Newspace parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(91.6601872638\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 45) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
224.1 | −31.8503 | 0 | 758.442 | 0 | 0 | 1917.57i | −16002.9 | 0 | 0 | ||||||||||||||||||
224.2 | −31.8503 | 0 | 758.442 | 0 | 0 | − | 1917.57i | −16002.9 | 0 | 0 | |||||||||||||||||
224.3 | −25.3359 | 0 | 385.909 | 0 | 0 | 2907.18i | −3291.35 | 0 | 0 | ||||||||||||||||||
224.4 | −25.3359 | 0 | 385.909 | 0 | 0 | − | 2907.18i | −3291.35 | 0 | 0 | |||||||||||||||||
224.5 | −23.2704 | 0 | 285.513 | 0 | 0 | − | 4399.16i | −686.784 | 0 | 0 | |||||||||||||||||
224.6 | −23.2704 | 0 | 285.513 | 0 | 0 | 4399.16i | −686.784 | 0 | 0 | ||||||||||||||||||
224.7 | −19.1733 | 0 | 111.617 | 0 | 0 | − | 367.611i | 2768.31 | 0 | 0 | |||||||||||||||||
224.8 | −19.1733 | 0 | 111.617 | 0 | 0 | 367.611i | 2768.31 | 0 | 0 | ||||||||||||||||||
224.9 | −13.3807 | 0 | −76.9563 | 0 | 0 | − | 256.182i | 4455.20 | 0 | 0 | |||||||||||||||||
224.10 | −13.3807 | 0 | −76.9563 | 0 | 0 | 256.182i | 4455.20 | 0 | 0 | ||||||||||||||||||
224.11 | −7.31273 | 0 | −202.524 | 0 | 0 | 3662.21i | 3353.06 | 0 | 0 | ||||||||||||||||||
224.12 | −7.31273 | 0 | −202.524 | 0 | 0 | − | 3662.21i | 3353.06 | 0 | 0 | |||||||||||||||||
224.13 | 7.31273 | 0 | −202.524 | 0 | 0 | 3662.21i | −3353.06 | 0 | 0 | ||||||||||||||||||
224.14 | 7.31273 | 0 | −202.524 | 0 | 0 | − | 3662.21i | −3353.06 | 0 | 0 | |||||||||||||||||
224.15 | 13.3807 | 0 | −76.9563 | 0 | 0 | − | 256.182i | −4455.20 | 0 | 0 | |||||||||||||||||
224.16 | 13.3807 | 0 | −76.9563 | 0 | 0 | 256.182i | −4455.20 | 0 | 0 | ||||||||||||||||||
224.17 | 19.1733 | 0 | 111.617 | 0 | 0 | − | 367.611i | −2768.31 | 0 | 0 | |||||||||||||||||
224.18 | 19.1733 | 0 | 111.617 | 0 | 0 | 367.611i | −2768.31 | 0 | 0 | ||||||||||||||||||
224.19 | 23.2704 | 0 | 285.513 | 0 | 0 | − | 4399.16i | 686.784 | 0 | 0 | |||||||||||||||||
224.20 | 23.2704 | 0 | 285.513 | 0 | 0 | 4399.16i | 686.784 | 0 | 0 | ||||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 225.9.d.c | 24 | |
3.b | odd | 2 | 1 | inner | 225.9.d.c | 24 | |
5.b | even | 2 | 1 | inner | 225.9.d.c | 24 | |
5.c | odd | 4 | 1 | 45.9.c.a | ✓ | 12 | |
5.c | odd | 4 | 1 | 225.9.c.d | 12 | ||
15.d | odd | 2 | 1 | inner | 225.9.d.c | 24 | |
15.e | even | 4 | 1 | 45.9.c.a | ✓ | 12 | |
15.e | even | 4 | 1 | 225.9.c.d | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
45.9.c.a | ✓ | 12 | 5.c | odd | 4 | 1 | |
45.9.c.a | ✓ | 12 | 15.e | even | 4 | 1 | |
225.9.c.d | 12 | 5.c | odd | 4 | 1 | ||
225.9.c.d | 12 | 15.e | even | 4 | 1 | ||
225.9.d.c | 24 | 1.a | even | 1 | 1 | trivial | |
225.9.d.c | 24 | 3.b | odd | 2 | 1 | inner | |
225.9.d.c | 24 | 5.b | even | 2 | 1 | inner | |
225.9.d.c | 24 | 15.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} - 2798 T_{2}^{10} + 2962185 T_{2}^{8} - 1494134240 T_{2}^{6} + 366509587840 T_{2}^{4} + \cdots + 12\!\cdots\!44 \)
acting on \(S_{9}^{\mathrm{new}}(225, [\chi])\).