Properties

Label 225.4.e.a
Level $225$
Weight $4$
Character orbit 225.e
Analytic conductor $13.275$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,4,Mod(76,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.76"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_1) q^{2} + (2 \beta_{3} - \beta_{2} - \beta_1 + 1) q^{3} + ( - \beta_{3} + \beta_{2} + \beta_1) q^{4} + (\beta_{3} + \beta_{2} + 7 \beta_1 - 16) q^{6} + (\beta_{3} + 4 \beta_1) q^{7}+ \cdots + (168 \beta_{3} - 111 \beta_{2} + \cdots + 192) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 6 q^{3} - q^{4} - 51 q^{6} + 9 q^{7} + 18 q^{8} - 90 q^{9} + 37 q^{11} + 48 q^{12} - 112 q^{13} - 12 q^{14} + 119 q^{16} - 154 q^{17} - 126 q^{18} + 70 q^{19} - 36 q^{21} + 101 q^{22} - 267 q^{23}+ \cdots - 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 2\nu - 3 ) / 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + \nu^{2} + 5\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{3} + \nu^{2} + 2\nu - 9 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 2\beta _1 + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} + 8\beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{3} - 2\beta_{2} - 2\beta _1 + 11 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1 + \beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
76.1
−1.18614 1.26217i
1.68614 + 0.396143i
−1.18614 + 1.26217i
1.68614 0.396143i
−1.68614 2.92048i 1.50000 4.97494i −1.68614 + 2.92048i 0 −17.0584 + 4.00772i 0.813859 + 1.40965i −15.6060 −22.5000 14.9248i 0
76.2 1.18614 + 2.05446i 1.50000 + 4.97494i 1.18614 2.05446i 0 −8.44158 + 8.98266i 3.68614 + 6.38458i 24.6060 −22.5000 + 14.9248i 0
151.1 −1.68614 + 2.92048i 1.50000 + 4.97494i −1.68614 2.92048i 0 −17.0584 4.00772i 0.813859 1.40965i −15.6060 −22.5000 + 14.9248i 0
151.2 1.18614 2.05446i 1.50000 4.97494i 1.18614 + 2.05446i 0 −8.44158 8.98266i 3.68614 6.38458i 24.6060 −22.5000 14.9248i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 225.4.e.a 4
5.b even 2 1 45.4.e.a 4
5.c odd 4 2 225.4.k.a 8
9.c even 3 1 inner 225.4.e.a 4
9.c even 3 1 2025.4.a.l 2
9.d odd 6 1 2025.4.a.j 2
15.d odd 2 1 135.4.e.a 4
45.h odd 6 1 135.4.e.a 4
45.h odd 6 1 405.4.a.e 2
45.j even 6 1 45.4.e.a 4
45.j even 6 1 405.4.a.d 2
45.k odd 12 2 225.4.k.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.4.e.a 4 5.b even 2 1
45.4.e.a 4 45.j even 6 1
135.4.e.a 4 15.d odd 2 1
135.4.e.a 4 45.h odd 6 1
225.4.e.a 4 1.a even 1 1 trivial
225.4.e.a 4 9.c even 3 1 inner
225.4.k.a 8 5.c odd 4 2
225.4.k.a 8 45.k odd 12 2
405.4.a.d 2 45.j even 6 1
405.4.a.e 2 45.h odd 6 1
2025.4.a.j 2 9.d odd 6 1
2025.4.a.l 2 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + T_{2}^{3} + 9T_{2}^{2} - 8T_{2} + 64 \) acting on \(S_{4}^{\mathrm{new}}(225, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + \cdots + 64 \) Copy content Toggle raw display
$3$ \( (T^{2} - 3 T + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 9 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$11$ \( T^{4} - 37 T^{3} + \cdots + 18496 \) Copy content Toggle raw display
$13$ \( T^{4} + 112 T^{3} + \cdots + 6801664 \) Copy content Toggle raw display
$17$ \( (T^{2} + 77 T - 3674)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 35 T - 4850)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 267 T^{3} + \cdots + 181117764 \) Copy content Toggle raw display
$29$ \( T^{4} + 325 T^{3} + \cdots + 192044164 \) Copy content Toggle raw display
$31$ \( (T^{2} - 6 T + 36)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 638 T + 100936)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 238 T^{3} + \cdots + 241460521 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 3611048464 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 40784610304 \) Copy content Toggle raw display
$53$ \( (T^{2} + 224 T - 69956)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 85 T^{3} + \cdots + 324072004 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 89074790116 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 35157375009 \) Copy content Toggle raw display
$71$ \( (T^{2} - 394 T - 61016)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 811 T - 182276)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 16576047504 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 2740786203024 \) Copy content Toggle raw display
$89$ \( (T^{2} + 1065 T - 535050)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 15416202244 \) Copy content Toggle raw display
show more
show less