L(s) = 1 | + 13.3·2-s − 76.9·4-s − 256. i·7-s − 4.45e3·8-s − 2.89e4i·11-s + 4.59e4i·13-s − 3.42e3i·14-s − 3.99e4·16-s + 2.72e4·17-s − 1.26e5·19-s − 3.87e5i·22-s − 1.41e5·23-s + 6.14e5i·26-s + 1.97e4i·28-s − 6.58e5i·29-s + ⋯ |
L(s) = 1 | + 0.836·2-s − 0.300·4-s − 0.106i·7-s − 1.08·8-s − 1.97i·11-s + 1.60i·13-s − 0.0892i·14-s − 0.609·16-s + 0.326·17-s − 0.972·19-s − 1.65i·22-s − 0.504·23-s + 1.34i·26-s + 0.0320i·28-s − 0.931i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.472 - 0.881i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.472 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.816682435\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.816682435\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 13.3T + 256T^{2} \) |
| 7 | \( 1 + 256. iT - 5.76e6T^{2} \) |
| 11 | \( 1 + 2.89e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 4.59e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 - 2.72e4T + 6.97e9T^{2} \) |
| 19 | \( 1 + 1.26e5T + 1.69e10T^{2} \) |
| 23 | \( 1 + 1.41e5T + 7.83e10T^{2} \) |
| 29 | \( 1 + 6.58e5iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 1.39e6T + 8.52e11T^{2} \) |
| 37 | \( 1 - 5.16e5iT - 3.51e12T^{2} \) |
| 41 | \( 1 - 9.16e3iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 5.24e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 5.56e6T + 2.38e13T^{2} \) |
| 53 | \( 1 - 4.27e6T + 6.22e13T^{2} \) |
| 59 | \( 1 - 1.18e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 6.05e6T + 1.91e14T^{2} \) |
| 67 | \( 1 - 1.97e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 - 8.03e6iT - 6.45e14T^{2} \) |
| 73 | \( 1 - 4.28e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 - 4.31e7T + 1.51e15T^{2} \) |
| 83 | \( 1 + 9.09e6T + 2.25e15T^{2} \) |
| 89 | \( 1 - 7.95e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 + 5.87e7iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33057559032595432181419039336, −9.978289628053079416129827793122, −8.877949517071589520621424004404, −8.212440708063275046442492127084, −6.47845728698227441015498362971, −5.90363681965108246237513480878, −4.56590560511709653512180981264, −3.77959600658669025737982995548, −2.61594642055286928406662080681, −0.889479258979031095416581187923,
0.37991887864988229348008826473, 2.09419730053160027359646605556, 3.32146943238980202213670368024, 4.49012314892241842618788291098, 5.22706762555514874300112666090, 6.35849648692891804840250263733, 7.58504469019197432863384130801, 8.641794141325892666686302267063, 9.820758026395228847441217796924, 10.49095914170417395595817185772