) 0 0
\(889\) −23.7083 −0.795151
\(890\) 35.6328 1.19441
\(891\) 0 0
\(892\) 69.6655 2.33257
\(893\) −72.8313 −2.43721
\(894\) 0 0
\(895\) −17.5091 −0.585265
\(896\) −17.0544 −0.569749
\(897\) 0 0
\(898\) −23.1898 −0.773854
\(899\) −36.5599 −1.21934
\(900\) 0 0
\(901\) 4.03564 0.134447
\(902\) 0.113598 0.00378239
\(903\) 0 0
\(904\) 12.9032 0.429154
\(905\) 18.2751 0.607485
\(906\) 0 0
\(907\) −2.61087 −0.0866926 −0.0433463 0.999060i \(-0.513802\pi\)
−0.0433463 + 0.999060i \(0.513802\pi\)
\(908\) −68.4942 −2.27306
\(909\) 0 0
\(910\) 44.0953 1.46174
\(911\) 10.3836 0.344023 0.172011 0.985095i \(-0.444973\pi\)
0.172011 + 0.985095i \(0.444973\pi\)
\(912\) 0 0
\(913\) 11.9442 0.395294
\(914\) −37.3789 −1.23638
\(915\) 0 0
\(916\) −9.19865 −0.303932
\(917\) −3.14677 −0.103916
\(918\) 0 0
\(919\) −50.1160 −1.65318 −0.826588 0.562808i \(-0.809721\pi\)
−0.826588 + 0.562808i \(0.809721\pi\)
\(920\) −3.00381 −0.0990326
\(921\) 0 0
\(922\) −46.1532 −1.51997
\(923\) −25.8958 −0.852372
\(924\) 0 0
\(925\) −0.138878 −0.00456629
\(926\) 18.4871 0.607522
\(927\) 0 0
\(928\) 43.4470 1.42622
\(929\) 18.5166 0.607509 0.303755 0.952750i \(-0.401760\pi\)
0.303755 + 0.952750i \(0.401760\pi\)
\(930\) 0 0
\(931\) 24.2501 0.794764
\(932\) 23.2849 0.762724
\(933\) 0 0
\(934\) −46.0575 −1.50705
\(935\) −5.53660 −0.181066
\(936\) 0 0
\(937\) −6.40596 −0.209274 −0.104637 0.994511i \(-0.533368\pi\)
−0.104637 + 0.994511i \(0.533368\pi\)
\(938\) 18.1033 0.591095
\(939\) 0 0
\(940\) −73.2822 −2.39020
\(941\) 45.9567 1.49814 0.749072 0.662488i \(-0.230500\pi\)
0.749072 + 0.662488i \(0.230500\pi\)
\(942\) 0 0
\(943\) −0.0529225 −0.00172339
\(944\) 1.81459 0.0590599
\(945\) 0 0
\(946\) −14.2078 −0.461936
\(947\) −4.92251 −0.159960 −0.0799801 0.996796i \(-0.525486\pi\)
−0.0799801 + 0.996796i \(0.525486\pi\)
\(948\) 0 0
\(949\) −22.5596 −0.732316
\(950\) −3.94235 −0.127907
\(951\) 0 0
\(952\) −5.37089 −0.174071
\(953\) 35.5422 1.15132 0.575662 0.817688i \(-0.304744\pi\)
0.575662 + 0.817688i \(0.304744\pi\)
\(954\) 0 0
\(955\) −45.4131 −1.46953
\(956\) −28.7779 −0.930744
\(957\) 0 0
\(958\) −2.25695 −0.0729189
\(959\) 4.54994 0.146925
\(960\) 0 0
\(961\) 12.0141 0.387551
\(962\) 5.04081 0.162522
\(963\) 0 0
\(964\) −58.1299 −1.87224
\(965\) −2.29305 −0.0738161
\(966\) 0 0
\(967\) 37.7483 1.21391 0.606953 0.794738i \(-0.292392\pi\)
0.606953 + 0.794738i \(0.292392\pi\)
\(968\) 1.30383 0.0419067
\(969\) 0 0
\(970\) 1.12752 0.0362025
\(971\) 26.8027 0.860140 0.430070 0.902796i \(-0.358489\pi\)
0.430070 + 0.902796i \(0.358489\pi\)
\(972\) 0 0
\(973\) −21.1274 −0.677314
\(974\) 23.5421 0.754338
\(975\) 0 0
\(976\) 30.2434 0.968069
\(977\) −22.8876 −0.732239 −0.366120 0.930568i \(-0.619314\pi\)
−0.366120 + 0.930568i \(0.619314\pi\)
\(978\) 0 0
\(979\) 7.20560 0.230292
\(980\) 24.4002 0.779435
\(981\) 0 0
\(982\) 54.6884 1.74518
\(983\) 51.3842 1.63890 0.819451 0.573149i \(-0.194278\pi\)
0.819451 + 0.573149i \(0.194278\pi\)
\(984\) 0 0
\(985\) −37.6642 −1.20008
\(986\) 28.7555 0.915762
\(987\) 0 0
\(988\) 80.9793 2.57630
\(989\) 6.61909 0.210475
\(990\) 0 0
\(991\) −42.5506 −1.35166 −0.675831 0.737056i \(-0.736215\pi\)
−0.675831 + 0.737056i \(0.736215\pi\)
\(992\) −51.1169 −1.62296
\(993\) 0 0
\(994\) 18.3152 0.580923
\(995\) 56.5554 1.79293
\(996\) 0 0
\(997\) −0.989349 −0.0313330 −0.0156665 0.999877i \(-0.504987\pi\)
−0.0156665 + 0.999877i \(0.504987\pi\)
\(998\) −38.4368 −1.21669
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2277.2.a.m.1.6 6
3.2 odd 2 253.2.a.d.1.1 6
12.11 even 2 4048.2.a.bc.1.2 6
15.14 odd 2 6325.2.a.m.1.6 6
33.32 even 2 2783.2.a.h.1.6 6
69.68 even 2 5819.2.a.e.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.a.d.1.1 6 3.2 odd 2
2277.2.a.m.1.6 6 1.1 even 1 trivial
2783.2.a.h.1.6 6 33.32 even 2
4048.2.a.bc.1.2 6 12.11 even 2
5819.2.a.e.1.1 6 69.68 even 2
6325.2.a.m.1.6 6 15.14 odd 2