L(s) = 1 | − 25.3·2-s + 385.·4-s − 2.90e3i·7-s − 3.29e3·8-s − 6.32e3i·11-s − 7.67e3i·13-s + 7.36e4i·14-s − 1.54e4·16-s + 1.55e5·17-s − 3.85e4·19-s + 1.60e5i·22-s + 2.26e5·23-s + 1.94e5i·26-s − 1.12e6i·28-s − 3.82e5i·29-s + ⋯ |
L(s) = 1 | − 1.58·2-s + 1.50·4-s − 1.21i·7-s − 0.803·8-s − 0.432i·11-s − 0.268i·13-s + 1.91i·14-s − 0.235·16-s + 1.85·17-s − 0.295·19-s + 0.684i·22-s + 0.810·23-s + 0.425i·26-s − 1.82i·28-s − 0.540i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.472 + 0.881i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.472 + 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.085026017\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.085026017\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + 25.3T + 256T^{2} \) |
| 7 | \( 1 + 2.90e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 + 6.32e3iT - 2.14e8T^{2} \) |
| 13 | \( 1 + 7.67e3iT - 8.15e8T^{2} \) |
| 17 | \( 1 - 1.55e5T + 6.97e9T^{2} \) |
| 19 | \( 1 + 3.85e4T + 1.69e10T^{2} \) |
| 23 | \( 1 - 2.26e5T + 7.83e10T^{2} \) |
| 29 | \( 1 + 3.82e5iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 1.30e6T + 8.52e11T^{2} \) |
| 37 | \( 1 + 2.63e6iT - 3.51e12T^{2} \) |
| 41 | \( 1 + 2.01e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 6.01e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 - 7.71e6T + 2.38e13T^{2} \) |
| 53 | \( 1 - 6.38e6T + 6.22e13T^{2} \) |
| 59 | \( 1 - 2.20e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 1.90e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + 2.29e6iT - 4.06e14T^{2} \) |
| 71 | \( 1 - 2.97e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 - 4.03e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 - 1.24e7T + 1.51e15T^{2} \) |
| 83 | \( 1 + 2.06e7T + 2.25e15T^{2} \) |
| 89 | \( 1 - 4.98e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 + 1.30e8iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39143722486119187499087849748, −9.764056628611849282965115720094, −8.658395560661768099687077840265, −7.72636429547203963911604474213, −7.15358833276502390928423607835, −5.82303919332585959602208015582, −4.18473382079428731887852208366, −2.79579869606084733983146554325, −1.13985727164986550814195248886, −0.67260297224949560252316791000,
0.826241106925981084002651958872, 1.90449293755193434727568654829, 3.03986785691447547178285100455, 4.94885189657638985384768757119, 6.18600321693225627273031759338, 7.31198978849016324198707694285, 8.251483146149553636643355498286, 9.006557632881042052159592986777, 9.825026641976179201468223059670, 10.60433131122436652233516636286