Properties

Label 225.4.e.a.151.1
Level $225$
Weight $4$
Character 225.151
Analytic conductor $13.275$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,4,Mod(76,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.76"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 225.151
Dual form 225.4.e.a.76.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.68614 + 2.92048i) q^{2} +(1.50000 + 4.97494i) q^{3} +(-1.68614 - 2.92048i) q^{4} +(-17.0584 - 4.00772i) q^{6} +(0.813859 - 1.40965i) q^{7} -15.6060 q^{8} +(-22.5000 + 14.9248i) q^{9} +(16.4307 - 28.4588i) q^{11} +(12.0000 - 12.7692i) q^{12} +(-16.5109 - 28.5977i) q^{13} +(2.74456 + 4.75372i) q^{14} +(39.8030 - 68.9408i) q^{16} -110.307 q^{17} +(-5.64947 - 90.8762i) q^{18} -54.3070 q^{19} +(8.23369 + 1.93443i) q^{21} +(55.4090 + 95.9711i) q^{22} +(-33.7188 - 58.4026i) q^{23} +(-23.4090 - 77.6387i) q^{24} +111.359 q^{26} +(-108.000 - 89.5489i) q^{27} -5.48913 q^{28} +(-137.259 + 237.740i) q^{29} +(3.00000 + 5.19615i) q^{31} +(71.8030 + 124.366i) q^{32} +(166.227 + 39.0535i) q^{33} +(185.993 - 322.150i) q^{34} +(81.5258 + 40.5455i) q^{36} +347.723 q^{37} +(91.5693 - 158.603i) q^{38} +(117.505 - 125.037i) q^{39} +(-145.668 - 252.305i) q^{41} +(-19.5326 + 20.7846i) q^{42} +(100.694 - 174.408i) q^{43} -110.818 q^{44} +227.418 q^{46} +(-241.048 + 417.507i) q^{47} +(402.681 + 94.6062i) q^{48} +(170.175 + 294.752i) q^{49} +(-165.461 - 548.771i) q^{51} +(-55.6793 + 96.4394i) q^{52} +175.228 q^{53} +(443.629 - 164.420i) q^{54} +(-12.7011 + 21.9989i) q^{56} +(-81.4605 - 270.174i) q^{57} +(-462.878 - 801.728i) q^{58} +(91.6209 + 158.692i) q^{59} +(-218.297 + 378.102i) q^{61} -20.2337 q^{62} +(2.72686 + 43.8637i) q^{63} +152.568 q^{64} +(-394.337 + 419.613i) q^{66} +(-415.750 - 720.100i) q^{67} +(185.993 + 322.150i) q^{68} +(239.971 - 255.353i) q^{69} -118.951 q^{71} +(351.134 - 232.916i) q^{72} -183.318 q^{73} +(-586.310 + 1015.52i) q^{74} +(91.5693 + 158.603i) q^{76} +(-26.7446 - 46.3229i) q^{77} +(167.038 + 554.002i) q^{78} +(319.147 - 552.778i) q^{79} +(283.500 - 671.617i) q^{81} +982.470 q^{82} +(-747.322 + 1294.40i) q^{83} +(-8.23369 - 27.3081i) q^{84} +(339.569 + 588.151i) q^{86} +(-1388.63 - 326.247i) q^{87} +(-256.417 + 444.127i) q^{88} -1437.27 q^{89} -53.7501 q^{91} +(-113.709 + 196.950i) q^{92} +(-21.3505 + 22.7190i) q^{93} +(-812.880 - 1407.95i) q^{94} +(-511.011 + 543.765i) q^{96} +(-445.884 + 772.294i) q^{97} -1147.76 q^{98} +(55.0516 + 885.548i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 6 q^{3} - q^{4} - 51 q^{6} + 9 q^{7} + 18 q^{8} - 90 q^{9} + 37 q^{11} + 48 q^{12} - 112 q^{13} - 12 q^{14} + 119 q^{16} - 154 q^{17} - 126 q^{18} + 70 q^{19} - 36 q^{21} + 101 q^{22} - 267 q^{23}+ \cdots - 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.68614 + 2.92048i −0.596141 + 1.03255i 0.397244 + 0.917713i \(0.369967\pi\)
−0.993385 + 0.114833i \(0.963367\pi\)
\(3\) 1.50000 + 4.97494i 0.288675 + 0.957427i
\(4\) −1.68614 2.92048i −0.210768 0.365060i
\(5\) 0 0
\(6\) −17.0584 4.00772i −1.16068 0.272691i
\(7\) 0.813859 1.40965i 0.0439443 0.0761137i −0.843217 0.537574i \(-0.819341\pi\)
0.887161 + 0.461460i \(0.152674\pi\)
\(8\) −15.6060 −0.689693
\(9\) −22.5000 + 14.9248i −0.833333 + 0.552771i
\(10\) 0 0
\(11\) 16.4307 28.4588i 0.450368 0.780060i −0.548041 0.836451i \(-0.684626\pi\)
0.998409 + 0.0563918i \(0.0179596\pi\)
\(12\) 12.0000 12.7692i 0.288675 0.307178i
\(13\) −16.5109 28.5977i −0.352253 0.610121i 0.634391 0.773013i \(-0.281251\pi\)
−0.986644 + 0.162892i \(0.947918\pi\)
\(14\) 2.74456 + 4.75372i 0.0523939 + 0.0907490i
\(15\) 0 0
\(16\) 39.8030 68.9408i 0.621922 1.07720i
\(17\) −110.307 −1.57373 −0.786864 0.617126i \(-0.788297\pi\)
−0.786864 + 0.617126i \(0.788297\pi\)
\(18\) −5.64947 90.8762i −0.0739774 1.18998i
\(19\) −54.3070 −0.655731 −0.327865 0.944724i \(-0.606329\pi\)
−0.327865 + 0.944724i \(0.606329\pi\)
\(20\) 0 0
\(21\) 8.23369 + 1.93443i 0.0855590 + 0.0201013i
\(22\) 55.4090 + 95.9711i 0.536965 + 0.930051i
\(23\) −33.7188 58.4026i −0.305689 0.529469i 0.671725 0.740800i \(-0.265553\pi\)
−0.977415 + 0.211331i \(0.932220\pi\)
\(24\) −23.4090 77.6387i −0.199097 0.660331i
\(25\) 0 0
\(26\) 111.359 0.839970
\(27\) −108.000 89.5489i −0.769800 0.638285i
\(28\) −5.48913 −0.0370481
\(29\) −137.259 + 237.740i −0.878912 + 1.52232i −0.0263757 + 0.999652i \(0.508397\pi\)
−0.852536 + 0.522668i \(0.824937\pi\)
\(30\) 0 0
\(31\) 3.00000 + 5.19615i 0.0173812 + 0.0301050i 0.874585 0.484872i \(-0.161134\pi\)
−0.857204 + 0.514977i \(0.827800\pi\)
\(32\) 71.8030 + 124.366i 0.396659 + 0.687034i
\(33\) 166.227 + 39.0535i 0.876860 + 0.206010i
\(34\) 185.993 322.150i 0.938164 1.62495i
\(35\) 0 0
\(36\) 81.5258 + 40.5455i 0.377434 + 0.187711i
\(37\) 347.723 1.54501 0.772504 0.635010i \(-0.219004\pi\)
0.772504 + 0.635010i \(0.219004\pi\)
\(38\) 91.5693 158.603i 0.390908 0.677072i
\(39\) 117.505 125.037i 0.482459 0.513383i
\(40\) 0 0
\(41\) −145.668 252.305i −0.554868 0.961060i −0.997914 0.0645606i \(-0.979435\pi\)
0.443046 0.896499i \(-0.353898\pi\)
\(42\) −19.5326 + 20.7846i −0.0717607 + 0.0763604i
\(43\) 100.694 174.408i 0.357110 0.618533i −0.630367 0.776297i \(-0.717095\pi\)
0.987477 + 0.157765i \(0.0504288\pi\)
\(44\) −110.818 −0.379692
\(45\) 0 0
\(46\) 227.418 0.728935
\(47\) −241.048 + 417.507i −0.748094 + 1.29574i 0.200642 + 0.979665i \(0.435697\pi\)
−0.948735 + 0.316071i \(0.897636\pi\)
\(48\) 402.681 + 94.6062i 1.21087 + 0.284484i
\(49\) 170.175 + 294.752i 0.496138 + 0.859336i
\(50\) 0 0
\(51\) −165.461 548.771i −0.454296 1.50673i
\(52\) −55.6793 + 96.4394i −0.148487 + 0.257187i
\(53\) 175.228 0.454140 0.227070 0.973878i \(-0.427085\pi\)
0.227070 + 0.973878i \(0.427085\pi\)
\(54\) 443.629 164.420i 1.11797 0.414347i
\(55\) 0 0
\(56\) −12.7011 + 21.9989i −0.0303081 + 0.0524951i
\(57\) −81.4605 270.174i −0.189293 0.627815i
\(58\) −462.878 801.728i −1.04791 1.81503i
\(59\) 91.6209 + 158.692i 0.202170 + 0.350169i 0.949227 0.314591i \(-0.101867\pi\)
−0.747057 + 0.664760i \(0.768534\pi\)
\(60\) 0 0
\(61\) −218.297 + 378.102i −0.458199 + 0.793623i −0.998866 0.0476132i \(-0.984839\pi\)
0.540667 + 0.841237i \(0.318172\pi\)
\(62\) −20.2337 −0.0414465
\(63\) 2.72686 + 43.8637i 0.00545321 + 0.0877192i
\(64\) 152.568 0.297984
\(65\) 0 0
\(66\) −394.337 + 419.613i −0.735447 + 0.782587i
\(67\) −415.750 720.100i −0.758089 1.31305i −0.943824 0.330448i \(-0.892800\pi\)
0.185736 0.982600i \(-0.440533\pi\)
\(68\) 185.993 + 322.150i 0.331691 + 0.574506i
\(69\) 239.971 255.353i 0.418683 0.445520i
\(70\) 0 0
\(71\) −118.951 −0.198829 −0.0994146 0.995046i \(-0.531697\pi\)
−0.0994146 + 0.995046i \(0.531697\pi\)
\(72\) 351.134 232.916i 0.574744 0.381242i
\(73\) −183.318 −0.293914 −0.146957 0.989143i \(-0.546948\pi\)
−0.146957 + 0.989143i \(0.546948\pi\)
\(74\) −586.310 + 1015.52i −0.921042 + 1.59529i
\(75\) 0 0
\(76\) 91.5693 + 158.603i 0.138207 + 0.239381i
\(77\) −26.7446 46.3229i −0.0395822 0.0685583i
\(78\) 167.038 + 554.002i 0.242478 + 0.804210i
\(79\) 319.147 552.778i 0.454517 0.787246i −0.544144 0.838992i \(-0.683145\pi\)
0.998660 + 0.0517463i \(0.0164787\pi\)
\(80\) 0 0
\(81\) 283.500 671.617i 0.388889 0.921285i
\(82\) 982.470 1.32312
\(83\) −747.322 + 1294.40i −0.988304 + 1.71179i −0.362085 + 0.932145i \(0.617935\pi\)
−0.626219 + 0.779647i \(0.715398\pi\)
\(84\) −8.23369 27.3081i −0.0106949 0.0354709i
\(85\) 0 0
\(86\) 339.569 + 588.151i 0.425776 + 0.737465i
\(87\) −1388.63 326.247i −1.71123 0.402038i
\(88\) −256.417 + 444.127i −0.310615 + 0.538002i
\(89\) −1437.27 −1.71180 −0.855900 0.517142i \(-0.826996\pi\)
−0.855900 + 0.517142i \(0.826996\pi\)
\(90\) 0 0
\(91\) −53.7501 −0.0619181
\(92\) −113.709 + 196.950i −0.128859 + 0.223190i
\(93\) −21.3505 + 22.7190i −0.0238059 + 0.0253318i
\(94\) −812.880 1407.95i −0.891938 1.54488i
\(95\) 0 0
\(96\) −511.011 + 543.765i −0.543279 + 0.578102i
\(97\) −445.884 + 772.294i −0.466729 + 0.808398i −0.999278 0.0380011i \(-0.987901\pi\)
0.532549 + 0.846399i \(0.321234\pi\)
\(98\) −1147.76 −1.18307
\(99\) 55.0516 + 885.548i 0.0558878 + 0.899000i
\(100\) 0 0
\(101\) 76.8720 133.146i 0.0757332 0.131174i −0.825672 0.564151i \(-0.809204\pi\)
0.901405 + 0.432977i \(0.142537\pi\)
\(102\) 1881.66 + 442.080i 1.82659 + 0.429142i
\(103\) 67.6469 + 117.168i 0.0647131 + 0.112086i 0.896567 0.442909i \(-0.146053\pi\)
−0.831854 + 0.554995i \(0.812720\pi\)
\(104\) 257.668 + 446.294i 0.242947 + 0.420796i
\(105\) 0 0
\(106\) −295.459 + 511.750i −0.270732 + 0.468921i
\(107\) 718.783 0.649414 0.324707 0.945815i \(-0.394734\pi\)
0.324707 + 0.945815i \(0.394734\pi\)
\(108\) −79.4226 + 466.404i −0.0707634 + 0.415553i
\(109\) −2010.56 −1.76676 −0.883378 0.468661i \(-0.844736\pi\)
−0.883378 + 0.468661i \(0.844736\pi\)
\(110\) 0 0
\(111\) 521.584 + 1729.90i 0.446005 + 1.47923i
\(112\) −64.7881 112.216i −0.0546598 0.0946735i
\(113\) −113.372 196.367i −0.0943820 0.163474i 0.814969 0.579505i \(-0.196754\pi\)
−0.909351 + 0.416031i \(0.863421\pi\)
\(114\) 926.392 + 217.647i 0.761093 + 0.178812i
\(115\) 0 0
\(116\) 925.755 0.740985
\(117\) 798.310 + 397.026i 0.630801 + 0.313718i
\(118\) −617.943 −0.482087
\(119\) −89.7744 + 155.494i −0.0691564 + 0.119782i
\(120\) 0 0
\(121\) 125.564 + 217.483i 0.0943381 + 0.163398i
\(122\) −736.160 1275.07i −0.546302 0.946223i
\(123\) 1036.70 1103.15i 0.759968 0.808680i
\(124\) 10.1168 17.5229i 0.00732677 0.0126903i
\(125\) 0 0
\(126\) −132.701 65.9967i −0.0938250 0.0466623i
\(127\) −1132.24 −0.791100 −0.395550 0.918444i \(-0.629446\pi\)
−0.395550 + 0.918444i \(0.629446\pi\)
\(128\) −831.675 + 1440.50i −0.574300 + 0.994717i
\(129\) 1018.71 + 239.336i 0.695289 + 0.163352i
\(130\) 0 0
\(131\) −388.753 673.339i −0.259278 0.449083i 0.706770 0.707443i \(-0.250151\pi\)
−0.966049 + 0.258360i \(0.916818\pi\)
\(132\) −166.227 551.312i −0.109608 0.363527i
\(133\) −44.1983 + 76.5537i −0.0288156 + 0.0499101i
\(134\) 2804.05 1.80771
\(135\) 0 0
\(136\) 1721.45 1.08539
\(137\) 311.819 540.087i 0.194456 0.336808i −0.752266 0.658860i \(-0.771039\pi\)
0.946722 + 0.322052i \(0.104372\pi\)
\(138\) 341.127 + 1131.39i 0.210425 + 0.697902i
\(139\) −641.341 1110.83i −0.391351 0.677840i 0.601277 0.799041i \(-0.294659\pi\)
−0.992628 + 0.121201i \(0.961326\pi\)
\(140\) 0 0
\(141\) −2438.64 572.937i −1.45653 0.342198i
\(142\) 200.568 347.394i 0.118530 0.205300i
\(143\) −1085.14 −0.634574
\(144\) 133.361 + 2145.22i 0.0771766 + 1.24145i
\(145\) 0 0
\(146\) 309.099 535.376i 0.175214 0.303480i
\(147\) −1211.11 + 1288.74i −0.679529 + 0.723085i
\(148\) −586.310 1015.52i −0.325638 0.564021i
\(149\) −762.156 1320.09i −0.419049 0.725814i 0.576795 0.816889i \(-0.304303\pi\)
−0.995844 + 0.0910749i \(0.970970\pi\)
\(150\) 0 0
\(151\) −1581.28 + 2738.86i −0.852203 + 1.47606i 0.0270124 + 0.999635i \(0.491401\pi\)
−0.879216 + 0.476424i \(0.841933\pi\)
\(152\) 847.514 0.452253
\(153\) 2481.91 1646.31i 1.31144 0.869911i
\(154\) 180.380 0.0943861
\(155\) 0 0
\(156\) −563.299 132.342i −0.289103 0.0679220i
\(157\) −1194.35 2068.67i −0.607131 1.05158i −0.991711 0.128490i \(-0.958987\pi\)
0.384580 0.923092i \(-0.374346\pi\)
\(158\) 1076.25 + 1864.12i 0.541912 + 0.938619i
\(159\) 262.842 + 871.749i 0.131099 + 0.434806i
\(160\) 0 0
\(161\) −109.769 −0.0537331
\(162\) 1483.42 + 1960.40i 0.719436 + 0.950761i
\(163\) 2544.79 1.22284 0.611422 0.791305i \(-0.290598\pi\)
0.611422 + 0.791305i \(0.290598\pi\)
\(164\) −491.235 + 850.844i −0.233896 + 0.405120i
\(165\) 0 0
\(166\) −2520.18 4365.08i −1.17834 2.04094i
\(167\) −687.279 1190.40i −0.318462 0.551593i 0.661705 0.749764i \(-0.269833\pi\)
−0.980167 + 0.198171i \(0.936500\pi\)
\(168\) −128.495 30.1887i −0.0590094 0.0138637i
\(169\) 553.282 958.313i 0.251835 0.436191i
\(170\) 0 0
\(171\) 1221.91 810.522i 0.546442 0.362469i
\(172\) −679.139 −0.301069
\(173\) 1180.23 2044.21i 0.518675 0.898372i −0.481089 0.876672i \(-0.659759\pi\)
0.999765 0.0217005i \(-0.00690803\pi\)
\(174\) 3294.23 3505.38i 1.43526 1.52725i
\(175\) 0 0
\(176\) −1307.98 2265.49i −0.560187 0.970272i
\(177\) −652.052 + 693.846i −0.276899 + 0.294648i
\(178\) 2423.44 4197.52i 1.02047 1.76751i
\(179\) 1305.11 0.544963 0.272482 0.962161i \(-0.412156\pi\)
0.272482 + 0.962161i \(0.412156\pi\)
\(180\) 0 0
\(181\) 3099.43 1.27281 0.636406 0.771355i \(-0.280420\pi\)
0.636406 + 0.771355i \(0.280420\pi\)
\(182\) 90.6303 156.976i 0.0369119 0.0639332i
\(183\) −2208.48 518.863i −0.892107 0.209593i
\(184\) 526.214 + 911.429i 0.210832 + 0.365171i
\(185\) 0 0
\(186\) −30.3505 100.661i −0.0119646 0.0396820i
\(187\) −1812.42 + 3139.21i −0.708756 + 1.22760i
\(188\) 1625.76 0.630696
\(189\) −214.129 + 79.3616i −0.0824105 + 0.0305434i
\(190\) 0 0
\(191\) −190.356 + 329.706i −0.0721135 + 0.124904i −0.899827 0.436246i \(-0.856308\pi\)
0.827714 + 0.561150i \(0.189641\pi\)
\(192\) 228.852 + 759.016i 0.0860207 + 0.285298i
\(193\) 773.020 + 1338.91i 0.288307 + 0.499362i 0.973406 0.229088i \(-0.0735744\pi\)
−0.685099 + 0.728450i \(0.740241\pi\)
\(194\) −1503.65 2604.39i −0.556472 0.963838i
\(195\) 0 0
\(196\) 573.879 993.987i 0.209140 0.362240i
\(197\) 4284.60 1.54957 0.774784 0.632226i \(-0.217859\pi\)
0.774784 + 0.632226i \(0.217859\pi\)
\(198\) −2679.05 1332.38i −0.961576 0.478224i
\(199\) −1402.85 −0.499727 −0.249863 0.968281i \(-0.580386\pi\)
−0.249863 + 0.968281i \(0.580386\pi\)
\(200\) 0 0
\(201\) 2958.83 3148.48i 1.03831 1.10486i
\(202\) 259.234 + 449.007i 0.0902953 + 0.156396i
\(203\) 223.420 + 386.974i 0.0772463 + 0.133795i
\(204\) −1323.68 + 1408.53i −0.454296 + 0.483415i
\(205\) 0 0
\(206\) −456.249 −0.154312
\(207\) 1630.32 + 810.813i 0.547416 + 0.272248i
\(208\) −2628.73 −0.876296
\(209\) −892.303 + 1545.51i −0.295320 + 0.511509i
\(210\) 0 0
\(211\) 1075.23 + 1862.35i 0.350814 + 0.607628i 0.986392 0.164409i \(-0.0525716\pi\)
−0.635578 + 0.772036i \(0.719238\pi\)
\(212\) −295.459 511.750i −0.0957180 0.165789i
\(213\) −178.426 591.773i −0.0573971 0.190365i
\(214\) −1211.97 + 2099.19i −0.387142 + 0.670550i
\(215\) 0 0
\(216\) 1685.44 + 1397.50i 0.530926 + 0.440220i
\(217\) 9.76631 0.00305521
\(218\) 3390.08 5871.79i 1.05324 1.82426i
\(219\) −274.977 911.994i −0.0848456 0.281401i
\(220\) 0 0
\(221\) 1821.27 + 3154.52i 0.554351 + 0.960164i
\(222\) −5931.60 1393.58i −1.79326 0.421310i
\(223\) −1279.07 + 2215.42i −0.384095 + 0.665272i −0.991643 0.129011i \(-0.958820\pi\)
0.607548 + 0.794283i \(0.292153\pi\)
\(224\) 233.750 0.0697236
\(225\) 0 0
\(226\) 764.646 0.225060
\(227\) −2042.27 + 3537.32i −0.597138 + 1.03427i 0.396104 + 0.918206i \(0.370362\pi\)
−0.993241 + 0.116067i \(0.962971\pi\)
\(228\) −651.684 + 693.456i −0.189293 + 0.201426i
\(229\) 1370.95 + 2374.56i 0.395612 + 0.685221i 0.993179 0.116598i \(-0.0371991\pi\)
−0.597567 + 0.801819i \(0.703866\pi\)
\(230\) 0 0
\(231\) 190.337 202.537i 0.0542132 0.0576881i
\(232\) 2142.07 3710.17i 0.606179 1.04993i
\(233\) −5084.70 −1.42966 −0.714828 0.699300i \(-0.753495\pi\)
−0.714828 + 0.699300i \(0.753495\pi\)
\(234\) −2505.57 + 1662.01i −0.699975 + 0.464311i
\(235\) 0 0
\(236\) 308.971 535.154i 0.0852217 0.147608i
\(237\) 3228.76 + 758.567i 0.884938 + 0.207908i
\(238\) −302.745 524.369i −0.0824538 0.142814i
\(239\) −738.236 1278.66i −0.199801 0.346066i 0.748663 0.662951i \(-0.230696\pi\)
−0.948464 + 0.316885i \(0.897363\pi\)
\(240\) 0 0
\(241\) −881.728 + 1527.20i −0.235673 + 0.408197i −0.959468 0.281818i \(-0.909063\pi\)
0.723795 + 0.690015i \(0.242396\pi\)
\(242\) −846.874 −0.224955
\(243\) 3766.50 + 402.970i 0.994325 + 0.106381i
\(244\) 1472.32 0.386294
\(245\) 0 0
\(246\) 1473.70 + 4887.73i 0.381951 + 1.26679i
\(247\) 896.657 + 1553.05i 0.230983 + 0.400075i
\(248\) −46.8179 81.0910i −0.0119877 0.0207632i
\(249\) −7560.54 1776.28i −1.92422 0.452077i
\(250\) 0 0
\(251\) 1705.16 0.428801 0.214400 0.976746i \(-0.431220\pi\)
0.214400 + 0.976746i \(0.431220\pi\)
\(252\) 123.505 81.9242i 0.0308734 0.0204791i
\(253\) −2216.09 −0.550690
\(254\) 1909.11 3306.68i 0.471607 0.816848i
\(255\) 0 0
\(256\) −2194.37 3800.76i −0.535735 0.927920i
\(257\) 114.298 + 197.970i 0.0277421 + 0.0480507i 0.879563 0.475782i \(-0.157835\pi\)
−0.851821 + 0.523833i \(0.824502\pi\)
\(258\) −2416.66 + 2571.56i −0.583158 + 0.620537i
\(259\) 282.997 490.166i 0.0678942 0.117596i
\(260\) 0 0
\(261\) −459.892 7397.73i −0.109068 1.75444i
\(262\) 2621.97 0.618266
\(263\) −644.380 + 1116.10i −0.151081 + 0.261679i −0.931625 0.363421i \(-0.881609\pi\)
0.780544 + 0.625100i \(0.214942\pi\)
\(264\) −2594.13 609.468i −0.604764 0.142084i
\(265\) 0 0
\(266\) −149.049 258.161i −0.0343563 0.0595069i
\(267\) −2155.90 7150.32i −0.494154 1.63892i
\(268\) −1402.03 + 2428.38i −0.319561 + 0.553496i
\(269\) 973.981 0.220761 0.110380 0.993889i \(-0.464793\pi\)
0.110380 + 0.993889i \(0.464793\pi\)
\(270\) 0 0
\(271\) −4021.83 −0.901508 −0.450754 0.892648i \(-0.648845\pi\)
−0.450754 + 0.892648i \(0.648845\pi\)
\(272\) −4390.55 + 7604.65i −0.978736 + 1.69522i
\(273\) −80.6252 267.403i −0.0178742 0.0592820i
\(274\) 1051.54 + 1821.32i 0.231847 + 0.401570i
\(275\) 0 0
\(276\) −1150.38 270.271i −0.250886 0.0589435i
\(277\) −1689.59 + 2926.45i −0.366489 + 0.634777i −0.989014 0.147823i \(-0.952773\pi\)
0.622525 + 0.782600i \(0.286107\pi\)
\(278\) 4325.56 0.933201
\(279\) −145.052 72.1390i −0.0311255 0.0154797i
\(280\) 0 0
\(281\) −366.654 + 635.063i −0.0778388 + 0.134821i −0.902317 0.431073i \(-0.858135\pi\)
0.824478 + 0.565893i \(0.191469\pi\)
\(282\) 5785.14 6155.95i 1.22163 1.29993i
\(283\) 3454.51 + 5983.39i 0.725617 + 1.25680i 0.958720 + 0.284353i \(0.0917787\pi\)
−0.233103 + 0.972452i \(0.574888\pi\)
\(284\) 200.568 + 347.394i 0.0419068 + 0.0725847i
\(285\) 0 0
\(286\) 1829.70 3169.13i 0.378295 0.655227i
\(287\) −474.214 −0.0975331
\(288\) −3471.71 1726.60i −0.710322 0.353267i
\(289\) 7254.64 1.47662
\(290\) 0 0
\(291\) −4510.94 1059.81i −0.908715 0.213494i
\(292\) 309.099 + 535.376i 0.0619475 + 0.107296i
\(293\) −2324.74 4026.57i −0.463525 0.802850i 0.535608 0.844467i \(-0.320082\pi\)
−0.999134 + 0.0416170i \(0.986749\pi\)
\(294\) −1721.64 5710.02i −0.341523 1.13271i
\(295\) 0 0
\(296\) −5426.55 −1.06558
\(297\) −4322.97 + 1602.20i −0.844593 + 0.313027i
\(298\) 5140.41 0.999248
\(299\) −1113.45 + 1928.56i −0.215360 + 0.373014i
\(300\) 0 0
\(301\) −163.902 283.886i −0.0313859 0.0543619i
\(302\) −5332.52 9236.19i −1.01607 1.75988i
\(303\) 777.702 + 182.714i 0.147452 + 0.0346424i
\(304\) −2161.58 + 3743.97i −0.407813 + 0.706353i
\(305\) 0 0
\(306\) 623.176 + 10024.3i 0.116420 + 1.87271i
\(307\) 7361.42 1.36853 0.684264 0.729234i \(-0.260123\pi\)
0.684264 + 0.729234i \(0.260123\pi\)
\(308\) −90.1902 + 156.214i −0.0166853 + 0.0288997i
\(309\) −481.433 + 512.291i −0.0886335 + 0.0943146i
\(310\) 0 0
\(311\) 1354.60 + 2346.24i 0.246986 + 0.427792i 0.962688 0.270614i \(-0.0872266\pi\)
−0.715702 + 0.698405i \(0.753893\pi\)
\(312\) −1833.78 + 1951.32i −0.332749 + 0.354077i
\(313\) −3121.86 + 5407.22i −0.563763 + 0.976467i 0.433400 + 0.901202i \(0.357314\pi\)
−0.997164 + 0.0752653i \(0.976020\pi\)
\(314\) 8055.37 1.44774
\(315\) 0 0
\(316\) −2152.50 −0.383189
\(317\) 1042.02 1804.82i 0.184623 0.319776i −0.758827 0.651293i \(-0.774227\pi\)
0.943449 + 0.331517i \(0.107560\pi\)
\(318\) −2989.12 702.266i −0.527111 0.123840i
\(319\) 4510.54 + 7812.48i 0.791667 + 1.37121i
\(320\) 0 0
\(321\) 1078.17 + 3575.90i 0.187470 + 0.621767i
\(322\) 185.087 320.579i 0.0320325 0.0554819i
\(323\) 5990.45 1.03194
\(324\) −2439.46 + 304.483i −0.418289 + 0.0522091i
\(325\) 0 0
\(326\) −4290.88 + 7432.02i −0.728987 + 1.26264i
\(327\) −3015.83 10002.4i −0.510018 1.69154i
\(328\) 2273.30 + 3937.47i 0.382689 + 0.662836i
\(329\) 392.358 + 679.583i 0.0657489 + 0.113880i
\(330\) 0 0
\(331\) 113.938 197.347i 0.0189203 0.0327709i −0.856410 0.516296i \(-0.827310\pi\)
0.875331 + 0.483525i \(0.160644\pi\)
\(332\) 5040.36 0.833210
\(333\) −7823.76 + 5189.70i −1.28751 + 0.854035i
\(334\) 4635.39 0.759394
\(335\) 0 0
\(336\) 461.087 490.641i 0.0748641 0.0796627i
\(337\) 1708.74 + 2959.62i 0.276205 + 0.478400i 0.970438 0.241349i \(-0.0775899\pi\)
−0.694234 + 0.719750i \(0.744257\pi\)
\(338\) 1865.82 + 3231.70i 0.300259 + 0.520063i
\(339\) 806.853 858.570i 0.129269 0.137555i
\(340\) 0 0
\(341\) 197.168 0.0313116
\(342\) 306.806 + 4935.21i 0.0485092 + 0.780309i
\(343\) 1112.30 0.175098
\(344\) −1571.43 + 2721.80i −0.246296 + 0.426598i
\(345\) 0 0
\(346\) 3980.05 + 6893.65i 0.618407 + 1.07111i
\(347\) 1804.80 + 3126.00i 0.279212 + 0.483610i 0.971189 0.238310i \(-0.0765933\pi\)
−0.691977 + 0.721920i \(0.743260\pi\)
\(348\) 1388.63 + 4605.57i 0.213904 + 0.709439i
\(349\) 4400.42 7621.74i 0.674925 1.16900i −0.301566 0.953445i \(-0.597509\pi\)
0.976491 0.215559i \(-0.0691574\pi\)
\(350\) 0 0
\(351\) −777.715 + 4567.08i −0.118266 + 0.694509i
\(352\) 4719.09 0.714570
\(353\) 4255.24 7370.30i 0.641597 1.11128i −0.343479 0.939160i \(-0.611605\pi\)
0.985076 0.172119i \(-0.0550612\pi\)
\(354\) −926.914 3074.23i −0.139166 0.461563i
\(355\) 0 0
\(356\) 2423.44 + 4197.52i 0.360792 + 0.624910i
\(357\) −908.234 213.381i −0.134647 0.0316340i
\(358\) −2200.60 + 3811.55i −0.324875 + 0.562700i
\(359\) 4320.35 0.635152 0.317576 0.948233i \(-0.397131\pi\)
0.317576 + 0.948233i \(0.397131\pi\)
\(360\) 0 0
\(361\) −3909.75 −0.570017
\(362\) −5226.08 + 9051.83i −0.758775 + 1.31424i
\(363\) −893.619 + 950.898i −0.129209 + 0.137491i
\(364\) 90.6303 + 156.976i 0.0130503 + 0.0226038i
\(365\) 0 0
\(366\) 5239.14 5574.95i 0.748235 0.796195i
\(367\) 3300.19 5716.10i 0.469397 0.813020i −0.529991 0.848003i \(-0.677805\pi\)
0.999388 + 0.0349838i \(0.0111379\pi\)
\(368\) −5368.43 −0.760459
\(369\) 7043.15 + 3502.79i 0.993636 + 0.494168i
\(370\) 0 0
\(371\) 142.611 247.010i 0.0199569 0.0345663i
\(372\) 102.351 + 24.0463i 0.0142651 + 0.00335146i
\(373\) −4304.23 7455.14i −0.597492 1.03489i −0.993190 0.116506i \(-0.962831\pi\)
0.395698 0.918381i \(-0.370503\pi\)
\(374\) −6112.00 10586.3i −0.845037 1.46365i
\(375\) 0 0
\(376\) 3761.78 6515.60i 0.515955 0.893660i
\(377\) 9065.10 1.23840
\(378\) 129.278 759.174i 0.0175908 0.103301i
\(379\) −7129.80 −0.966314 −0.483157 0.875534i \(-0.660510\pi\)
−0.483157 + 0.875534i \(0.660510\pi\)
\(380\) 0 0
\(381\) −1698.36 5632.81i −0.228371 0.757421i
\(382\) −641.934 1111.86i −0.0859796 0.148921i
\(383\) 2963.73 + 5133.33i 0.395404 + 0.684859i 0.993153 0.116824i \(-0.0372714\pi\)
−0.597749 + 0.801683i \(0.703938\pi\)
\(384\) −8413.93 1976.78i −1.11815 0.262700i
\(385\) 0 0
\(386\) −5213.68 −0.687486
\(387\) 337.379 + 5427.01i 0.0443151 + 0.712844i
\(388\) 3007.30 0.393485
\(389\) −519.432 + 899.683i −0.0677024 + 0.117264i −0.897890 0.440221i \(-0.854900\pi\)
0.830187 + 0.557485i \(0.188234\pi\)
\(390\) 0 0
\(391\) 3719.42 + 6442.22i 0.481072 + 0.833240i
\(392\) −2655.75 4599.89i −0.342183 0.592678i
\(393\) 2766.69 2944.03i 0.355117 0.377879i
\(394\) −7224.43 + 12513.1i −0.923761 + 1.60000i
\(395\) 0 0
\(396\) 2493.40 1653.94i 0.316410 0.209882i
\(397\) −13441.4 −1.69926 −0.849628 0.527382i \(-0.823174\pi\)
−0.849628 + 0.527382i \(0.823174\pi\)
\(398\) 2365.41 4097.01i 0.297907 0.515991i
\(399\) −447.147 105.053i −0.0561037 0.0131810i
\(400\) 0 0
\(401\) −6537.70 11323.6i −0.814157 1.41016i −0.909931 0.414759i \(-0.863866\pi\)
0.0957739 0.995403i \(-0.469467\pi\)
\(402\) 4206.08 + 13950.0i 0.521841 + 1.73075i
\(403\) 99.0652 171.586i 0.0122451 0.0212092i
\(404\) −518.468 −0.0638484
\(405\) 0 0
\(406\) −1506.87 −0.184199
\(407\) 5713.33 9895.78i 0.695821 1.20520i
\(408\) 2582.17 + 8564.10i 0.313325 + 1.03918i
\(409\) 2636.59 + 4566.71i 0.318756 + 0.552101i 0.980229 0.197868i \(-0.0634017\pi\)
−0.661473 + 0.749969i \(0.730068\pi\)
\(410\) 0 0
\(411\) 3154.63 + 741.151i 0.378604 + 0.0889496i
\(412\) 228.124 395.123i 0.0272788 0.0472484i
\(413\) 298.266 0.0355368
\(414\) −5116.91 + 3394.18i −0.607446 + 0.402934i
\(415\) 0 0
\(416\) 2371.06 4106.80i 0.279449 0.484020i
\(417\) 4564.32 4856.88i 0.536009 0.570366i
\(418\) −3009.10 5211.91i −0.352105 0.609863i
\(419\) −6923.06 11991.1i −0.807192 1.39810i −0.914801 0.403905i \(-0.867653\pi\)
0.107609 0.994193i \(-0.465681\pi\)
\(420\) 0 0
\(421\) −548.684 + 950.349i −0.0635184 + 0.110017i −0.896036 0.443982i \(-0.853565\pi\)
0.832517 + 0.553999i \(0.186899\pi\)
\(422\) −7251.94 −0.836538
\(423\) −807.637 12991.5i −0.0928338 1.49330i
\(424\) −2734.60 −0.313217
\(425\) 0 0
\(426\) 2029.12 + 476.722i 0.230777 + 0.0542189i
\(427\) 355.327 + 615.444i 0.0402704 + 0.0697504i
\(428\) −1211.97 2099.19i −0.136875 0.237075i
\(429\) −1627.71 5398.51i −0.183186 0.607558i
\(430\) 0 0
\(431\) 15912.8 1.77841 0.889205 0.457509i \(-0.151258\pi\)
0.889205 + 0.457509i \(0.151258\pi\)
\(432\) −10472.3 + 3881.29i −1.16632 + 0.432266i
\(433\) −3566.31 −0.395810 −0.197905 0.980221i \(-0.563414\pi\)
−0.197905 + 0.980221i \(0.563414\pi\)
\(434\) −16.4674 + 28.5223i −0.00182133 + 0.00315464i
\(435\) 0 0
\(436\) 3390.08 + 5871.79i 0.372375 + 0.644972i
\(437\) 1831.17 + 3171.67i 0.200450 + 0.347189i
\(438\) 3127.11 + 734.686i 0.341140 + 0.0801476i
\(439\) 290.411 503.007i 0.0315730 0.0546861i −0.849807 0.527094i \(-0.823282\pi\)
0.881380 + 0.472408i \(0.156615\pi\)
\(440\) 0 0
\(441\) −8228.06 4092.09i −0.888464 0.441863i
\(442\) −12283.6 −1.32188
\(443\) −5396.39 + 9346.82i −0.578759 + 1.00244i 0.416863 + 0.908969i \(0.363129\pi\)
−0.995622 + 0.0934706i \(0.970204\pi\)
\(444\) 4172.67 4440.13i 0.446005 0.474593i
\(445\) 0 0
\(446\) −4313.40 7471.03i −0.457949 0.793191i
\(447\) 5424.15 5771.82i 0.573945 0.610733i
\(448\) 124.169 215.067i 0.0130947 0.0226807i
\(449\) 2894.01 0.304180 0.152090 0.988367i \(-0.451400\pi\)
0.152090 + 0.988367i \(0.451400\pi\)
\(450\) 0 0
\(451\) −9573.74 −0.999578
\(452\) −382.323 + 662.203i −0.0397853 + 0.0689102i
\(453\) −15997.6 3758.48i −1.65923 0.389821i
\(454\) −6887.11 11928.8i −0.711956 1.23314i
\(455\) 0 0
\(456\) 1271.27 + 4216.33i 0.130554 + 0.432999i
\(457\) 1599.96 2771.21i 0.163770 0.283658i −0.772448 0.635078i \(-0.780968\pi\)
0.936218 + 0.351420i \(0.114301\pi\)
\(458\) −9246.49 −0.943363
\(459\) 11913.2 + 9877.87i 1.21146 + 1.00449i
\(460\) 0 0
\(461\) −3658.19 + 6336.17i −0.369585 + 0.640141i −0.989501 0.144528i \(-0.953834\pi\)
0.619915 + 0.784669i \(0.287167\pi\)
\(462\) 270.571 + 897.381i 0.0272469 + 0.0903678i
\(463\) 3505.99 + 6072.55i 0.351916 + 0.609536i 0.986585 0.163248i \(-0.0521970\pi\)
−0.634669 + 0.772784i \(0.718864\pi\)
\(464\) 10926.7 + 18925.6i 1.09323 + 1.89353i
\(465\) 0 0
\(466\) 8573.53 14849.8i 0.852277 1.47619i
\(467\) 8002.63 0.792971 0.396485 0.918041i \(-0.370230\pi\)
0.396485 + 0.918041i \(0.370230\pi\)
\(468\) −186.555 3000.89i −0.0184263 0.296402i
\(469\) −1353.45 −0.133255
\(470\) 0 0
\(471\) 8500.00 9044.83i 0.831549 0.884849i
\(472\) −1429.83 2476.54i −0.139435 0.241509i
\(473\) −3308.95 5731.28i −0.321661 0.557134i
\(474\) −7659.52 + 8150.47i −0.742222 + 0.789797i
\(475\) 0 0
\(476\) 605.489 0.0583037
\(477\) −3942.63 + 2615.25i −0.378450 + 0.251035i
\(478\) 4979.08 0.476439
\(479\) 1589.42 2752.96i 0.151613 0.262601i −0.780208 0.625520i \(-0.784887\pi\)
0.931820 + 0.362920i \(0.118220\pi\)
\(480\) 0 0
\(481\) −5741.21 9944.06i −0.544234 0.942641i
\(482\) −2973.44 5150.14i −0.280988 0.486686i
\(483\) −164.654 546.096i −0.0155114 0.0514456i
\(484\) 423.437 733.414i 0.0397668 0.0688781i
\(485\) 0 0
\(486\) −7527.71 + 10320.5i −0.702601 + 0.963269i
\(487\) −13060.3 −1.21523 −0.607615 0.794232i \(-0.707874\pi\)
−0.607615 + 0.794232i \(0.707874\pi\)
\(488\) 3406.74 5900.65i 0.316016 0.547356i
\(489\) 3817.19 + 12660.2i 0.353005 + 1.17078i
\(490\) 0 0
\(491\) 2200.81 + 3811.91i 0.202283 + 0.350365i 0.949264 0.314481i \(-0.101831\pi\)
−0.746981 + 0.664846i \(0.768497\pi\)
\(492\) −4969.75 1167.60i −0.455393 0.106991i
\(493\) 15140.7 26224.4i 1.38317 2.39572i
\(494\) −6047.56 −0.550794
\(495\) 0 0
\(496\) 477.636 0.0432389
\(497\) −96.8093 + 167.679i −0.00873741 + 0.0151336i
\(498\) 17935.7 19085.3i 1.61389 1.71734i
\(499\) −9362.60 16216.5i −0.839935 1.45481i −0.889948 0.456062i \(-0.849260\pi\)
0.0500129 0.998749i \(-0.484074\pi\)
\(500\) 0 0
\(501\) 4891.26 5204.77i 0.436178 0.464136i
\(502\) −2875.15 + 4979.90i −0.255626 + 0.442757i
\(503\) 3811.68 0.337882 0.168941 0.985626i \(-0.445965\pi\)
0.168941 + 0.985626i \(0.445965\pi\)
\(504\) −42.5553 684.536i −0.00376104 0.0604993i
\(505\) 0 0
\(506\) 3736.64 6472.06i 0.328289 0.568613i
\(507\) 5597.47 + 1315.07i 0.490320 + 0.115196i
\(508\) 1909.11 + 3306.68i 0.166738 + 0.288799i
\(509\) −2247.74 3893.20i −0.195735 0.339024i 0.751406 0.659840i \(-0.229376\pi\)
−0.947141 + 0.320816i \(0.896043\pi\)
\(510\) 0 0
\(511\) −149.195 + 258.413i −0.0129158 + 0.0223709i
\(512\) 1493.27 0.128894
\(513\) 5865.16 + 4863.13i 0.504782 + 0.418543i
\(514\) −770.891 −0.0661528
\(515\) 0 0
\(516\) −1018.71 3378.67i −0.0869111 0.288251i
\(517\) 7921.16 + 13719.9i 0.673834 + 1.16712i
\(518\) 954.347 + 1652.98i 0.0809490 + 0.140208i
\(519\) 11940.2 + 2805.23i 1.00985 + 0.237256i
\(520\) 0 0
\(521\) 12095.0 1.01706 0.508531 0.861043i \(-0.330189\pi\)
0.508531 + 0.861043i \(0.330189\pi\)
\(522\) 22380.4 + 11130.5i 1.87656 + 0.933274i
\(523\) −7385.38 −0.617476 −0.308738 0.951147i \(-0.599907\pi\)
−0.308738 + 0.951147i \(0.599907\pi\)
\(524\) −1310.98 + 2270.69i −0.109295 + 0.189304i
\(525\) 0 0
\(526\) −2173.03 3763.80i −0.180131 0.311995i
\(527\) −330.921 573.172i −0.0273532 0.0473772i
\(528\) 9308.70 9905.37i 0.767253 0.816431i
\(529\) 3809.59 6598.40i 0.313108 0.542320i
\(530\) 0 0
\(531\) −4429.92 2203.15i −0.362038 0.180054i
\(532\) 298.098 0.0242936
\(533\) −4810.23 + 8331.56i −0.390908 + 0.677073i
\(534\) 24517.5 + 5760.17i 1.98685 + 0.466792i
\(535\) 0 0
\(536\) 6488.18 + 11237.9i 0.522848 + 0.905600i
\(537\) 1957.66 + 6492.83i 0.157317 + 0.521763i
\(538\) −1642.27 + 2844.49i −0.131605 + 0.227946i
\(539\) 11184.4 0.893778
\(540\) 0 0
\(541\) −5935.19 −0.471670 −0.235835 0.971793i \(-0.575783\pi\)
−0.235835 + 0.971793i \(0.575783\pi\)
\(542\) 6781.37 11745.7i 0.537426 0.930849i
\(543\) 4649.15 + 15419.5i 0.367429 + 1.21862i
\(544\) −7920.37 13718.5i −0.624234 1.08120i
\(545\) 0 0
\(546\) 916.892 + 215.416i 0.0718670 + 0.0168845i
\(547\) −5078.61 + 8796.41i −0.396976 + 0.687582i −0.993351 0.115124i \(-0.963274\pi\)
0.596376 + 0.802705i \(0.296607\pi\)
\(548\) −2103.08 −0.163940
\(549\) −731.413 11765.3i −0.0568596 0.914632i
\(550\) 0 0
\(551\) 7454.16 12911.0i 0.576330 0.998232i
\(552\) −3744.98 + 3985.03i −0.288763 + 0.307272i
\(553\) −519.481 899.768i −0.0399468 0.0691899i
\(554\) −5697.76 9868.81i −0.436958 0.756833i
\(555\) 0 0
\(556\) −2162.78 + 3746.05i −0.164968 + 0.285733i
\(557\) −5709.62 −0.434334 −0.217167 0.976134i \(-0.569682\pi\)
−0.217167 + 0.976134i \(0.569682\pi\)
\(558\) 455.258 301.984i 0.0345387 0.0229104i
\(559\) −6650.20 −0.503173
\(560\) 0 0
\(561\) −18336.0 4307.88i −1.37994 0.324204i
\(562\) −1236.46 2141.61i −0.0928058 0.160744i
\(563\) 6469.56 + 11205.6i 0.484297 + 0.838828i 0.999837 0.0180378i \(-0.00574193\pi\)
−0.515540 + 0.856866i \(0.672409\pi\)
\(564\) 2438.64 + 8088.06i 0.182066 + 0.603845i
\(565\) 0 0
\(566\) −23299.2 −1.73028
\(567\) −716.012 946.236i −0.0530330 0.0700850i
\(568\) 1856.34 0.137131
\(569\) 3062.71 5304.77i 0.225651 0.390839i −0.730863 0.682524i \(-0.760882\pi\)
0.956515 + 0.291684i \(0.0942157\pi\)
\(570\) 0 0
\(571\) 9641.20 + 16699.0i 0.706605 + 1.22388i 0.966109 + 0.258134i \(0.0831076\pi\)
−0.259504 + 0.965742i \(0.583559\pi\)
\(572\) 1829.70 + 3169.13i 0.133748 + 0.231658i
\(573\) −1925.80 452.450i −0.140404 0.0329867i
\(574\) 799.592 1384.93i 0.0581434 0.100707i
\(575\) 0 0
\(576\) −3432.78 + 2277.05i −0.248320 + 0.164717i
\(577\) 4988.14 0.359894 0.179947 0.983676i \(-0.442407\pi\)
0.179947 + 0.983676i \(0.442407\pi\)
\(578\) −12232.3 + 21187.0i −0.880274 + 1.52468i
\(579\) −5501.46 + 5854.09i −0.394876 + 0.420186i
\(580\) 0 0
\(581\) 1216.43 + 2106.92i 0.0868606 + 0.150447i
\(582\) 10701.2 11387.1i 0.762165 0.811018i
\(583\) 2879.12 4986.78i 0.204530 0.354256i
\(584\) 2860.85 0.202710
\(585\) 0 0
\(586\) 15679.4 1.10531
\(587\) −7647.00 + 13245.0i −0.537693 + 0.931311i 0.461335 + 0.887226i \(0.347371\pi\)
−0.999028 + 0.0440852i \(0.985963\pi\)
\(588\) 5805.84 + 1364.03i 0.407192 + 0.0956661i
\(589\) −162.921 282.188i −0.0113974 0.0197408i
\(590\) 0 0
\(591\) 6426.90 + 21315.6i 0.447322 + 1.48360i
\(592\) 13840.4 23972.3i 0.960874 1.66428i
\(593\) 11090.9 0.768040 0.384020 0.923325i \(-0.374539\pi\)
0.384020 + 0.923325i \(0.374539\pi\)
\(594\) 2609.94 15326.7i 0.180281 1.05869i
\(595\) 0 0
\(596\) −2570.21 + 4451.73i −0.176644 + 0.305956i
\(597\) −2104.28 6979.10i −0.144259 0.478452i
\(598\) −3754.88 6503.63i −0.256770 0.444738i
\(599\) 14100.8 + 24423.3i 0.961840 + 1.66596i 0.717875 + 0.696172i \(0.245115\pi\)
0.243965 + 0.969784i \(0.421552\pi\)
\(600\) 0 0
\(601\) −10572.0 + 18311.3i −0.717539 + 1.24281i 0.244433 + 0.969666i \(0.421398\pi\)
−0.961972 + 0.273148i \(0.911935\pi\)
\(602\) 1105.45 0.0748416
\(603\) 20101.7 + 9997.26i 1.35755 + 0.675157i
\(604\) 10665.0 0.718467
\(605\) 0 0
\(606\) −1844.93 + 1963.18i −0.123672 + 0.131599i
\(607\) −4399.49 7620.14i −0.294184 0.509542i 0.680611 0.732645i \(-0.261715\pi\)
−0.974795 + 0.223103i \(0.928381\pi\)
\(608\) −3899.41 6753.97i −0.260102 0.450509i
\(609\) −1590.04 + 1691.96i −0.105799 + 0.112581i
\(610\) 0 0
\(611\) 15919.6 1.05407
\(612\) −8992.87 4472.45i −0.593979 0.295406i
\(613\) −19539.8 −1.28745 −0.643724 0.765257i \(-0.722612\pi\)
−0.643724 + 0.765257i \(0.722612\pi\)
\(614\) −12412.4 + 21498.9i −0.815836 + 1.41307i
\(615\) 0 0
\(616\) 417.375 + 722.914i 0.0272995 + 0.0472842i
\(617\) −1636.94 2835.26i −0.106808 0.184997i 0.807667 0.589638i \(-0.200730\pi\)
−0.914475 + 0.404641i \(0.867396\pi\)
\(618\) −684.373 2269.81i −0.0445462 0.147743i
\(619\) −4693.24 + 8128.92i −0.304745 + 0.527834i −0.977205 0.212300i \(-0.931905\pi\)
0.672460 + 0.740134i \(0.265238\pi\)
\(620\) 0 0
\(621\) −1588.26 + 9326.96i −0.102632 + 0.602702i
\(622\) −9136.21 −0.588953
\(623\) −1169.73 + 2026.04i −0.0752238 + 0.130291i
\(624\) −3943.09 13077.8i −0.252965 0.838989i
\(625\) 0 0
\(626\) −10527.8 18234.7i −0.672165 1.16422i
\(627\) −9027.29 2120.88i −0.574984 0.135087i
\(628\) −4027.68 + 6976.15i −0.255927 + 0.443278i
\(629\) −38356.3 −2.43142
\(630\) 0 0
\(631\) 9647.08 0.608628 0.304314 0.952572i \(-0.401573\pi\)
0.304314 + 0.952572i \(0.401573\pi\)
\(632\) −4980.59 + 8626.64i −0.313477 + 0.542958i
\(633\) −7652.23 + 8142.72i −0.480488 + 0.511286i
\(634\) 3513.97 + 6086.37i 0.220122 + 0.381263i
\(635\) 0 0
\(636\) 2102.74 2237.52i 0.131099 0.139502i
\(637\) 5619.48 9733.23i 0.349532 0.605408i
\(638\) −30421.6 −1.88778
\(639\) 2676.40 1775.32i 0.165691 0.109907i
\(640\) 0 0
\(641\) 3501.88 6065.44i 0.215782 0.373745i −0.737732 0.675093i \(-0.764103\pi\)
0.953514 + 0.301348i \(0.0974367\pi\)
\(642\) −12261.3 2880.68i −0.753761 0.177089i
\(643\) −3144.44 5446.34i −0.192853 0.334032i 0.753341 0.657630i \(-0.228441\pi\)
−0.946195 + 0.323598i \(0.895108\pi\)
\(644\) 185.087 + 320.579i 0.0113252 + 0.0196158i
\(645\) 0 0
\(646\) −10100.7 + 17495.0i −0.615183 + 1.06553i
\(647\) 5900.85 0.358557 0.179279 0.983798i \(-0.442624\pi\)
0.179279 + 0.983798i \(0.442624\pi\)
\(648\) −4424.29 + 10481.2i −0.268214 + 0.635404i
\(649\) 6021.58 0.364203
\(650\) 0 0
\(651\) 14.6495 + 48.5868i 0.000881963 + 0.00292514i
\(652\) −4290.88 7432.02i −0.257736 0.446412i
\(653\) −3942.57 6828.74i −0.236271 0.409233i 0.723370 0.690460i \(-0.242592\pi\)
−0.959641 + 0.281227i \(0.909259\pi\)
\(654\) 34296.9 + 8057.75i 2.05064 + 0.481778i
\(655\) 0 0
\(656\) −23192.2 −1.38034
\(657\) 4124.65 2735.98i 0.244928 0.162467i
\(658\) −2646.28 −0.156782
\(659\) −14378.9 + 24905.0i −0.849959 + 1.47217i 0.0312845 + 0.999511i \(0.490040\pi\)
−0.881244 + 0.472662i \(0.843293\pi\)
\(660\) 0 0
\(661\) −4130.11 7153.57i −0.243030 0.420940i 0.718546 0.695479i \(-0.244808\pi\)
−0.961576 + 0.274539i \(0.911475\pi\)
\(662\) 384.232 + 665.509i 0.0225583 + 0.0390721i
\(663\) −12961.7 + 13792.5i −0.759260 + 0.807926i
\(664\) 11662.7 20200.4i 0.681626 1.18061i
\(665\) 0 0
\(666\) −1964.45 31599.7i −0.114296 1.83853i
\(667\) 18512.9 1.07470
\(668\) −2317.70 + 4014.37i −0.134243 + 0.232516i
\(669\) −12940.2 3040.18i −0.747828 0.175695i
\(670\) 0 0
\(671\) 7173.56 + 12425.0i 0.412716 + 0.714845i
\(672\) 350.625 + 1162.89i 0.0201275 + 0.0667553i
\(673\) 402.481 697.118i 0.0230528 0.0399285i −0.854269 0.519831i \(-0.825995\pi\)
0.877322 + 0.479903i \(0.159328\pi\)
\(674\) −11524.7 −0.658627
\(675\) 0 0
\(676\) −3731.65 −0.212315
\(677\) 681.636 1180.63i 0.0386963 0.0670240i −0.846029 0.533137i \(-0.821013\pi\)
0.884725 + 0.466114i \(0.154346\pi\)
\(678\) 1146.97 + 3804.07i 0.0649692 + 0.215478i
\(679\) 725.774 + 1257.08i 0.0410201 + 0.0710489i
\(680\) 0 0
\(681\) −20661.3 4854.19i −1.16262 0.273147i
\(682\) −332.454 + 575.827i −0.0186661 + 0.0323307i
\(683\) 11434.6 0.640604 0.320302 0.947315i \(-0.396216\pi\)
0.320302 + 0.947315i \(0.396216\pi\)
\(684\) −4427.42 2201.91i −0.247495 0.123088i
\(685\) 0 0
\(686\) −1875.50 + 3248.46i −0.104383 + 0.180797i
\(687\) −9756.87 + 10382.3i −0.541845 + 0.576576i
\(688\) −8015.86 13883.9i −0.444189 0.769358i
\(689\) −2893.17 5011.12i −0.159972 0.277080i
\(690\) 0 0
\(691\) 9765.29 16914.0i 0.537611 0.931170i −0.461421 0.887181i \(-0.652660\pi\)
0.999032 0.0439884i \(-0.0140065\pi\)
\(692\) −7960.10 −0.437280
\(693\) 1293.11 + 643.109i 0.0708822 + 0.0352521i
\(694\) −12172.6 −0.665799
\(695\) 0 0
\(696\) 21671.0 + 5091.40i 1.18022 + 0.277283i
\(697\) 16068.3 + 27831.0i 0.873212 + 1.51245i
\(698\) 14839.4 + 25702.7i 0.804701 + 1.39378i
\(699\) −7627.06 25296.1i −0.412706 1.36879i
\(700\) 0 0
\(701\) −11041.4 −0.594903 −0.297452 0.954737i \(-0.596137\pi\)
−0.297452 + 0.954737i \(0.596137\pi\)
\(702\) −12026.7 9972.04i −0.646609 0.536140i
\(703\) −18883.8 −1.01311
\(704\) 2506.80 4341.90i 0.134203 0.232446i
\(705\) 0 0
\(706\) 14349.9 + 24854.7i 0.764964 + 1.32496i
\(707\) −125.126 216.725i −0.00665608 0.0115287i
\(708\) 3125.82 + 734.382i 0.165926 + 0.0389827i
\(709\) −1969.54 + 3411.34i −0.104327 + 0.180699i −0.913463 0.406922i \(-0.866602\pi\)
0.809136 + 0.587621i \(0.199935\pi\)
\(710\) 0 0
\(711\) 1069.31 + 17200.7i 0.0564027 + 0.907282i
\(712\) 22430.0 1.18062
\(713\) 202.313 350.416i 0.0106265 0.0184056i
\(714\) 2154.59 2292.69i 0.112932 0.120170i
\(715\) 0 0
\(716\) −2200.60 3811.55i −0.114861 0.198944i
\(717\) 5253.91 5590.67i 0.273655 0.291196i
\(718\) −7284.72 + 12617.5i −0.378640 + 0.655824i
\(719\) −23298.2 −1.20845 −0.604225 0.796814i \(-0.706517\pi\)
−0.604225 + 0.796814i \(0.706517\pi\)
\(720\) 0 0
\(721\) 220.220 0.0113751
\(722\) 6592.38 11418.3i 0.339810 0.588569i
\(723\) −8920.31 2095.75i −0.458852 0.107803i
\(724\) −5226.08 9051.83i −0.268267 0.464653i
\(725\) 0 0
\(726\) −1270.31 4213.15i −0.0649389 0.215378i
\(727\) −4752.24 + 8231.12i −0.242436 + 0.419911i −0.961408 0.275128i \(-0.911280\pi\)
0.718972 + 0.695039i \(0.244613\pi\)
\(728\) 838.823 0.0427044
\(729\) 3645.00 + 19342.6i 0.185185 + 0.982704i
\(730\) 0 0
\(731\) −11107.3 + 19238.4i −0.561994 + 0.973402i
\(732\) 2208.48 + 7324.70i 0.111513 + 0.369848i
\(733\) 3660.40 + 6340.01i 0.184448 + 0.319473i 0.943390 0.331685i \(-0.107617\pi\)
−0.758943 + 0.651157i \(0.774284\pi\)
\(734\) 11129.2 + 19276.3i 0.559653 + 0.969348i
\(735\) 0 0
\(736\) 4842.22 8386.96i 0.242509 0.420037i
\(737\) −27324.3 −1.36567
\(738\) −22105.6 + 14663.2i −1.10260 + 0.731381i
\(739\) −1274.52 −0.0634424 −0.0317212 0.999497i \(-0.510099\pi\)
−0.0317212 + 0.999497i \(0.510099\pi\)
\(740\) 0 0
\(741\) −6381.37 + 6790.39i −0.316363 + 0.336641i
\(742\) 480.925 + 832.986i 0.0237942 + 0.0412128i
\(743\) 970.576 + 1681.09i 0.0479232 + 0.0830055i 0.888992 0.457923i \(-0.151406\pi\)
−0.841069 + 0.540928i \(0.818073\pi\)
\(744\) 333.196 354.553i 0.0164187 0.0174711i
\(745\) 0 0
\(746\) 29030.1 1.42476
\(747\) −2503.93 40277.6i −0.122642 1.97280i
\(748\) 12224.0 0.597531
\(749\) 584.988 1013.23i 0.0285380 0.0494293i
\(750\) 0 0
\(751\) −8270.01 14324.1i −0.401834 0.695996i 0.592114 0.805854i \(-0.298294\pi\)
−0.993947 + 0.109858i \(0.964960\pi\)
\(752\) 19188.8 + 33236.0i 0.930511 + 1.61169i
\(753\) 2557.75 + 8483.08i 0.123784 + 0.410545i
\(754\) −15285.0 + 26474.4i −0.738260 + 1.27870i
\(755\) 0 0
\(756\) 592.826 + 491.545i 0.0285197 + 0.0236472i
\(757\) −21145.7 −1.01526 −0.507631 0.861575i \(-0.669479\pi\)
−0.507631 + 0.861575i \(0.669479\pi\)
\(758\) 12021.8 20822.4i 0.576059 0.997764i
\(759\) −3324.14 11024.9i −0.158970 0.527245i
\(760\) 0 0
\(761\) 10067.1 + 17436.7i 0.479543 + 0.830593i 0.999725 0.0234624i \(-0.00746901\pi\)
−0.520181 + 0.854056i \(0.674136\pi\)
\(762\) 19314.2 + 4537.69i 0.918213 + 0.215726i
\(763\) −1636.31 + 2834.17i −0.0776388 + 0.134474i
\(764\) 1283.87 0.0607968
\(765\) 0 0
\(766\) −19989.1 −0.942865
\(767\) 3025.48 5240.29i 0.142430 0.246696i
\(768\) 15617.0 16618.0i 0.733762 0.780795i
\(769\) −1097.36 1900.68i −0.0514587 0.0891291i 0.839149 0.543902i \(-0.183054\pi\)
−0.890607 + 0.454773i \(0.849720\pi\)
\(770\) 0 0
\(771\) −813.442 + 865.581i −0.0379966 + 0.0404321i
\(772\) 2606.84 4515.18i 0.121531 0.210499i
\(773\) 8327.70 0.387486 0.193743 0.981052i \(-0.437937\pi\)
0.193743 + 0.981052i \(0.437937\pi\)
\(774\) −16418.4 8165.40i −0.762462 0.379198i
\(775\) 0 0
\(776\) 6958.46 12052.4i 0.321900 0.557547i
\(777\) 2863.04 + 672.646i 0.132189 + 0.0310567i
\(778\) −1751.67 3033.98i −0.0807204 0.139812i
\(779\) 7910.82 + 13701.9i 0.363844 + 0.630196i
\(780\) 0 0
\(781\) −1954.45 + 3385.20i −0.0895463 + 0.155099i
\(782\) −25085.8 −1.14715
\(783\) 36113.4 13384.5i 1.64826 0.610887i
\(784\) 27093.9 1.23424
\(785\) 0 0
\(786\) 3932.95 + 13044.1i 0.178478 + 0.591944i
\(787\) −9481.64 16422.7i −0.429459 0.743845i 0.567366 0.823465i \(-0.307962\pi\)
−0.996825 + 0.0796209i \(0.974629\pi\)
\(788\) −7224.43 12513.1i −0.326599 0.565686i
\(789\) −6519.10 1531.60i −0.294152 0.0691084i
\(790\) 0 0
\(791\) −369.076 −0.0165902
\(792\) −859.134 13819.8i −0.0385454 0.620034i
\(793\) 14417.1 0.645608
\(794\) 22664.1 39255.4i 1.01300 1.75456i
\(795\) 0 0
\(796\) 2365.41 + 4097.01i 0.105326 + 0.182430i
\(797\) 17132.6 + 29674.5i 0.761439 + 1.31885i 0.942109 + 0.335307i \(0.108840\pi\)
−0.180670 + 0.983544i \(0.557827\pi\)
\(798\) 1060.76 1128.75i 0.0470557 0.0500718i
\(799\) 26589.2 46053.9i 1.17730 2.03914i
\(800\) 0 0
\(801\) 32338.5 21451.0i 1.42650 0.946233i
\(802\) 44093.9 1.94141
\(803\) −3012.04 + 5217.00i −0.132369 + 0.229270i
\(804\) −14184.1 3332.42i −0.622181 0.146176i
\(805\) 0 0
\(806\) 334.076 + 578.636i 0.0145997 + 0.0252873i
\(807\) 1460.97 + 4845.49i 0.0637282 + 0.211362i
\(808\) −1199.66 + 2077.88i −0.0522327 + 0.0904696i
\(809\) 36425.5 1.58300 0.791502 0.611166i \(-0.209299\pi\)
0.791502 + 0.611166i \(0.209299\pi\)
\(810\) 0 0
\(811\) 45174.0 1.95595 0.977973 0.208732i \(-0.0669335\pi\)
0.977973 + 0.208732i \(0.0669335\pi\)
\(812\) 753.435 1304.99i 0.0325620 0.0563991i
\(813\) −6032.74 20008.3i −0.260243 0.863128i
\(814\) 19267.0 + 33371.3i 0.829615 + 1.43694i
\(815\) 0 0
\(816\) −44418.5 10435.7i −1.90559 0.447700i
\(817\) −5468.41 + 9471.56i −0.234168 + 0.405591i
\(818\) −17782.7 −0.760093
\(819\) 1209.38 802.210i 0.0515984 0.0342265i
\(820\) 0 0
\(821\) 3459.65 5992.29i 0.147068 0.254729i −0.783075 0.621928i \(-0.786350\pi\)
0.930143 + 0.367199i \(0.119683\pi\)
\(822\) −7483.66 + 7963.34i −0.317546 + 0.337900i
\(823\) −5699.26 9871.42i −0.241390 0.418100i 0.719721 0.694264i \(-0.244270\pi\)
−0.961110 + 0.276164i \(0.910937\pi\)
\(824\) −1055.70 1828.52i −0.0446322 0.0773052i
\(825\) 0 0
\(826\) −502.919 + 871.080i −0.0211850 + 0.0366934i
\(827\) −34712.0 −1.45956 −0.729779 0.683683i \(-0.760377\pi\)
−0.729779 + 0.683683i \(0.760377\pi\)
\(828\) −380.986 6128.46i −0.0159906 0.257221i
\(829\) 2732.97 0.114500 0.0572498 0.998360i \(-0.481767\pi\)
0.0572498 + 0.998360i \(0.481767\pi\)
\(830\) 0 0
\(831\) −17093.3 4015.91i −0.713549 0.167642i
\(832\) −2519.03 4363.09i −0.104966 0.181806i
\(833\) −18771.5 32513.2i −0.780786 1.35236i
\(834\) 6488.34 + 21519.4i 0.269392 + 0.893472i
\(835\) 0 0
\(836\) 6018.19 0.248975
\(837\) 141.310 829.831i 0.00583557 0.0342690i
\(838\) 46693.0 1.92480
\(839\) 4787.89 8292.87i 0.197016 0.341242i −0.750544 0.660821i \(-0.770208\pi\)
0.947560 + 0.319579i \(0.103542\pi\)
\(840\) 0 0
\(841\) −25485.8 44142.8i −1.04497 1.80995i
\(842\) −1850.32 3204.85i −0.0757318 0.131171i
\(843\) −3709.38 871.484i −0.151551 0.0356056i
\(844\) 3625.97 6280.37i 0.147880 0.256136i
\(845\) 0 0
\(846\) 39303.2 + 19546.8i 1.59725 + 0.794364i
\(847\) 408.766 0.0165825
\(848\) 6974.60 12080.4i 0.282440 0.489200i
\(849\) −24585.2 + 26161.1i −0.993832 + 1.05753i
\(850\) 0 0
\(851\) −11724.8 20307.9i −0.472292 0.818034i
\(852\) −1427.41 + 1518.90i −0.0573971 + 0.0610761i
\(853\) 4520.95 7830.51i 0.181470 0.314316i −0.760911 0.648856i \(-0.775248\pi\)
0.942381 + 0.334540i \(0.108581\pi\)
\(854\) −2396.52 −0.0960274
\(855\) 0 0
\(856\) −11217.3 −0.447896
\(857\) −1157.64 + 2005.09i −0.0461426 + 0.0799213i −0.888174 0.459507i \(-0.848026\pi\)
0.842032 + 0.539428i \(0.181360\pi\)
\(858\) 18510.8 + 4348.94i 0.736536 + 0.173043i
\(859\) 15701.6 + 27195.9i 0.623667 + 1.08022i 0.988797 + 0.149266i \(0.0476912\pi\)
−0.365130 + 0.930957i \(0.618975\pi\)
\(860\) 0 0
\(861\) −711.322 2359.19i −0.0281554 0.0933808i
\(862\) −26831.3 + 46473.2i −1.06018 + 1.83629i
\(863\) 40883.5 1.61262 0.806310 0.591493i \(-0.201461\pi\)
0.806310 + 0.591493i \(0.201461\pi\)
\(864\) 3382.15 19861.4i 0.133175 0.782060i
\(865\) 0 0
\(866\) 6013.30 10415.3i 0.235959 0.408692i
\(867\) 10882.0 + 36091.4i 0.426264 + 1.41376i
\(868\) −16.4674 28.5223i −0.000643939 0.00111534i
\(869\) −10487.6 18165.1i −0.409399 0.709100i
\(870\) 0 0
\(871\) −13728.8 + 23779.0i −0.534078 + 0.925051i
\(872\) 31376.7 1.21852
\(873\) −1493.95 24031.4i −0.0579182 0.931659i
\(874\) −12350.4 −0.477985
\(875\) 0 0
\(876\) −2199.81 + 2340.81i −0.0848456 + 0.0902840i
\(877\) −14157.3 24521.2i −0.545107 0.944154i −0.998600 0.0528937i \(-0.983156\pi\)
0.453493 0.891260i \(-0.350178\pi\)
\(878\) 979.348 + 1696.28i 0.0376440 + 0.0652013i
\(879\) 16544.8 17605.3i 0.634862 0.675554i
\(880\) 0 0
\(881\) 6479.51 0.247787 0.123893 0.992296i \(-0.460462\pi\)
0.123893 + 0.992296i \(0.460462\pi\)
\(882\) 25824.5 17130.1i 0.985893 0.653968i
\(883\) 17769.0 0.677208 0.338604 0.940929i \(-0.390045\pi\)
0.338604 + 0.940929i \(0.390045\pi\)
\(884\) 6141.82 10637.9i 0.233678 0.404743i
\(885\) 0 0
\(886\) −18198.1 31520.1i −0.690044 1.19519i
\(887\) −12944.1 22419.8i −0.489988 0.848684i 0.509945 0.860207i \(-0.329666\pi\)
−0.999934 + 0.0115224i \(0.996332\pi\)
\(888\) −8139.83 26996.8i −0.307607 1.02022i
\(889\) −921.481 + 1596.05i −0.0347643 + 0.0602136i
\(890\) 0 0
\(891\) −14455.3 19103.2i −0.543514 0.718273i
\(892\) 8626.80 0.323819
\(893\) 13090.6 22673.5i 0.490548 0.849654i
\(894\) 7710.62 + 25573.2i 0.288458 + 0.956707i
\(895\) 0 0
\(896\) 1353.73 + 2344.73i 0.0504744 + 0.0874242i
\(897\) −11264.6 2646.52i −0.419303 0.0985115i
\(898\) −4879.71 + 8451.90i −0.181334 + 0.314080i
\(899\) −1647.11 −0.0611060
\(900\) 0 0
\(901\) −19328.9 −0.714694
\(902\) 16142.7 27959.9i 0.595889 1.03211i
\(903\) 1166.46 1241.23i 0.0429873 0.0457426i
\(904\) 1769.28 + 3064.49i 0.0650946 + 0.112747i
\(905\) 0 0
\(906\) 37950.7 40383.2i 1.39164 1.48084i
\(907\) −22594.1 + 39134.2i −0.827150 + 1.43267i 0.0731143 + 0.997324i \(0.476706\pi\)
−0.900265 + 0.435343i \(0.856627\pi\)
\(908\) 13774.2 0.503429
\(909\) 257.562 + 4143.09i 0.00939802 + 0.151175i
\(910\) 0 0
\(911\) −6587.08 + 11409.2i −0.239560 + 0.414931i −0.960588 0.277975i \(-0.910337\pi\)
0.721028 + 0.692906i \(0.243670\pi\)
\(912\) −21868.4 5137.78i −0.794007 0.186545i
\(913\) 24558.0 + 42535.8i 0.890200 + 1.54187i
\(914\) 5395.51 + 9345.29i 0.195260 + 0.338200i
\(915\) 0 0
\(916\) 4623.24 8007.69i 0.166765 0.288845i
\(917\) −1265.56 −0.0455752
\(918\) −48935.4 + 18136.7i −1.75938 + 0.652069i
\(919\) −54078.5 −1.94112 −0.970558 0.240867i \(-0.922568\pi\)
−0.970558 + 0.240867i \(0.922568\pi\)
\(920\) 0 0
\(921\) 11042.1 + 36622.6i 0.395060 + 1.31027i
\(922\) −12336.4 21367.3i −0.440650 0.763228i
\(923\) 1963.98 + 3401.72i 0.0700383 + 0.121310i
\(924\) −912.440 214.370i −0.0324860 0.00763229i
\(925\) 0 0
\(926\) −23646.4 −0.839166
\(927\) −3270.76 1626.66i −0.115886 0.0576338i
\(928\) −39422.6 −1.39451
\(929\) 22858.9 39592.8i 0.807294 1.39827i −0.107438 0.994212i \(-0.534265\pi\)
0.914732 0.404062i \(-0.132402\pi\)
\(930\) 0 0
\(931\) −9241.71 16007.1i −0.325333 0.563493i
\(932\) 8573.53 + 14849.8i 0.301325 + 0.521911i
\(933\) −9640.50 + 10258.4i −0.338281 + 0.359963i
\(934\) −13493.6 + 23371.5i −0.472722 + 0.818779i
\(935\) 0 0
\(936\) −12458.4 6195.98i −0.435059 0.216369i
\(937\) 5055.54 0.176262 0.0881309 0.996109i \(-0.471911\pi\)
0.0881309 + 0.996109i \(0.471911\pi\)
\(938\) 2282.10 3952.72i 0.0794385 0.137592i
\(939\) −31583.4 7420.23i −1.09764 0.257881i
\(940\) 0 0
\(941\) −14056.0 24345.7i −0.486942 0.843407i 0.512946 0.858421i \(-0.328554\pi\)
−0.999887 + 0.0150136i \(0.995221\pi\)
\(942\) 12083.1 + 40075.0i 0.417927 + 1.38611i
\(943\) −9823.52 + 17014.8i −0.339234 + 0.587571i
\(944\) 14587.1 0.502935
\(945\) 0 0
\(946\) 22317.4 0.767022
\(947\) 15060.2 26085.0i 0.516780 0.895090i −0.483030 0.875604i \(-0.660464\pi\)
0.999810 0.0194859i \(-0.00620295\pi\)
\(948\) −3228.76 10708.6i −0.110617 0.366876i
\(949\) 3026.74 + 5242.46i 0.103532 + 0.179323i
\(950\) 0 0
\(951\) 10541.9 + 2476.73i 0.359458 + 0.0844514i
\(952\) 1401.02 2426.63i 0.0476967 0.0826130i
\(953\) −19362.7 −0.658154 −0.329077 0.944303i \(-0.606738\pi\)
−0.329077 + 0.944303i \(0.606738\pi\)
\(954\) −989.946 15924.1i −0.0335961 0.540420i
\(955\) 0 0
\(956\) −2489.54 + 4312.01i −0.0842233 + 0.145879i
\(957\) −32100.8 + 34158.4i −1.08430 + 1.15380i
\(958\) 5359.97 + 9283.74i 0.180765 + 0.313094i
\(959\) −507.554 879.109i −0.0170905 0.0296016i
\(960\) 0 0
\(961\) 14877.5 25768.6i 0.499396 0.864979i
\(962\) 38721.9 1.29776
\(963\) −16172.6 + 10727.7i −0.541179 + 0.358977i
\(964\) 5946.87 0.198689
\(965\) 0 0
\(966\) 1872.49 + 439.925i 0.0623669 + 0.0146525i
\(967\) −15362.3 26608.2i −0.510876 0.884863i −0.999921 0.0126043i \(-0.995988\pi\)
0.489045 0.872259i \(-0.337346\pi\)
\(968\) −1959.55 3394.04i −0.0650643 0.112695i
\(969\) 8985.67 + 29802.1i 0.297896 + 0.988010i
\(970\) 0 0
\(971\) −49791.0 −1.64559 −0.822796 0.568336i \(-0.807587\pi\)
−0.822796 + 0.568336i \(0.807587\pi\)
\(972\) −5173.98 11679.5i −0.170736 0.385410i
\(973\) −2087.84 −0.0687906
\(974\) 22021.4 38142.3i 0.724448 1.25478i
\(975\) 0 0
\(976\) 17377.8 + 30099.2i 0.569927 + 0.987143i
\(977\) −11195.9 19391.9i −0.366622 0.635008i 0.622413 0.782689i \(-0.286153\pi\)
−0.989035 + 0.147681i \(0.952819\pi\)
\(978\) −43410.2 10198.8i −1.41933 0.333458i
\(979\) −23615.3 + 40903.0i −0.770939 + 1.33531i
\(980\) 0 0
\(981\) 45237.5 30007.2i 1.47230 0.976611i
\(982\) −14843.5 −0.482357
\(983\) −12309.7 + 21321.0i −0.399408 + 0.691794i −0.993653 0.112490i \(-0.964117\pi\)
0.594245 + 0.804284i \(0.297451\pi\)
\(984\) −16178.7 + 17215.7i −0.524144 + 0.557741i
\(985\) 0 0
\(986\) 51058.7 + 88436.2i 1.64913 + 2.85637i
\(987\) −2792.35 + 2971.33i −0.0900521 + 0.0958242i
\(988\) 3023.78 5237.34i 0.0973676 0.168646i
\(989\) −13581.1 −0.436658
\(990\) 0 0
\(991\) 24540.3 0.786629 0.393314 0.919404i \(-0.371328\pi\)
0.393314 + 0.919404i \(0.371328\pi\)
\(992\) −430.818 + 746.199i −0.0137888 + 0.0238829i
\(993\) 1152.70 + 270.815i 0.0368375 + 0.00865465i
\(994\) −326.468 565.460i −0.0104175 0.0180436i
\(995\) 0 0
\(996\) 7560.54 + 25075.5i 0.240527 + 0.797737i
\(997\) 22978.0 39799.1i 0.729912 1.26424i −0.227008 0.973893i \(-0.572895\pi\)
0.956920 0.290351i \(-0.0937722\pi\)
\(998\) 63146.7 2.00288
\(999\) −37554.1 31138.2i −1.18935 0.986155i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.e.a.151.1 4
5.2 odd 4 225.4.k.a.124.1 8
5.3 odd 4 225.4.k.a.124.4 8
5.4 even 2 45.4.e.a.16.2 4
9.2 odd 6 2025.4.a.j.1.1 2
9.4 even 3 inner 225.4.e.a.76.1 4
9.7 even 3 2025.4.a.l.1.2 2
15.14 odd 2 135.4.e.a.46.1 4
45.4 even 6 45.4.e.a.31.2 yes 4
45.13 odd 12 225.4.k.a.49.1 8
45.14 odd 6 135.4.e.a.91.1 4
45.22 odd 12 225.4.k.a.49.4 8
45.29 odd 6 405.4.a.e.1.2 2
45.34 even 6 405.4.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.e.a.16.2 4 5.4 even 2
45.4.e.a.31.2 yes 4 45.4 even 6
135.4.e.a.46.1 4 15.14 odd 2
135.4.e.a.91.1 4 45.14 odd 6
225.4.e.a.76.1 4 9.4 even 3 inner
225.4.e.a.151.1 4 1.1 even 1 trivial
225.4.k.a.49.1 8 45.13 odd 12
225.4.k.a.49.4 8 45.22 odd 12
225.4.k.a.124.1 8 5.2 odd 4
225.4.k.a.124.4 8 5.3 odd 4
405.4.a.d.1.1 2 45.34 even 6
405.4.a.e.1.2 2 45.29 odd 6
2025.4.a.j.1.1 2 9.2 odd 6
2025.4.a.l.1.2 2 9.7 even 3