L(s) = 1 | − 19.1·2-s + 111.·4-s − 367. i·7-s + 2.76e3·8-s − 9.36e3i·11-s − 2.89e4i·13-s + 7.04e3i·14-s − 8.16e4·16-s − 5.17e4·17-s + 6.69e4·19-s + 1.79e5i·22-s − 1.18e5·23-s + 5.55e5i·26-s − 4.10e4i·28-s − 1.18e6i·29-s + ⋯ |
L(s) = 1 | − 1.19·2-s + 0.436·4-s − 0.153i·7-s + 0.675·8-s − 0.639i·11-s − 1.01i·13-s + 0.183i·14-s − 1.24·16-s − 0.619·17-s + 0.513·19-s + 0.766i·22-s − 0.422·23-s + 1.21i·26-s − 0.0667i·28-s − 1.67i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 - 0.151i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.988 - 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(0.3012999235\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3012999235\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + 19.1T + 256T^{2} \) |
| 7 | \( 1 + 367. iT - 5.76e6T^{2} \) |
| 11 | \( 1 + 9.36e3iT - 2.14e8T^{2} \) |
| 13 | \( 1 + 2.89e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 + 5.17e4T + 6.97e9T^{2} \) |
| 19 | \( 1 - 6.69e4T + 1.69e10T^{2} \) |
| 23 | \( 1 + 1.18e5T + 7.83e10T^{2} \) |
| 29 | \( 1 + 1.18e6iT - 5.00e11T^{2} \) |
| 31 | \( 1 + 2.31e5T + 8.52e11T^{2} \) |
| 37 | \( 1 - 1.63e6iT - 3.51e12T^{2} \) |
| 41 | \( 1 + 2.74e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 1.44e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 6.90e6T + 2.38e13T^{2} \) |
| 53 | \( 1 - 1.26e7T + 6.22e13T^{2} \) |
| 59 | \( 1 + 4.74e6iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 7.53e6T + 1.91e14T^{2} \) |
| 67 | \( 1 + 2.64e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 + 3.33e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 - 4.47e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 - 7.76e7T + 1.51e15T^{2} \) |
| 83 | \( 1 - 2.37e7T + 2.25e15T^{2} \) |
| 89 | \( 1 - 5.22e5iT - 3.93e15T^{2} \) |
| 97 | \( 1 - 3.64e7iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16429546124983362429083386566, −9.315460256191296044274874447770, −8.300816519592606137971248052606, −7.70147696974344705350643254337, −6.45913005848700916795107731528, −5.18171591112100154693838690863, −3.81703394816765463606494677495, −2.34437054602188666461951655406, −0.948974463197960138711333614910, −0.13125906922870180722556230227,
1.26932290621879839060891503680, 2.24978612691605791631173518370, 4.00623341942945601758884532765, 5.11946780544717943605535323645, 6.71232143601716954119019286408, 7.44548161279864890988268658584, 8.623057504255302708898379514389, 9.259295027436686360625494030854, 10.12079521025316612412736189531, 11.05407194245840297900309300694