Properties

Label 225.4
Level 225
Weight 4
Dimension 3848
Nonzero newspaces 12
Newform subspaces 54
Sturm bound 14400
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 54 \)
Sturm bound: \(14400\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(225))\).

Total New Old
Modular forms 5624 4033 1591
Cusp forms 5176 3848 1328
Eisenstein series 448 185 263

Trace form

\( 3848 q - 17 q^{2} - 27 q^{3} - 51 q^{4} - 21 q^{5} - 31 q^{6} - 21 q^{7} - 84 q^{8} - 107 q^{9} - 190 q^{10} - 104 q^{11} + 76 q^{12} + 379 q^{13} + 846 q^{14} + 136 q^{15} + 673 q^{16} + 188 q^{17} + 192 q^{18}+ \cdots - 663 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(225))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
225.4.a \(\chi_{225}(1, \cdot)\) 225.4.a.a 1 1
225.4.a.b 1
225.4.a.c 1
225.4.a.d 1
225.4.a.e 1
225.4.a.f 1
225.4.a.g 1
225.4.a.h 1
225.4.a.i 2
225.4.a.j 2
225.4.a.k 2
225.4.a.l 2
225.4.a.m 2
225.4.a.n 2
225.4.a.o 2
225.4.b \(\chi_{225}(199, \cdot)\) 225.4.b.a 2 1
225.4.b.b 2
225.4.b.c 2
225.4.b.d 2
225.4.b.e 2
225.4.b.f 2
225.4.b.g 2
225.4.b.h 4
225.4.b.i 4
225.4.e \(\chi_{225}(76, \cdot)\) 225.4.e.a 4 2
225.4.e.b 4
225.4.e.c 6
225.4.e.d 14
225.4.e.e 24
225.4.e.f 24
225.4.e.g 32
225.4.f \(\chi_{225}(107, \cdot)\) 225.4.f.a 4 2
225.4.f.b 4
225.4.f.c 12
225.4.f.d 16
225.4.h \(\chi_{225}(46, \cdot)\) 225.4.h.a 28 4
225.4.h.b 28
225.4.h.c 28
225.4.h.d 64
225.4.k \(\chi_{225}(49, \cdot)\) 225.4.k.a 8 2
225.4.k.b 8
225.4.k.c 12
225.4.k.d 28
225.4.k.e 48
225.4.m \(\chi_{225}(19, \cdot)\) 225.4.m.a 24 4
225.4.m.b 56
225.4.m.c 64
225.4.p \(\chi_{225}(32, \cdot)\) 225.4.p.a 48 4
225.4.p.b 64
225.4.p.c 96
225.4.q \(\chi_{225}(16, \cdot)\) 225.4.q.a 704 8
225.4.s \(\chi_{225}(8, \cdot)\) 225.4.s.a 240 8
225.4.u \(\chi_{225}(4, \cdot)\) 225.4.u.a 704 8
225.4.w \(\chi_{225}(2, \cdot)\) 225.4.w.a 1408 16

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(225))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(225)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)