Properties

Label 2-15e2-15.14-c8-0-40
Degree $2$
Conductor $225$
Sign $-0.988 - 0.151i$
Analytic cond. $91.6601$
Root an. cond. $9.57393$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19.1·2-s + 111.·4-s − 367. i·7-s + 2.76e3·8-s − 9.36e3i·11-s − 2.89e4i·13-s + 7.04e3i·14-s − 8.16e4·16-s − 5.17e4·17-s + 6.69e4·19-s + 1.79e5i·22-s − 1.18e5·23-s + 5.55e5i·26-s − 4.10e4i·28-s − 1.18e6i·29-s + ⋯
L(s)  = 1  − 1.19·2-s + 0.436·4-s − 0.153i·7-s + 0.675·8-s − 0.639i·11-s − 1.01i·13-s + 0.183i·14-s − 1.24·16-s − 0.619·17-s + 0.513·19-s + 0.766i·22-s − 0.422·23-s + 1.21i·26-s − 0.0667i·28-s − 1.67i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 - 0.151i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.988 - 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.988 - 0.151i$
Analytic conductor: \(91.6601\)
Root analytic conductor: \(9.57393\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (224, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :4),\ -0.988 - 0.151i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.3012999235\)
\(L(\frac12)\) \(\approx\) \(0.3012999235\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 19.1T + 256T^{2} \)
7 \( 1 + 367. iT - 5.76e6T^{2} \)
11 \( 1 + 9.36e3iT - 2.14e8T^{2} \)
13 \( 1 + 2.89e4iT - 8.15e8T^{2} \)
17 \( 1 + 5.17e4T + 6.97e9T^{2} \)
19 \( 1 - 6.69e4T + 1.69e10T^{2} \)
23 \( 1 + 1.18e5T + 7.83e10T^{2} \)
29 \( 1 + 1.18e6iT - 5.00e11T^{2} \)
31 \( 1 + 2.31e5T + 8.52e11T^{2} \)
37 \( 1 - 1.63e6iT - 3.51e12T^{2} \)
41 \( 1 + 2.74e6iT - 7.98e12T^{2} \)
43 \( 1 - 1.44e6iT - 1.16e13T^{2} \)
47 \( 1 + 6.90e6T + 2.38e13T^{2} \)
53 \( 1 - 1.26e7T + 6.22e13T^{2} \)
59 \( 1 + 4.74e6iT - 1.46e14T^{2} \)
61 \( 1 - 7.53e6T + 1.91e14T^{2} \)
67 \( 1 + 2.64e7iT - 4.06e14T^{2} \)
71 \( 1 + 3.33e7iT - 6.45e14T^{2} \)
73 \( 1 - 4.47e7iT - 8.06e14T^{2} \)
79 \( 1 - 7.76e7T + 1.51e15T^{2} \)
83 \( 1 - 2.37e7T + 2.25e15T^{2} \)
89 \( 1 - 5.22e5iT - 3.93e15T^{2} \)
97 \( 1 - 3.64e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16429546124983362429083386566, −9.315460256191296044274874447770, −8.300816519592606137971248052606, −7.70147696974344705350643254337, −6.45913005848700916795107731528, −5.18171591112100154693838690863, −3.81703394816765463606494677495, −2.34437054602188666461951655406, −0.948974463197960138711333614910, −0.13125906922870180722556230227, 1.26932290621879839060891503680, 2.24978612691605791631173518370, 4.00623341942945601758884532765, 5.11946780544717943605535323645, 6.71232143601716954119019286408, 7.44548161279864890988268658584, 8.623057504255302708898379514389, 9.259295027436686360625494030854, 10.12079521025316612412736189531, 11.05407194245840297900309300694

Graph of the $Z$-function along the critical line