L(s) = 1 | + 25.3·2-s + 385.·4-s + 2.90e3i·7-s + 3.29e3·8-s − 6.32e3i·11-s + 7.67e3i·13-s + 7.36e4i·14-s − 1.54e4·16-s − 1.55e5·17-s − 3.85e4·19-s − 1.60e5i·22-s − 2.26e5·23-s + 1.94e5i·26-s + 1.12e6i·28-s − 3.82e5i·29-s + ⋯ |
L(s) = 1 | + 1.58·2-s + 1.50·4-s + 1.21i·7-s + 0.803·8-s − 0.432i·11-s + 0.268i·13-s + 1.91i·14-s − 0.235·16-s − 1.85·17-s − 0.295·19-s − 0.684i·22-s − 0.810·23-s + 0.425i·26-s + 1.82i·28-s − 0.540i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 - 0.151i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.988 - 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.298543030\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.298543030\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 25.3T + 256T^{2} \) |
| 7 | \( 1 - 2.90e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 + 6.32e3iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 7.67e3iT - 8.15e8T^{2} \) |
| 17 | \( 1 + 1.55e5T + 6.97e9T^{2} \) |
| 19 | \( 1 + 3.85e4T + 1.69e10T^{2} \) |
| 23 | \( 1 + 2.26e5T + 7.83e10T^{2} \) |
| 29 | \( 1 + 3.82e5iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 1.30e6T + 8.52e11T^{2} \) |
| 37 | \( 1 - 2.63e6iT - 3.51e12T^{2} \) |
| 41 | \( 1 + 2.01e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 + 6.01e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 7.71e6T + 2.38e13T^{2} \) |
| 53 | \( 1 + 6.38e6T + 6.22e13T^{2} \) |
| 59 | \( 1 - 2.20e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 1.90e7T + 1.91e14T^{2} \) |
| 67 | \( 1 - 2.29e6iT - 4.06e14T^{2} \) |
| 71 | \( 1 - 2.97e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 4.03e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 - 1.24e7T + 1.51e15T^{2} \) |
| 83 | \( 1 - 2.06e7T + 2.25e15T^{2} \) |
| 89 | \( 1 - 4.98e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 - 1.30e8iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.78968598507652854934942112768, −10.68543944243861084714574684024, −9.196584150592179714931904924383, −8.326907105005283805569155912782, −6.64956117298058444789666876998, −6.06776672682575886529403708846, −4.99180319173381626352711131763, −4.11068033978342015083263354419, −2.81093323327755993882929982555, −2.02892845321525657082550377504,
0.13745512805977168915652375445, 1.84062935475770349910426797888, 3.09576471472186289537103107621, 4.28030634265883343641648158829, 4.71492889899601886732204012408, 6.22799816442700499771144527268, 6.86500750946042122893469637200, 8.055876059904330999998239957221, 9.549112459037896683877104202280, 10.75375827967297981865770591854