L(s) = 1 | + (−1.68 + 2.92i)2-s + (1.5 + 4.97i)3-s + (−1.68 − 2.92i)4-s + (−17.0 − 4.00i)6-s + (0.813 − 1.40i)7-s − 15.6·8-s + (−22.5 + 14.9i)9-s + (16.4 − 28.4i)11-s + (12 − 12.7i)12-s + (−16.5 − 28.5i)13-s + (2.74 + 4.75i)14-s + (39.8 − 68.9i)16-s − 110.·17-s + (−5.64 − 90.8i)18-s − 54.3·19-s + ⋯ |
L(s) = 1 | + (−0.596 + 1.03i)2-s + (0.288 + 0.957i)3-s + (−0.210 − 0.365i)4-s + (−1.16 − 0.272i)6-s + (0.0439 − 0.0761i)7-s − 0.689·8-s + (−0.833 + 0.552i)9-s + (0.450 − 0.780i)11-s + (0.288 − 0.307i)12-s + (−0.352 − 0.610i)13-s + (0.0523 + 0.0907i)14-s + (0.621 − 1.07i)16-s − 1.57·17-s + (−0.0739 − 1.18i)18-s − 0.655·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.399 + 0.916i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.399 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.0910408 - 0.0596239i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0910408 - 0.0596239i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.5 - 4.97i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (1.68 - 2.92i)T + (-4 - 6.92i)T^{2} \) |
| 7 | \( 1 + (-0.813 + 1.40i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-16.4 + 28.4i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (16.5 + 28.5i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 110.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 54.3T + 6.85e3T^{2} \) |
| 23 | \( 1 + (33.7 + 58.4i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (137. - 237. i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-3 - 5.19i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 - 347.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (145. + 252. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-100. + 174. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (241. - 417. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 175.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-91.6 - 158. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (218. - 378. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (415. + 720. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 118.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 183.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-319. + 552. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (747. - 1.29e3i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 1.43e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (445. - 772. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.61574335431421086344041237966, −11.28557181378304750879958581562, −10.52468348911904739158477718427, −9.208637009584605109268003893142, −8.763898289642580835858149830652, −7.78914781165290771645070955015, −6.56694936494609542919417219350, −5.55578797917333274848042374668, −4.18785495279735504264892554070, −2.79330741214283807549331319971,
0.04909348965796730914412840664, 1.72468330353516380338735233105, 2.47372598937004086693397737244, 4.16338526774365846917216523538, 6.08905854487404015798892050070, 6.98490219050015745506896519217, 8.262761809034376118415677436515, 9.194794582840104861441804280766, 9.915998766807955508512554262641, 11.40756628378383529206161081869