Properties

Label 2-15e2-15.14-c8-0-28
Degree $2$
Conductor $225$
Sign $0.472 + 0.881i$
Analytic cond. $91.6601$
Root an. cond. $9.57393$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.31·2-s − 202.·4-s − 3.66e3i·7-s + 3.35e3·8-s + 1.32e4i·11-s − 2.16e4i·13-s + 2.67e4i·14-s + 2.73e4·16-s − 1.17e5·17-s + 2.55e5·19-s − 9.69e4i·22-s + 4.21e5·23-s + 1.58e5i·26-s + 7.41e5i·28-s + 6.10e5i·29-s + ⋯
L(s)  = 1  − 0.457·2-s − 0.791·4-s − 1.52i·7-s + 0.818·8-s + 0.905i·11-s − 0.756i·13-s + 0.697i·14-s + 0.416·16-s − 1.40·17-s + 1.96·19-s − 0.414i·22-s + 1.50·23-s + 0.345i·26-s + 1.20i·28-s + 0.863i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.472 + 0.881i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.472 + 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $0.472 + 0.881i$
Analytic conductor: \(91.6601\)
Root analytic conductor: \(9.57393\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (224, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :4),\ 0.472 + 0.881i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.221398322\)
\(L(\frac12)\) \(\approx\) \(1.221398322\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 7.31T + 256T^{2} \)
7 \( 1 + 3.66e3iT - 5.76e6T^{2} \)
11 \( 1 - 1.32e4iT - 2.14e8T^{2} \)
13 \( 1 + 2.16e4iT - 8.15e8T^{2} \)
17 \( 1 + 1.17e5T + 6.97e9T^{2} \)
19 \( 1 - 2.55e5T + 1.69e10T^{2} \)
23 \( 1 - 4.21e5T + 7.83e10T^{2} \)
29 \( 1 - 6.10e5iT - 5.00e11T^{2} \)
31 \( 1 + 9.80e5T + 8.52e11T^{2} \)
37 \( 1 - 3.00e5iT - 3.51e12T^{2} \)
41 \( 1 - 1.06e6iT - 7.98e12T^{2} \)
43 \( 1 - 1.60e6iT - 1.16e13T^{2} \)
47 \( 1 + 7.57e5T + 2.38e13T^{2} \)
53 \( 1 - 3.30e6T + 6.22e13T^{2} \)
59 \( 1 - 2.09e7iT - 1.46e14T^{2} \)
61 \( 1 - 2.16e7T + 1.91e14T^{2} \)
67 \( 1 + 1.46e7iT - 4.06e14T^{2} \)
71 \( 1 - 1.44e7iT - 6.45e14T^{2} \)
73 \( 1 + 2.16e7iT - 8.06e14T^{2} \)
79 \( 1 + 4.05e7T + 1.51e15T^{2} \)
83 \( 1 - 4.84e7T + 2.25e15T^{2} \)
89 \( 1 + 3.57e7iT - 3.93e15T^{2} \)
97 \( 1 + 6.01e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.45020992474919988601514119306, −9.688090984868640758088168010780, −8.796948373346305633639218674344, −7.48190310215305143870431235952, −7.10288763155451585470426381863, −5.21187831827776324176305301553, −4.40639751162529488341456397598, −3.27748980612682401617476467855, −1.36838273119111281656126842306, −0.52147074782766168404397718337, 0.75498254496132276991965592483, 2.17007717574057315143470593739, 3.48737102857937938930863483993, 4.93113312957978797581994610514, 5.69886045666985382345583841382, 7.06995861586216302253829612112, 8.390909120391465083206642572010, 9.045452040875430329575397366060, 9.560825386395882969771829343675, 11.06776737532426423126071807416

Graph of the $Z$-function along the critical line