Properties

Label 45.4.e.a.31.2
Level $45$
Weight $4$
Character 45.31
Analytic conductor $2.655$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,4,Mod(16,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.16"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 45.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.65508595026\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 31.2
Root \(1.68614 + 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 45.31
Dual form 45.4.e.a.16.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.68614 + 2.92048i) q^{2} +(-1.50000 + 4.97494i) q^{3} +(-1.68614 + 2.92048i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(-17.0584 + 4.00772i) q^{6} +(-0.813859 - 1.40965i) q^{7} +15.6060 q^{8} +(-22.5000 - 14.9248i) q^{9} -16.8614 q^{10} +(16.4307 + 28.4588i) q^{11} +(-12.0000 - 12.7692i) q^{12} +(16.5109 - 28.5977i) q^{13} +(2.74456 - 4.75372i) q^{14} +(-17.7921 - 18.9325i) q^{15} +(39.8030 + 68.9408i) q^{16} +110.307 q^{17} +(5.64947 - 90.8762i) q^{18} -54.3070 q^{19} +(-8.43070 - 14.6024i) q^{20} +(8.23369 - 1.93443i) q^{21} +(-55.4090 + 95.9711i) q^{22} +(33.7188 - 58.4026i) q^{23} +(-23.4090 + 77.6387i) q^{24} +(-12.5000 - 21.6506i) q^{25} +111.359 q^{26} +(108.000 - 89.5489i) q^{27} +5.48913 q^{28} +(-137.259 - 237.740i) q^{29} +(25.2921 - 83.8844i) q^{30} +(3.00000 - 5.19615i) q^{31} +(-71.8030 + 124.366i) q^{32} +(-166.227 + 39.0535i) q^{33} +(185.993 + 322.150i) q^{34} +8.13859 q^{35} +(81.5258 - 40.5455i) q^{36} -347.723 q^{37} +(-91.5693 - 158.603i) q^{38} +(117.505 + 125.037i) q^{39} +(-39.0149 + 67.5758i) q^{40} +(-145.668 + 252.305i) q^{41} +(19.5326 + 20.7846i) q^{42} +(-100.694 - 174.408i) q^{43} -110.818 q^{44} +(120.876 - 60.1158i) q^{45} +227.418 q^{46} +(241.048 + 417.507i) q^{47} +(-402.681 + 94.6062i) q^{48} +(170.175 - 294.752i) q^{49} +(42.1535 - 73.0120i) q^{50} +(-165.461 + 548.771i) q^{51} +(55.6793 + 96.4394i) q^{52} -175.228 q^{53} +(443.629 + 164.420i) q^{54} -164.307 q^{55} +(-12.7011 - 21.9989i) q^{56} +(81.4605 - 270.174i) q^{57} +(462.878 - 801.728i) q^{58} +(91.6209 - 158.692i) q^{59} +(85.2921 - 20.0386i) q^{60} +(-218.297 - 378.102i) q^{61} +20.2337 q^{62} +(-2.72686 + 43.8637i) q^{63} +152.568 q^{64} +(82.5544 + 142.988i) q^{65} +(-394.337 - 419.613i) q^{66} +(415.750 - 720.100i) q^{67} +(-185.993 + 322.150i) q^{68} +(239.971 + 255.353i) q^{69} +(13.7228 + 23.7686i) q^{70} -118.951 q^{71} +(-351.134 - 232.916i) q^{72} +183.318 q^{73} +(-586.310 - 1015.52i) q^{74} +(126.461 - 29.7108i) q^{75} +(91.5693 - 158.603i) q^{76} +(26.7446 - 46.3229i) q^{77} +(-167.038 + 554.002i) q^{78} +(319.147 + 552.778i) q^{79} -398.030 q^{80} +(283.500 + 671.617i) q^{81} -982.470 q^{82} +(747.322 + 1294.40i) q^{83} +(-8.23369 + 27.3081i) q^{84} +(-275.768 + 477.643i) q^{85} +(339.569 - 588.151i) q^{86} +(1388.63 - 326.247i) q^{87} +(256.417 + 444.127i) q^{88} -1437.27 q^{89} +(379.382 + 251.653i) q^{90} -53.7501 q^{91} +(113.709 + 196.950i) q^{92} +(21.3505 + 22.7190i) q^{93} +(-812.880 + 1407.95i) q^{94} +(135.768 - 235.156i) q^{95} +(-511.011 - 543.765i) q^{96} +(445.884 + 772.294i) q^{97} +1147.76 q^{98} +(55.0516 - 885.548i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 6 q^{3} - q^{4} - 10 q^{5} - 51 q^{6} - 9 q^{7} - 18 q^{8} - 90 q^{9} - 10 q^{10} + 37 q^{11} - 48 q^{12} + 112 q^{13} - 12 q^{14} + 15 q^{15} + 119 q^{16} + 154 q^{17} + 126 q^{18} + 70 q^{19}+ \cdots - 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.68614 + 2.92048i 0.596141 + 1.03255i 0.993385 + 0.114833i \(0.0366333\pi\)
−0.397244 + 0.917713i \(0.630033\pi\)
\(3\) −1.50000 + 4.97494i −0.288675 + 0.957427i
\(4\) −1.68614 + 2.92048i −0.210768 + 0.365060i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) −17.0584 + 4.00772i −1.16068 + 0.272691i
\(7\) −0.813859 1.40965i −0.0439443 0.0761137i 0.843217 0.537574i \(-0.180659\pi\)
−0.887161 + 0.461460i \(0.847326\pi\)
\(8\) 15.6060 0.689693
\(9\) −22.5000 14.9248i −0.833333 0.552771i
\(10\) −16.8614 −0.533204
\(11\) 16.4307 + 28.4588i 0.450368 + 0.780060i 0.998409 0.0563918i \(-0.0179596\pi\)
−0.548041 + 0.836451i \(0.684626\pi\)
\(12\) −12.0000 12.7692i −0.288675 0.307178i
\(13\) 16.5109 28.5977i 0.352253 0.610121i −0.634391 0.773013i \(-0.718749\pi\)
0.986644 + 0.162892i \(0.0520822\pi\)
\(14\) 2.74456 4.75372i 0.0523939 0.0907490i
\(15\) −17.7921 18.9325i −0.306260 0.325891i
\(16\) 39.8030 + 68.9408i 0.621922 + 1.07720i
\(17\) 110.307 1.57373 0.786864 0.617126i \(-0.211703\pi\)
0.786864 + 0.617126i \(0.211703\pi\)
\(18\) 5.64947 90.8762i 0.0739774 1.18998i
\(19\) −54.3070 −0.655731 −0.327865 0.944724i \(-0.606329\pi\)
−0.327865 + 0.944724i \(0.606329\pi\)
\(20\) −8.43070 14.6024i −0.0942581 0.163260i
\(21\) 8.23369 1.93443i 0.0855590 0.0201013i
\(22\) −55.4090 + 95.9711i −0.536965 + 0.930051i
\(23\) 33.7188 58.4026i 0.305689 0.529469i −0.671725 0.740800i \(-0.734447\pi\)
0.977415 + 0.211331i \(0.0677799\pi\)
\(24\) −23.4090 + 77.6387i −0.199097 + 0.660331i
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 111.359 0.839970
\(27\) 108.000 89.5489i 0.769800 0.638285i
\(28\) 5.48913 0.0370481
\(29\) −137.259 237.740i −0.878912 1.52232i −0.852536 0.522668i \(-0.824937\pi\)
−0.0263757 0.999652i \(-0.508397\pi\)
\(30\) 25.2921 83.8844i 0.153923 0.510504i
\(31\) 3.00000 5.19615i 0.0173812 0.0301050i −0.857204 0.514977i \(-0.827800\pi\)
0.874585 + 0.484872i \(0.161134\pi\)
\(32\) −71.8030 + 124.366i −0.396659 + 0.687034i
\(33\) −166.227 + 39.0535i −0.876860 + 0.206010i
\(34\) 185.993 + 322.150i 0.938164 + 1.62495i
\(35\) 8.13859 0.0393050
\(36\) 81.5258 40.5455i 0.377434 0.187711i
\(37\) −347.723 −1.54501 −0.772504 0.635010i \(-0.780996\pi\)
−0.772504 + 0.635010i \(0.780996\pi\)
\(38\) −91.5693 158.603i −0.390908 0.677072i
\(39\) 117.505 + 125.037i 0.482459 + 0.513383i
\(40\) −39.0149 + 67.5758i −0.154220 + 0.267117i
\(41\) −145.668 + 252.305i −0.554868 + 0.961060i 0.443046 + 0.896499i \(0.353898\pi\)
−0.997914 + 0.0645606i \(0.979435\pi\)
\(42\) 19.5326 + 20.7846i 0.0717607 + 0.0763604i
\(43\) −100.694 174.408i −0.357110 0.618533i 0.630367 0.776297i \(-0.282905\pi\)
−0.987477 + 0.157765i \(0.949571\pi\)
\(44\) −110.818 −0.379692
\(45\) 120.876 60.1158i 0.400426 0.199145i
\(46\) 227.418 0.728935
\(47\) 241.048 + 417.507i 0.748094 + 1.29574i 0.948735 + 0.316071i \(0.102364\pi\)
−0.200642 + 0.979665i \(0.564303\pi\)
\(48\) −402.681 + 94.6062i −1.21087 + 0.284484i
\(49\) 170.175 294.752i 0.496138 0.859336i
\(50\) 42.1535 73.0120i 0.119228 0.206509i
\(51\) −165.461 + 548.771i −0.454296 + 1.50673i
\(52\) 55.6793 + 96.4394i 0.148487 + 0.257187i
\(53\) −175.228 −0.454140 −0.227070 0.973878i \(-0.572915\pi\)
−0.227070 + 0.973878i \(0.572915\pi\)
\(54\) 443.629 + 164.420i 1.11797 + 0.414347i
\(55\) −164.307 −0.402821
\(56\) −12.7011 21.9989i −0.0303081 0.0524951i
\(57\) 81.4605 270.174i 0.189293 0.627815i
\(58\) 462.878 801.728i 1.04791 1.81503i
\(59\) 91.6209 158.692i 0.202170 0.350169i −0.747057 0.664760i \(-0.768534\pi\)
0.949227 + 0.314591i \(0.101867\pi\)
\(60\) 85.2921 20.0386i 0.183519 0.0431162i
\(61\) −218.297 378.102i −0.458199 0.793623i 0.540667 0.841237i \(-0.318172\pi\)
−0.998866 + 0.0476132i \(0.984839\pi\)
\(62\) 20.2337 0.0414465
\(63\) −2.72686 + 43.8637i −0.00545321 + 0.0877192i
\(64\) 152.568 0.297984
\(65\) 82.5544 + 142.988i 0.157532 + 0.272854i
\(66\) −394.337 419.613i −0.735447 0.782587i
\(67\) 415.750 720.100i 0.758089 1.31305i −0.185736 0.982600i \(-0.559467\pi\)
0.943824 0.330448i \(-0.107200\pi\)
\(68\) −185.993 + 322.150i −0.331691 + 0.574506i
\(69\) 239.971 + 255.353i 0.418683 + 0.445520i
\(70\) 13.7228 + 23.7686i 0.0234313 + 0.0405842i
\(71\) −118.951 −0.198829 −0.0994146 0.995046i \(-0.531697\pi\)
−0.0994146 + 0.995046i \(0.531697\pi\)
\(72\) −351.134 232.916i −0.574744 0.381242i
\(73\) 183.318 0.293914 0.146957 0.989143i \(-0.453052\pi\)
0.146957 + 0.989143i \(0.453052\pi\)
\(74\) −586.310 1015.52i −0.921042 1.59529i
\(75\) 126.461 29.7108i 0.194699 0.0457427i
\(76\) 91.5693 158.603i 0.138207 0.239381i
\(77\) 26.7446 46.3229i 0.0395822 0.0685583i
\(78\) −167.038 + 554.002i −0.242478 + 0.804210i
\(79\) 319.147 + 552.778i 0.454517 + 0.787246i 0.998660 0.0517463i \(-0.0164787\pi\)
−0.544144 + 0.838992i \(0.683145\pi\)
\(80\) −398.030 −0.556264
\(81\) 283.500 + 671.617i 0.388889 + 0.921285i
\(82\) −982.470 −1.32312
\(83\) 747.322 + 1294.40i 0.988304 + 1.71179i 0.626219 + 0.779647i \(0.284602\pi\)
0.362085 + 0.932145i \(0.382065\pi\)
\(84\) −8.23369 + 27.3081i −0.0106949 + 0.0354709i
\(85\) −275.768 + 477.643i −0.351896 + 0.609502i
\(86\) 339.569 588.151i 0.425776 0.737465i
\(87\) 1388.63 326.247i 1.71123 0.402038i
\(88\) 256.417 + 444.127i 0.310615 + 0.538002i
\(89\) −1437.27 −1.71180 −0.855900 0.517142i \(-0.826996\pi\)
−0.855900 + 0.517142i \(0.826996\pi\)
\(90\) 379.382 + 251.653i 0.444337 + 0.294740i
\(91\) −53.7501 −0.0619181
\(92\) 113.709 + 196.950i 0.128859 + 0.223190i
\(93\) 21.3505 + 22.7190i 0.0238059 + 0.0253318i
\(94\) −812.880 + 1407.95i −0.891938 + 1.54488i
\(95\) 135.768 235.156i 0.146626 0.253964i
\(96\) −511.011 543.765i −0.543279 0.578102i
\(97\) 445.884 + 772.294i 0.466729 + 0.808398i 0.999278 0.0380011i \(-0.0120990\pi\)
−0.532549 + 0.846399i \(0.678766\pi\)
\(98\) 1147.76 1.18307
\(99\) 55.0516 885.548i 0.0558878 0.899000i
\(100\) 84.3070 0.0843070
\(101\) 76.8720 + 133.146i 0.0757332 + 0.131174i 0.901405 0.432977i \(-0.142537\pi\)
−0.825672 + 0.564151i \(0.809204\pi\)
\(102\) −1881.66 + 442.080i −1.82659 + 0.429142i
\(103\) −67.6469 + 117.168i −0.0647131 + 0.112086i −0.896567 0.442909i \(-0.853947\pi\)
0.831854 + 0.554995i \(0.187280\pi\)
\(104\) 257.668 446.294i 0.242947 0.420796i
\(105\) −12.2079 + 40.4890i −0.0113464 + 0.0376316i
\(106\) −295.459 511.750i −0.270732 0.468921i
\(107\) −718.783 −0.649414 −0.324707 0.945815i \(-0.605266\pi\)
−0.324707 + 0.945815i \(0.605266\pi\)
\(108\) 79.4226 + 466.404i 0.0707634 + 0.415553i
\(109\) −2010.56 −1.76676 −0.883378 0.468661i \(-0.844736\pi\)
−0.883378 + 0.468661i \(0.844736\pi\)
\(110\) −277.045 479.856i −0.240138 0.415931i
\(111\) 521.584 1729.90i 0.446005 1.47923i
\(112\) 64.7881 112.216i 0.0546598 0.0946735i
\(113\) 113.372 196.367i 0.0943820 0.163474i −0.814969 0.579505i \(-0.803246\pi\)
0.909351 + 0.416031i \(0.136579\pi\)
\(114\) 926.392 217.647i 0.761093 0.178812i
\(115\) 168.594 + 292.013i 0.136708 + 0.236786i
\(116\) 925.755 0.740985
\(117\) −798.310 + 397.026i −0.630801 + 0.313718i
\(118\) 617.943 0.482087
\(119\) −89.7744 155.494i −0.0691564 0.119782i
\(120\) −277.663 295.461i −0.211225 0.224764i
\(121\) 125.564 217.483i 0.0943381 0.163398i
\(122\) 736.160 1275.07i 0.546302 0.946223i
\(123\) −1036.70 1103.15i −0.759968 0.808680i
\(124\) 10.1168 + 17.5229i 0.00732677 + 0.0126903i
\(125\) 125.000 0.0894427
\(126\) −132.701 + 65.9967i −0.0938250 + 0.0466623i
\(127\) 1132.24 0.791100 0.395550 0.918444i \(-0.370554\pi\)
0.395550 + 0.918444i \(0.370554\pi\)
\(128\) 831.675 + 1440.50i 0.574300 + 0.994717i
\(129\) 1018.71 239.336i 0.695289 0.163352i
\(130\) −278.397 + 482.197i −0.187823 + 0.325319i
\(131\) −388.753 + 673.339i −0.259278 + 0.449083i −0.966049 0.258360i \(-0.916818\pi\)
0.706770 + 0.707443i \(0.250151\pi\)
\(132\) 166.227 551.312i 0.109608 0.363527i
\(133\) 44.1983 + 76.5537i 0.0288156 + 0.0499101i
\(134\) 2804.05 1.80771
\(135\) 117.758 + 691.526i 0.0750740 + 0.440867i
\(136\) 1721.45 1.08539
\(137\) −311.819 540.087i −0.194456 0.336808i 0.752266 0.658860i \(-0.228961\pi\)
−0.946722 + 0.322052i \(0.895628\pi\)
\(138\) −341.127 + 1131.39i −0.210425 + 0.697902i
\(139\) −641.341 + 1110.83i −0.391351 + 0.677840i −0.992628 0.121201i \(-0.961326\pi\)
0.601277 + 0.799041i \(0.294659\pi\)
\(140\) −13.7228 + 23.7686i −0.00828421 + 0.0143487i
\(141\) −2438.64 + 572.937i −1.45653 + 0.342198i
\(142\) −200.568 347.394i −0.118530 0.205300i
\(143\) 1085.14 0.634574
\(144\) 133.361 2145.22i 0.0771766 1.24145i
\(145\) 1372.59 0.786123
\(146\) 309.099 + 535.376i 0.175214 + 0.303480i
\(147\) 1211.11 + 1288.74i 0.679529 + 0.723085i
\(148\) 586.310 1015.52i 0.325638 0.564021i
\(149\) −762.156 + 1320.09i −0.419049 + 0.725814i −0.995844 0.0910749i \(-0.970970\pi\)
0.576795 + 0.816889i \(0.304303\pi\)
\(150\) 300.000 + 319.229i 0.163299 + 0.173766i
\(151\) −1581.28 2738.86i −0.852203 1.47606i −0.879216 0.476424i \(-0.841933\pi\)
0.0270124 0.999635i \(-0.491401\pi\)
\(152\) −847.514 −0.452253
\(153\) −2481.91 1646.31i −1.31144 0.869911i
\(154\) 180.380 0.0943861
\(155\) 15.0000 + 25.9808i 0.00777309 + 0.0134634i
\(156\) −563.299 + 132.342i −0.289103 + 0.0679220i
\(157\) 1194.35 2068.67i 0.607131 1.05158i −0.384580 0.923092i \(-0.625654\pi\)
0.991711 0.128490i \(-0.0410129\pi\)
\(158\) −1076.25 + 1864.12i −0.541912 + 0.938619i
\(159\) 262.842 871.749i 0.131099 0.434806i
\(160\) −359.015 621.832i −0.177391 0.307251i
\(161\) −109.769 −0.0537331
\(162\) −1483.42 + 1960.40i −0.719436 + 0.950761i
\(163\) −2544.79 −1.22284 −0.611422 0.791305i \(-0.709402\pi\)
−0.611422 + 0.791305i \(0.709402\pi\)
\(164\) −491.235 850.844i −0.233896 0.405120i
\(165\) 246.461 817.417i 0.116284 0.385672i
\(166\) −2520.18 + 4365.08i −1.17834 + 2.04094i
\(167\) 687.279 1190.40i 0.318462 0.551593i −0.661705 0.749764i \(-0.730167\pi\)
0.980167 + 0.198171i \(0.0635002\pi\)
\(168\) 128.495 30.1887i 0.0590094 0.0138637i
\(169\) 553.282 + 958.313i 0.251835 + 0.436191i
\(170\) −1859.93 −0.839119
\(171\) 1221.91 + 810.522i 0.546442 + 0.362469i
\(172\) 679.139 0.301069
\(173\) −1180.23 2044.21i −0.518675 0.898372i −0.999765 0.0217005i \(-0.993092\pi\)
0.481089 0.876672i \(-0.340241\pi\)
\(174\) 3294.23 + 3505.38i 1.43526 + 1.52725i
\(175\) −20.3465 + 35.2411i −0.00878885 + 0.0152227i
\(176\) −1307.98 + 2265.49i −0.560187 + 0.970272i
\(177\) 652.052 + 693.846i 0.276899 + 0.294648i
\(178\) −2423.44 4197.52i −1.02047 1.76751i
\(179\) 1305.11 0.544963 0.272482 0.962161i \(-0.412156\pi\)
0.272482 + 0.962161i \(0.412156\pi\)
\(180\) −28.2473 + 454.381i −0.0116968 + 0.188153i
\(181\) 3099.43 1.27281 0.636406 0.771355i \(-0.280420\pi\)
0.636406 + 0.771355i \(0.280420\pi\)
\(182\) −90.6303 156.976i −0.0369119 0.0639332i
\(183\) 2208.48 518.863i 0.892107 0.209593i
\(184\) 526.214 911.429i 0.210832 0.365171i
\(185\) 869.307 1505.68i 0.345474 0.598379i
\(186\) −30.3505 + 100.661i −0.0119646 + 0.0396820i
\(187\) 1812.42 + 3139.21i 0.708756 + 1.22760i
\(188\) −1625.76 −0.630696
\(189\) −214.129 79.3616i −0.0824105 0.0305434i
\(190\) 915.693 0.349639
\(191\) −190.356 329.706i −0.0721135 0.124904i 0.827714 0.561150i \(-0.189641\pi\)
−0.899827 + 0.436246i \(0.856308\pi\)
\(192\) −228.852 + 759.016i −0.0860207 + 0.285298i
\(193\) −773.020 + 1338.91i −0.288307 + 0.499362i −0.973406 0.229088i \(-0.926426\pi\)
0.685099 + 0.728450i \(0.259759\pi\)
\(194\) −1503.65 + 2604.39i −0.556472 + 0.963838i
\(195\) −835.190 + 196.220i −0.306714 + 0.0720596i
\(196\) 573.879 + 993.987i 0.209140 + 0.362240i
\(197\) −4284.60 −1.54957 −0.774784 0.632226i \(-0.782141\pi\)
−0.774784 + 0.632226i \(0.782141\pi\)
\(198\) 2679.05 1332.38i 0.961576 0.478224i
\(199\) −1402.85 −0.499727 −0.249863 0.968281i \(-0.580386\pi\)
−0.249863 + 0.968281i \(0.580386\pi\)
\(200\) −195.075 337.879i −0.0689693 0.119458i
\(201\) 2958.83 + 3148.48i 1.03831 + 1.10486i
\(202\) −259.234 + 449.007i −0.0902953 + 0.156396i
\(203\) −223.420 + 386.974i −0.0772463 + 0.133795i
\(204\) −1323.68 1408.53i −0.454296 0.483415i
\(205\) −728.342 1261.53i −0.248145 0.429799i
\(206\) −456.249 −0.154312
\(207\) −1630.32 + 810.813i −0.547416 + 0.272248i
\(208\) 2628.73 0.876296
\(209\) −892.303 1545.51i −0.295320 0.511509i
\(210\) −138.832 + 32.6172i −0.0456204 + 0.0107181i
\(211\) 1075.23 1862.35i 0.350814 0.607628i −0.635578 0.772036i \(-0.719238\pi\)
0.986392 + 0.164409i \(0.0525716\pi\)
\(212\) 295.459 511.750i 0.0957180 0.165789i
\(213\) 178.426 591.773i 0.0573971 0.190365i
\(214\) −1211.97 2099.19i −0.387142 0.670550i
\(215\) 1006.94 0.319409
\(216\) 1685.44 1397.50i 0.530926 0.440220i
\(217\) −9.76631 −0.00305521
\(218\) −3390.08 5871.79i −1.05324 1.82426i
\(219\) −274.977 + 911.994i −0.0848456 + 0.281401i
\(220\) 277.045 479.856i 0.0849016 0.147054i
\(221\) 1821.27 3154.52i 0.554351 0.960164i
\(222\) 5931.60 1393.58i 1.79326 0.421310i
\(223\) 1279.07 + 2215.42i 0.384095 + 0.665272i 0.991643 0.129011i \(-0.0411802\pi\)
−0.607548 + 0.794283i \(0.707847\pi\)
\(224\) 233.750 0.0697236
\(225\) −41.8816 + 673.699i −0.0124094 + 0.199615i
\(226\) 764.646 0.225060
\(227\) 2042.27 + 3537.32i 0.597138 + 1.03427i 0.993241 + 0.116067i \(0.0370287\pi\)
−0.396104 + 0.918206i \(0.629638\pi\)
\(228\) 651.684 + 693.456i 0.189293 + 0.201426i
\(229\) 1370.95 2374.56i 0.395612 0.685221i −0.597567 0.801819i \(-0.703866\pi\)
0.993179 + 0.116598i \(0.0371991\pi\)
\(230\) −568.546 + 984.750i −0.162995 + 0.282315i
\(231\) 190.337 + 202.537i 0.0542132 + 0.0576881i
\(232\) −2142.07 3710.17i −0.606179 1.04993i
\(233\) 5084.70 1.42966 0.714828 0.699300i \(-0.246505\pi\)
0.714828 + 0.699300i \(0.246505\pi\)
\(234\) −2505.57 1662.01i −0.699975 0.464311i
\(235\) −2410.48 −0.669115
\(236\) 308.971 + 535.154i 0.0852217 + 0.147608i
\(237\) −3228.76 + 758.567i −0.884938 + 0.207908i
\(238\) 302.745 524.369i 0.0824538 0.142814i
\(239\) −738.236 + 1278.66i −0.199801 + 0.346066i −0.948464 0.316885i \(-0.897363\pi\)
0.748663 + 0.662951i \(0.230696\pi\)
\(240\) 597.045 1980.17i 0.160579 0.532582i
\(241\) −881.728 1527.20i −0.235673 0.408197i 0.723795 0.690015i \(-0.242396\pi\)
−0.959468 + 0.281818i \(0.909063\pi\)
\(242\) 846.874 0.224955
\(243\) −3766.50 + 402.970i −0.994325 + 0.106381i
\(244\) 1472.32 0.386294
\(245\) 850.876 + 1473.76i 0.221880 + 0.384307i
\(246\) 1473.70 4887.73i 0.381951 1.26679i
\(247\) −896.657 + 1553.05i −0.230983 + 0.400075i
\(248\) 46.8179 81.0910i 0.0119877 0.0207632i
\(249\) −7560.54 + 1776.28i −1.92422 + 0.452077i
\(250\) 210.768 + 365.060i 0.0533204 + 0.0923537i
\(251\) 1705.16 0.428801 0.214400 0.976746i \(-0.431220\pi\)
0.214400 + 0.976746i \(0.431220\pi\)
\(252\) −123.505 81.9242i −0.0308734 0.0204791i
\(253\) 2216.09 0.550690
\(254\) 1909.11 + 3306.68i 0.471607 + 0.816848i
\(255\) −1962.59 2088.39i −0.481970 0.512863i
\(256\) −2194.37 + 3800.76i −0.535735 + 0.927920i
\(257\) −114.298 + 197.970i −0.0277421 + 0.0480507i −0.879563 0.475782i \(-0.842165\pi\)
0.851821 + 0.523833i \(0.175498\pi\)
\(258\) 2416.66 + 2571.56i 0.583158 + 0.620537i
\(259\) 282.997 + 490.166i 0.0678942 + 0.117596i
\(260\) −556.793 −0.132811
\(261\) −459.892 + 7397.73i −0.109068 + 1.75444i
\(262\) −2621.97 −0.618266
\(263\) 644.380 + 1116.10i 0.151081 + 0.261679i 0.931625 0.363421i \(-0.118391\pi\)
−0.780544 + 0.625100i \(0.785058\pi\)
\(264\) −2594.13 + 609.468i −0.604764 + 0.142084i
\(265\) 438.070 758.760i 0.101549 0.175888i
\(266\) −149.049 + 258.161i −0.0343563 + 0.0595069i
\(267\) 2155.90 7150.32i 0.494154 1.63892i
\(268\) 1402.03 + 2428.38i 0.319561 + 0.553496i
\(269\) 973.981 0.220761 0.110380 0.993889i \(-0.464793\pi\)
0.110380 + 0.993889i \(0.464793\pi\)
\(270\) −1821.03 + 1509.92i −0.410461 + 0.340336i
\(271\) −4021.83 −0.901508 −0.450754 0.892648i \(-0.648845\pi\)
−0.450754 + 0.892648i \(0.648845\pi\)
\(272\) 4390.55 + 7604.65i 0.978736 + 1.69522i
\(273\) 80.6252 267.403i 0.0178742 0.0592820i
\(274\) 1051.54 1821.32i 0.231847 0.401570i
\(275\) 410.768 711.470i 0.0900735 0.156012i
\(276\) −1150.38 + 270.271i −0.250886 + 0.0589435i
\(277\) 1689.59 + 2926.45i 0.366489 + 0.634777i 0.989014 0.147823i \(-0.0472265\pi\)
−0.622525 + 0.782600i \(0.713893\pi\)
\(278\) −4325.56 −0.933201
\(279\) −145.052 + 72.1390i −0.0311255 + 0.0154797i
\(280\) 127.011 0.0271083
\(281\) −366.654 635.063i −0.0778388 0.134821i 0.824478 0.565893i \(-0.191469\pi\)
−0.902317 + 0.431073i \(0.858135\pi\)
\(282\) −5785.14 6155.95i −1.22163 1.29993i
\(283\) −3454.51 + 5983.39i −0.725617 + 1.25680i 0.233103 + 0.972452i \(0.425112\pi\)
−0.958720 + 0.284353i \(0.908221\pi\)
\(284\) 200.568 347.394i 0.0419068 0.0725847i
\(285\) 966.237 + 1028.17i 0.200824 + 0.213697i
\(286\) 1829.70 + 3169.13i 0.378295 + 0.655227i
\(287\) 474.214 0.0975331
\(288\) 3471.71 1726.60i 0.710322 0.353267i
\(289\) 7254.64 1.47662
\(290\) 2314.39 + 4008.64i 0.468640 + 0.811708i
\(291\) −4510.94 + 1059.81i −0.908715 + 0.213494i
\(292\) −309.099 + 535.376i −0.0619475 + 0.107296i
\(293\) 2324.74 4026.57i 0.463525 0.802850i −0.535608 0.844467i \(-0.679918\pi\)
0.999134 + 0.0416170i \(0.0132509\pi\)
\(294\) −1721.64 + 5710.02i −0.341523 + 1.13271i
\(295\) 458.104 + 793.460i 0.0904131 + 0.156600i
\(296\) −5426.55 −1.06558
\(297\) 4322.97 + 1602.20i 0.844593 + 0.313027i
\(298\) −5140.41 −0.999248
\(299\) −1113.45 1928.56i −0.215360 0.373014i
\(300\) −126.461 + 419.422i −0.0243373 + 0.0807178i
\(301\) −163.902 + 283.886i −0.0313859 + 0.0543619i
\(302\) 5332.52 9236.19i 1.01607 1.75988i
\(303\) −777.702 + 182.714i −0.147452 + 0.0346424i
\(304\) −2161.58 3743.97i −0.407813 0.706353i
\(305\) 2182.97 0.409825
\(306\) 623.176 10024.3i 0.116420 1.87271i
\(307\) −7361.42 −1.36853 −0.684264 0.729234i \(-0.739877\pi\)
−0.684264 + 0.729234i \(0.739877\pi\)
\(308\) 90.1902 + 156.214i 0.0166853 + 0.0288997i
\(309\) −481.433 512.291i −0.0886335 0.0943146i
\(310\) −50.5842 + 87.6144i −0.00926771 + 0.0160521i
\(311\) 1354.60 2346.24i 0.246986 0.427792i −0.715702 0.698405i \(-0.753893\pi\)
0.962688 + 0.270614i \(0.0872266\pi\)
\(312\) 1833.78 + 1951.32i 0.332749 + 0.354077i
\(313\) 3121.86 + 5407.22i 0.563763 + 0.976467i 0.997164 + 0.0752653i \(0.0239804\pi\)
−0.433400 + 0.901202i \(0.642686\pi\)
\(314\) 8055.37 1.44774
\(315\) −183.118 121.467i −0.0327541 0.0217266i
\(316\) −2152.50 −0.383189
\(317\) −1042.02 1804.82i −0.184623 0.319776i 0.758827 0.651293i \(-0.225773\pi\)
−0.943449 + 0.331517i \(0.892440\pi\)
\(318\) 2989.12 702.266i 0.527111 0.123840i
\(319\) 4510.54 7812.48i 0.791667 1.37121i
\(320\) −381.420 + 660.639i −0.0666313 + 0.115409i
\(321\) 1078.17 3575.90i 0.187470 0.621767i
\(322\) −185.087 320.579i −0.0320325 0.0554819i
\(323\) −5990.45 −1.03194
\(324\) −2439.46 304.483i −0.418289 0.0522091i
\(325\) −825.544 −0.140901
\(326\) −4290.88 7432.02i −0.728987 1.26264i
\(327\) 3015.83 10002.4i 0.510018 1.69154i
\(328\) −2273.30 + 3937.47i −0.382689 + 0.662836i
\(329\) 392.358 679.583i 0.0657489 0.113880i
\(330\) 2802.82 658.497i 0.467546 0.109846i
\(331\) 113.938 + 197.347i 0.0189203 + 0.0327709i 0.875331 0.483525i \(-0.160644\pi\)
−0.856410 + 0.516296i \(0.827310\pi\)
\(332\) −5040.36 −0.833210
\(333\) 7823.76 + 5189.70i 1.28751 + 0.854035i
\(334\) 4635.39 0.759394
\(335\) 2078.75 + 3600.50i 0.339028 + 0.587213i
\(336\) 461.087 + 490.641i 0.0748641 + 0.0796627i
\(337\) −1708.74 + 2959.62i −0.276205 + 0.478400i −0.970438 0.241349i \(-0.922410\pi\)
0.694234 + 0.719750i \(0.255743\pi\)
\(338\) −1865.82 + 3231.70i −0.300259 + 0.520063i
\(339\) 806.853 + 858.570i 0.129269 + 0.137555i
\(340\) −929.966 1610.75i −0.148337 0.256927i
\(341\) 197.168 0.0313116
\(342\) −306.806 + 4935.21i −0.0485092 + 0.780309i
\(343\) −1112.30 −0.175098
\(344\) −1571.43 2721.80i −0.246296 0.426598i
\(345\) −1705.64 + 400.724i −0.266169 + 0.0625341i
\(346\) 3980.05 6893.65i 0.618407 1.07111i
\(347\) −1804.80 + 3126.00i −0.279212 + 0.483610i −0.971189 0.238310i \(-0.923407\pi\)
0.691977 + 0.721920i \(0.256740\pi\)
\(348\) −1388.63 + 4605.57i −0.213904 + 0.709439i
\(349\) 4400.42 + 7621.74i 0.674925 + 1.16900i 0.976491 + 0.215559i \(0.0691574\pi\)
−0.301566 + 0.953445i \(0.597509\pi\)
\(350\) −137.228 −0.0209576
\(351\) −777.715 4567.08i −0.118266 0.694509i
\(352\) −4719.09 −0.714570
\(353\) −4255.24 7370.30i −0.641597 1.11128i −0.985076 0.172119i \(-0.944939\pi\)
0.343479 0.939160i \(-0.388395\pi\)
\(354\) −926.914 + 3074.23i −0.139166 + 0.461563i
\(355\) 297.377 515.073i 0.0444596 0.0770063i
\(356\) 2423.44 4197.52i 0.360792 0.624910i
\(357\) 908.234 213.381i 0.134647 0.0316340i
\(358\) 2200.60 + 3811.55i 0.324875 + 0.562700i
\(359\) 4320.35 0.635152 0.317576 0.948233i \(-0.397131\pi\)
0.317576 + 0.948233i \(0.397131\pi\)
\(360\) 1886.39 938.166i 0.276171 0.137349i
\(361\) −3909.75 −0.570017
\(362\) 5226.08 + 9051.83i 0.758775 + 1.31424i
\(363\) 893.619 + 950.898i 0.129209 + 0.137491i
\(364\) 90.6303 156.976i 0.0130503 0.0226038i
\(365\) −458.294 + 793.789i −0.0657211 + 0.113832i
\(366\) 5239.14 + 5574.95i 0.748235 + 0.796195i
\(367\) −3300.19 5716.10i −0.469397 0.813020i 0.529991 0.848003i \(-0.322195\pi\)
−0.999388 + 0.0349838i \(0.988862\pi\)
\(368\) 5368.43 0.760459
\(369\) 7043.15 3502.79i 0.993636 0.494168i
\(370\) 5863.10 0.823805
\(371\) 142.611 + 247.010i 0.0199569 + 0.0345663i
\(372\) −102.351 + 24.0463i −0.0142651 + 0.00335146i
\(373\) 4304.23 7455.14i 0.597492 1.03489i −0.395698 0.918381i \(-0.629497\pi\)
0.993190 0.116506i \(-0.0371693\pi\)
\(374\) −6112.00 + 10586.3i −0.845037 + 1.46365i
\(375\) −187.500 + 621.867i −0.0258199 + 0.0856349i
\(376\) 3761.78 + 6515.60i 0.515955 + 0.893660i
\(377\) −9065.10 −1.23840
\(378\) −129.278 759.174i −0.0175908 0.103301i
\(379\) −7129.80 −0.966314 −0.483157 0.875534i \(-0.660510\pi\)
−0.483157 + 0.875534i \(0.660510\pi\)
\(380\) 457.846 + 793.013i 0.0618080 + 0.107055i
\(381\) −1698.36 + 5632.81i −0.228371 + 0.757421i
\(382\) 641.934 1111.86i 0.0859796 0.148921i
\(383\) −2963.73 + 5133.33i −0.395404 + 0.684859i −0.993153 0.116824i \(-0.962729\pi\)
0.597749 + 0.801683i \(0.296062\pi\)
\(384\) −8413.93 + 1976.78i −1.11815 + 0.262700i
\(385\) 133.723 + 231.615i 0.0177017 + 0.0306602i
\(386\) −5213.68 −0.687486
\(387\) −337.379 + 5427.01i −0.0443151 + 0.712844i
\(388\) −3007.30 −0.393485
\(389\) −519.432 899.683i −0.0677024 0.117264i 0.830187 0.557485i \(-0.188234\pi\)
−0.897890 + 0.440221i \(0.854900\pi\)
\(390\) −1981.30 2108.30i −0.257249 0.273738i
\(391\) 3719.42 6442.22i 0.481072 0.833240i
\(392\) 2655.75 4599.89i 0.342183 0.592678i
\(393\) −2766.69 2944.03i −0.355117 0.377879i
\(394\) −7224.43 12513.1i −0.923761 1.60000i
\(395\) −3191.47 −0.406532
\(396\) 2493.40 + 1653.94i 0.316410 + 0.209882i
\(397\) 13441.4 1.69926 0.849628 0.527382i \(-0.176826\pi\)
0.849628 + 0.527382i \(0.176826\pi\)
\(398\) −2365.41 4097.01i −0.297907 0.515991i
\(399\) −447.147 + 105.053i −0.0561037 + 0.0131810i
\(400\) 995.075 1723.52i 0.124384 0.215440i
\(401\) −6537.70 + 11323.6i −0.814157 + 1.41016i 0.0957739 + 0.995403i \(0.469467\pi\)
−0.909931 + 0.414759i \(0.863866\pi\)
\(402\) −4206.08 + 13950.0i −0.521841 + 1.73075i
\(403\) −99.0652 171.586i −0.0122451 0.0212092i
\(404\) −518.468 −0.0638484
\(405\) −3616.93 451.450i −0.443770 0.0553895i
\(406\) −1506.87 −0.184199
\(407\) −5713.33 9895.78i −0.695821 1.20520i
\(408\) −2582.17 + 8564.10i −0.313325 + 1.03918i
\(409\) 2636.59 4566.71i 0.318756 0.552101i −0.661473 0.749969i \(-0.730068\pi\)
0.980229 + 0.197868i \(0.0634017\pi\)
\(410\) 2456.17 4254.22i 0.295858 0.512441i
\(411\) 3154.63 741.151i 0.378604 0.0889496i
\(412\) −228.124 395.123i −0.0272788 0.0472484i
\(413\) −298.266 −0.0355368
\(414\) −5116.91 3394.18i −0.607446 0.402934i
\(415\) −7473.22 −0.883966
\(416\) 2371.06 + 4106.80i 0.279449 + 0.484020i
\(417\) −4564.32 4856.88i −0.536009 0.570366i
\(418\) 3009.10 5211.91i 0.352105 0.609863i
\(419\) −6923.06 + 11991.1i −0.807192 + 1.39810i 0.107609 + 0.994193i \(0.465681\pi\)
−0.914801 + 0.403905i \(0.867653\pi\)
\(420\) −97.6631 103.923i −0.0113464 0.0120736i
\(421\) −548.684 950.349i −0.0635184 0.110017i 0.832517 0.553999i \(-0.186899\pi\)
−0.896036 + 0.443982i \(0.853565\pi\)
\(422\) 7251.94 0.836538
\(423\) 807.637 12991.5i 0.0928338 1.49330i
\(424\) −2734.60 −0.313217
\(425\) −1378.84 2388.22i −0.157373 0.272578i
\(426\) 2029.12 476.722i 0.230777 0.0542189i
\(427\) −355.327 + 615.444i −0.0402704 + 0.0697504i
\(428\) 1211.97 2099.19i 0.136875 0.237075i
\(429\) −1627.71 + 5398.51i −0.183186 + 0.607558i
\(430\) 1697.85 + 2940.76i 0.190413 + 0.329804i
\(431\) 15912.8 1.77841 0.889205 0.457509i \(-0.151258\pi\)
0.889205 + 0.457509i \(0.151258\pi\)
\(432\) 10472.3 + 3881.29i 1.16632 + 0.432266i
\(433\) 3566.31 0.395810 0.197905 0.980221i \(-0.436586\pi\)
0.197905 + 0.980221i \(0.436586\pi\)
\(434\) −16.4674 28.5223i −0.00182133 0.00315464i
\(435\) −2058.89 + 6828.57i −0.226934 + 0.752655i
\(436\) 3390.08 5871.79i 0.372375 0.644972i
\(437\) −1831.17 + 3171.67i −0.200450 + 0.347189i
\(438\) −3127.11 + 734.686i −0.341140 + 0.0801476i
\(439\) 290.411 + 503.007i 0.0315730 + 0.0546861i 0.881380 0.472408i \(-0.156615\pi\)
−0.849807 + 0.527094i \(0.823282\pi\)
\(440\) −2564.17 −0.277823
\(441\) −8228.06 + 4092.09i −0.888464 + 0.441863i
\(442\) 12283.6 1.32188
\(443\) 5396.39 + 9346.82i 0.578759 + 1.00244i 0.995622 + 0.0934706i \(0.0297961\pi\)
−0.416863 + 0.908969i \(0.636871\pi\)
\(444\) 4172.67 + 4440.13i 0.446005 + 0.474593i
\(445\) 3593.17 6223.56i 0.382770 0.662977i
\(446\) −4313.40 + 7471.03i −0.457949 + 0.793191i
\(447\) −5424.15 5771.82i −0.573945 0.610733i
\(448\) −124.169 215.067i −0.0130947 0.0226807i
\(449\) 2894.01 0.304180 0.152090 0.988367i \(-0.451400\pi\)
0.152090 + 0.988367i \(0.451400\pi\)
\(450\) −2038.14 + 1013.64i −0.213509 + 0.106185i
\(451\) −9573.74 −0.999578
\(452\) 382.323 + 662.203i 0.0397853 + 0.0689102i
\(453\) 15997.6 3758.48i 1.65923 0.389821i
\(454\) −6887.11 + 11928.8i −0.711956 + 1.23314i
\(455\) 134.375 232.745i 0.0138453 0.0239808i
\(456\) 1271.27 4216.33i 0.130554 0.432999i
\(457\) −1599.96 2771.21i −0.163770 0.283658i 0.772448 0.635078i \(-0.219032\pi\)
−0.936218 + 0.351420i \(0.885699\pi\)
\(458\) 9246.49 0.943363
\(459\) 11913.2 9877.87i 1.21146 1.00449i
\(460\) −1137.09 −0.115255
\(461\) −3658.19 6336.17i −0.369585 0.640141i 0.619915 0.784669i \(-0.287167\pi\)
−0.989501 + 0.144528i \(0.953834\pi\)
\(462\) −270.571 + 897.381i −0.0272469 + 0.0903678i
\(463\) −3505.99 + 6072.55i −0.351916 + 0.609536i −0.986585 0.163248i \(-0.947803\pi\)
0.634669 + 0.772784i \(0.281136\pi\)
\(464\) 10926.7 18925.6i 1.09323 1.89353i
\(465\) −151.753 + 35.6529i −0.0151341 + 0.00355562i
\(466\) 8573.53 + 14849.8i 0.852277 + 1.47619i
\(467\) −8002.63 −0.792971 −0.396485 0.918041i \(-0.629770\pi\)
−0.396485 + 0.918041i \(0.629770\pi\)
\(468\) 186.555 3000.89i 0.0184263 0.296402i
\(469\) −1353.45 −0.133255
\(470\) −4064.40 7039.75i −0.398887 0.690892i
\(471\) 8500.00 + 9044.83i 0.831549 + 0.884849i
\(472\) 1429.83 2476.54i 0.139435 0.241509i
\(473\) 3308.95 5731.28i 0.321661 0.557134i
\(474\) −7659.52 8150.47i −0.742222 0.789797i
\(475\) 678.838 + 1175.78i 0.0655731 + 0.113576i
\(476\) 605.489 0.0583037
\(477\) 3942.63 + 2615.25i 0.378450 + 0.251035i
\(478\) −4979.08 −0.476439
\(479\) 1589.42 + 2752.96i 0.151613 + 0.262601i 0.931820 0.362920i \(-0.118220\pi\)
−0.780208 + 0.625520i \(0.784887\pi\)
\(480\) 3632.10 853.329i 0.345379 0.0811436i
\(481\) −5741.21 + 9944.06i −0.544234 + 0.942641i
\(482\) 2973.44 5150.14i 0.280988 0.486686i
\(483\) 164.654 546.096i 0.0155114 0.0514456i
\(484\) 423.437 + 733.414i 0.0397668 + 0.0688781i
\(485\) −4458.84 −0.417455
\(486\) −7527.71 10320.5i −0.702601 0.963269i
\(487\) 13060.3 1.21523 0.607615 0.794232i \(-0.292126\pi\)
0.607615 + 0.794232i \(0.292126\pi\)
\(488\) −3406.74 5900.65i −0.316016 0.547356i
\(489\) 3817.19 12660.2i 0.353005 1.17078i
\(490\) −2869.39 + 4969.94i −0.264543 + 0.458202i
\(491\) 2200.81 3811.91i 0.202283 0.350365i −0.746981 0.664846i \(-0.768497\pi\)
0.949264 + 0.314481i \(0.101831\pi\)
\(492\) 4969.75 1167.60i 0.455393 0.106991i
\(493\) −15140.7 26224.4i −1.38317 2.39572i
\(494\) −6047.56 −0.550794
\(495\) 3696.91 + 2452.25i 0.335684 + 0.222668i
\(496\) 477.636 0.0432389
\(497\) 96.8093 + 167.679i 0.00873741 + 0.0151336i
\(498\) −17935.7 19085.3i −1.61389 1.71734i
\(499\) −9362.60 + 16216.5i −0.839935 + 1.45481i 0.0500129 + 0.998749i \(0.484074\pi\)
−0.889948 + 0.456062i \(0.849260\pi\)
\(500\) −210.768 + 365.060i −0.0188516 + 0.0326520i
\(501\) 4891.26 + 5204.77i 0.436178 + 0.464136i
\(502\) 2875.15 + 4979.90i 0.255626 + 0.442757i
\(503\) −3811.68 −0.337882 −0.168941 0.985626i \(-0.554035\pi\)
−0.168941 + 0.985626i \(0.554035\pi\)
\(504\) −42.5553 + 684.536i −0.00376104 + 0.0604993i
\(505\) −768.720 −0.0677378
\(506\) 3736.64 + 6472.06i 0.328289 + 0.568613i
\(507\) −5597.47 + 1315.07i −0.490320 + 0.115196i
\(508\) −1909.11 + 3306.68i −0.166738 + 0.288799i
\(509\) −2247.74 + 3893.20i −0.195735 + 0.339024i −0.947141 0.320816i \(-0.896043\pi\)
0.751406 + 0.659840i \(0.229376\pi\)
\(510\) 2789.90 9253.04i 0.242233 0.803395i
\(511\) −149.195 258.413i −0.0129158 0.0223709i
\(512\) −1493.27 −0.128894
\(513\) −5865.16 + 4863.13i −0.504782 + 0.418543i
\(514\) −770.891 −0.0661528
\(515\) −338.235 585.840i −0.0289406 0.0501266i
\(516\) −1018.71 + 3378.67i −0.0869111 + 0.288251i
\(517\) −7921.16 + 13719.9i −0.673834 + 1.16712i
\(518\) −954.347 + 1652.98i −0.0809490 + 0.140208i
\(519\) 11940.2 2805.23i 1.00985 0.237256i
\(520\) 1288.34 + 2231.47i 0.108649 + 0.188186i
\(521\) 12095.0 1.01706 0.508531 0.861043i \(-0.330189\pi\)
0.508531 + 0.861043i \(0.330189\pi\)
\(522\) −22380.4 + 11130.5i −1.87656 + 0.933274i
\(523\) 7385.38 0.617476 0.308738 0.951147i \(-0.400093\pi\)
0.308738 + 0.951147i \(0.400093\pi\)
\(524\) −1310.98 2270.69i −0.109295 0.189304i
\(525\) −144.803 154.084i −0.0120375 0.0128091i
\(526\) −2173.03 + 3763.80i −0.180131 + 0.311995i
\(527\) 330.921 573.172i 0.0273532 0.0473772i
\(528\) −9308.70 9905.37i −0.767253 0.816431i
\(529\) 3809.59 + 6598.40i 0.313108 + 0.542320i
\(530\) 2954.59 0.242150
\(531\) −4429.92 + 2203.15i −0.362038 + 0.180054i
\(532\) −298.098 −0.0242936
\(533\) 4810.23 + 8331.56i 0.390908 + 0.677073i
\(534\) 24517.5 5760.17i 1.98685 0.466792i
\(535\) 1796.96 3112.42i 0.145213 0.251517i
\(536\) 6488.18 11237.9i 0.522848 0.905600i
\(537\) −1957.66 + 6492.83i −0.157317 + 0.521763i
\(538\) 1642.27 + 2844.49i 0.131605 + 0.227946i
\(539\) 11184.4 0.893778
\(540\) −2218.14 822.100i −0.176766 0.0655140i
\(541\) −5935.19 −0.471670 −0.235835 0.971793i \(-0.575783\pi\)
−0.235835 + 0.971793i \(0.575783\pi\)
\(542\) −6781.37 11745.7i −0.537426 0.930849i
\(543\) −4649.15 + 15419.5i −0.367429 + 1.21862i
\(544\) −7920.37 + 13718.5i −0.624234 + 1.08120i
\(545\) 5026.39 8705.96i 0.395059 0.684262i
\(546\) 916.892 215.416i 0.0718670 0.0168845i
\(547\) 5078.61 + 8796.41i 0.396976 + 0.687582i 0.993351 0.115124i \(-0.0367264\pi\)
−0.596376 + 0.802705i \(0.703393\pi\)
\(548\) 2103.08 0.163940
\(549\) −731.413 + 11765.3i −0.0568596 + 0.914632i
\(550\) 2770.45 0.214786
\(551\) 7454.16 + 12911.0i 0.576330 + 0.998232i
\(552\) 3744.98 + 3985.03i 0.288763 + 0.307272i
\(553\) 519.481 899.768i 0.0399468 0.0691899i
\(554\) −5697.76 + 9868.81i −0.436958 + 0.756833i
\(555\) 6186.72 + 6583.27i 0.473174 + 0.503503i
\(556\) −2162.78 3746.05i −0.164968 0.285733i
\(557\) 5709.62 0.434334 0.217167 0.976134i \(-0.430318\pi\)
0.217167 + 0.976134i \(0.430318\pi\)
\(558\) −455.258 301.984i −0.0345387 0.0229104i
\(559\) −6650.20 −0.503173
\(560\) 323.940 + 561.081i 0.0244446 + 0.0423393i
\(561\) −18336.0 + 4307.88i −1.37994 + 0.324204i
\(562\) 1236.46 2141.61i 0.0928058 0.160744i
\(563\) −6469.56 + 11205.6i −0.484297 + 0.838828i −0.999837 0.0180378i \(-0.994258\pi\)
0.515540 + 0.856866i \(0.327591\pi\)
\(564\) 2438.64 8088.06i 0.182066 0.603845i
\(565\) 566.861 + 981.833i 0.0422089 + 0.0731080i
\(566\) −23299.2 −1.73028
\(567\) 716.012 946.236i 0.0530330 0.0700850i
\(568\) −1856.34 −0.137131
\(569\) 3062.71 + 5304.77i 0.225651 + 0.390839i 0.956515 0.291684i \(-0.0942157\pi\)
−0.730863 + 0.682524i \(0.760882\pi\)
\(570\) −1373.54 + 4555.51i −0.100932 + 0.334754i
\(571\) 9641.20 16699.0i 0.706605 1.22388i −0.259504 0.965742i \(-0.583559\pi\)
0.966109 0.258134i \(-0.0831076\pi\)
\(572\) −1829.70 + 3169.13i −0.133748 + 0.231658i
\(573\) 1925.80 452.450i 0.140404 0.0329867i
\(574\) 799.592 + 1384.93i 0.0581434 + 0.100707i
\(575\) −1685.94 −0.122276
\(576\) −3432.78 2277.05i −0.248320 0.164717i
\(577\) −4988.14 −0.359894 −0.179947 0.983676i \(-0.557593\pi\)
−0.179947 + 0.983676i \(0.557593\pi\)
\(578\) 12232.3 + 21187.0i 0.880274 + 1.52468i
\(579\) −5501.46 5854.09i −0.394876 0.420186i
\(580\) −2314.39 + 4008.64i −0.165689 + 0.286982i
\(581\) 1216.43 2106.92i 0.0868606 0.150447i
\(582\) −10701.2 11387.1i −0.762165 0.811018i
\(583\) −2879.12 4986.78i −0.204530 0.354256i
\(584\) 2860.85 0.202710
\(585\) 276.601 4449.35i 0.0195488 0.314458i
\(586\) 15679.4 1.10531
\(587\) 7647.00 + 13245.0i 0.537693 + 0.931311i 0.999028 + 0.0440852i \(0.0140373\pi\)
−0.461335 + 0.887226i \(0.652629\pi\)
\(588\) −5805.84 + 1364.03i −0.407192 + 0.0956661i
\(589\) −162.921 + 282.188i −0.0113974 + 0.0197408i
\(590\) −1544.86 + 2675.77i −0.107798 + 0.186711i
\(591\) 6426.90 21315.6i 0.447322 1.48360i
\(592\) −13840.4 23972.3i −0.960874 1.66428i
\(593\) −11090.9 −0.768040 −0.384020 0.923325i \(-0.625461\pi\)
−0.384020 + 0.923325i \(0.625461\pi\)
\(594\) 2609.94 + 15326.7i 0.180281 + 1.05869i
\(595\) 897.744 0.0618553
\(596\) −2570.21 4451.73i −0.176644 0.305956i
\(597\) 2104.28 6979.10i 0.144259 0.478452i
\(598\) 3754.88 6503.63i 0.256770 0.444738i
\(599\) 14100.8 24423.3i 0.961840 1.66596i 0.243965 0.969784i \(-0.421552\pi\)
0.717875 0.696172i \(-0.245115\pi\)
\(600\) 1973.54 463.665i 0.134282 0.0315484i
\(601\) −10572.0 18311.3i −0.717539 1.24281i −0.961972 0.273148i \(-0.911935\pi\)
0.244433 0.969666i \(-0.421398\pi\)
\(602\) −1105.45 −0.0748416
\(603\) −20101.7 + 9997.26i −1.35755 + 0.675157i
\(604\) 10665.0 0.718467
\(605\) 627.820 + 1087.42i 0.0421893 + 0.0730740i
\(606\) −1844.93 1963.18i −0.123672 0.131599i
\(607\) 4399.49 7620.14i 0.294184 0.509542i −0.680611 0.732645i \(-0.738285\pi\)
0.974795 + 0.223103i \(0.0716187\pi\)
\(608\) 3899.41 6753.97i 0.260102 0.450509i
\(609\) −1590.04 1691.96i −0.105799 0.112581i
\(610\) 3680.80 + 6375.34i 0.244314 + 0.423164i
\(611\) 15919.6 1.05407
\(612\) 8992.87 4472.45i 0.593979 0.295406i
\(613\) 19539.8 1.28745 0.643724 0.765257i \(-0.277388\pi\)
0.643724 + 0.765257i \(0.277388\pi\)
\(614\) −12412.4 21498.9i −0.815836 1.41307i
\(615\) 7368.52 1731.17i 0.483134 0.113508i
\(616\) 417.375 722.914i 0.0272995 0.0472842i
\(617\) 1636.94 2835.26i 0.106808 0.184997i −0.807667 0.589638i \(-0.799270\pi\)
0.914475 + 0.404641i \(0.132604\pi\)
\(618\) 684.373 2269.81i 0.0445462 0.147743i
\(619\) −4693.24 8128.92i −0.304745 0.527834i 0.672460 0.740134i \(-0.265238\pi\)
−0.977205 + 0.212300i \(0.931905\pi\)
\(620\) −101.168 −0.00655326
\(621\) −1588.26 9326.96i −0.102632 0.602702i
\(622\) 9136.21 0.588953
\(623\) 1169.73 + 2026.04i 0.0752238 + 0.130291i
\(624\) −3943.09 + 13077.8i −0.252965 + 0.838989i
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) −10527.8 + 18234.7i −0.672165 + 1.16422i
\(627\) 9027.29 2120.88i 0.574984 0.135087i
\(628\) 4027.68 + 6976.15i 0.255927 + 0.443278i
\(629\) −38356.3 −2.43142
\(630\) 45.9787 739.604i 0.00290768 0.0467723i
\(631\) 9647.08 0.608628 0.304314 0.952572i \(-0.401573\pi\)
0.304314 + 0.952572i \(0.401573\pi\)
\(632\) 4980.59 + 8626.64i 0.313477 + 0.542958i
\(633\) 7652.23 + 8142.72i 0.480488 + 0.511286i
\(634\) 3513.97 6086.37i 0.220122 0.381263i
\(635\) −2830.59 + 4902.73i −0.176895 + 0.306392i
\(636\) 2102.74 + 2237.52i 0.131099 + 0.139502i
\(637\) −5619.48 9733.23i −0.349532 0.605408i
\(638\) 30421.6 1.88778
\(639\) 2676.40 + 1775.32i 0.165691 + 0.109907i
\(640\) −8316.75 −0.513669
\(641\) 3501.88 + 6065.44i 0.215782 + 0.373745i 0.953514 0.301348i \(-0.0974367\pi\)
−0.737732 + 0.675093i \(0.764103\pi\)
\(642\) 12261.3 2880.68i 0.753761 0.177089i
\(643\) 3144.44 5446.34i 0.192853 0.334032i −0.753341 0.657630i \(-0.771559\pi\)
0.946195 + 0.323598i \(0.104892\pi\)
\(644\) 185.087 320.579i 0.0113252 0.0196158i
\(645\) −1510.41 + 5009.48i −0.0922054 + 0.305811i
\(646\) −10100.7 17495.0i −0.615183 1.06553i
\(647\) −5900.85 −0.358557 −0.179279 0.983798i \(-0.557376\pi\)
−0.179279 + 0.983798i \(0.557376\pi\)
\(648\) 4424.29 + 10481.2i 0.268214 + 0.635404i
\(649\) 6021.58 0.364203
\(650\) −1391.98 2410.99i −0.0839970 0.145487i
\(651\) 14.6495 48.5868i 0.000881963 0.00292514i
\(652\) 4290.88 7432.02i 0.257736 0.446412i
\(653\) 3942.57 6828.74i 0.236271 0.409233i −0.723370 0.690460i \(-0.757408\pi\)
0.959641 + 0.281227i \(0.0907414\pi\)
\(654\) 34296.9 8057.75i 2.05064 0.481778i
\(655\) −1943.76 3366.70i −0.115953 0.200836i
\(656\) −23192.2 −1.38034
\(657\) −4124.65 2735.98i −0.244928 0.162467i
\(658\) 2646.28 0.156782
\(659\) −14378.9 24905.0i −0.849959 1.47217i −0.881244 0.472662i \(-0.843293\pi\)
0.0312845 0.999511i \(-0.490040\pi\)
\(660\) 1971.68 + 2098.06i 0.116284 + 0.123738i
\(661\) −4130.11 + 7153.57i −0.243030 + 0.420940i −0.961576 0.274539i \(-0.911475\pi\)
0.718546 + 0.695479i \(0.244808\pi\)
\(662\) −384.232 + 665.509i −0.0225583 + 0.0390721i
\(663\) 12961.7 + 13792.5i 0.759260 + 0.807926i
\(664\) 11662.7 + 20200.4i 0.681626 + 1.18061i
\(665\) −441.983 −0.0257735
\(666\) −1964.45 + 31599.7i −0.114296 + 1.83853i
\(667\) −18512.9 −1.07470
\(668\) 2317.70 + 4014.37i 0.134243 + 0.232516i
\(669\) −12940.2 + 3040.18i −0.747828 + 0.175695i
\(670\) −7010.13 + 12141.9i −0.404216 + 0.700123i
\(671\) 7173.56 12425.0i 0.412716 0.714845i
\(672\) −350.625 + 1162.89i −0.0201275 + 0.0667553i
\(673\) −402.481 697.118i −0.0230528 0.0399285i 0.854269 0.519831i \(-0.174005\pi\)
−0.877322 + 0.479903i \(0.840672\pi\)
\(674\) −11524.7 −0.658627
\(675\) −3288.79 1218.91i −0.187534 0.0695049i
\(676\) −3731.65 −0.212315
\(677\) −681.636 1180.63i −0.0386963 0.0670240i 0.846029 0.533137i \(-0.178987\pi\)
−0.884725 + 0.466114i \(0.845654\pi\)
\(678\) −1146.97 + 3804.07i −0.0649692 + 0.215478i
\(679\) 725.774 1257.08i 0.0410201 0.0710489i
\(680\) −4303.62 + 7454.09i −0.242700 + 0.420370i
\(681\) −20661.3 + 4854.19i −1.16262 + 0.273147i
\(682\) 332.454 + 575.827i 0.0186661 + 0.0323307i
\(683\) −11434.6 −0.640604 −0.320302 0.947315i \(-0.603784\pi\)
−0.320302 + 0.947315i \(0.603784\pi\)
\(684\) −4427.42 + 2201.91i −0.247495 + 0.123088i
\(685\) 3118.19 0.173927
\(686\) −1875.50 3248.46i −0.104383 0.180797i
\(687\) 9756.87 + 10382.3i 0.541845 + 0.576576i
\(688\) 8015.86 13883.9i 0.444189 0.769358i
\(689\) −2893.17 + 5011.12i −0.159972 + 0.277080i
\(690\) −4046.25 4305.60i −0.223244 0.237553i
\(691\) 9765.29 + 16914.0i 0.537611 + 0.931170i 0.999032 + 0.0439884i \(0.0140065\pi\)
−0.461421 + 0.887181i \(0.652660\pi\)
\(692\) 7960.10 0.437280
\(693\) −1293.11 + 643.109i −0.0708822 + 0.0352521i
\(694\) −12172.6 −0.665799
\(695\) −3206.70 5554.17i −0.175018 0.303139i
\(696\) 21671.0 5091.40i 1.18022 0.277283i
\(697\) −16068.3 + 27831.0i −0.873212 + 1.51245i
\(698\) −14839.4 + 25702.7i −0.804701 + 1.39378i
\(699\) −7627.06 + 25296.1i −0.412706 + 1.36879i
\(700\) −68.6141 118.843i −0.00370481 0.00641692i
\(701\) −11041.4 −0.594903 −0.297452 0.954737i \(-0.596137\pi\)
−0.297452 + 0.954737i \(0.596137\pi\)
\(702\) 12026.7 9972.04i 0.646609 0.536140i
\(703\) 18883.8 1.01311
\(704\) 2506.80 + 4341.90i 0.134203 + 0.232446i
\(705\) 3615.71 11992.0i 0.193157 0.640629i
\(706\) 14349.9 24854.7i 0.764964 1.32496i
\(707\) 125.126 216.725i 0.00665608 0.0115287i
\(708\) −3125.82 + 734.382i −0.165926 + 0.0389827i
\(709\) −1969.54 3411.34i −0.104327 0.180699i 0.809136 0.587621i \(-0.199935\pi\)
−0.913463 + 0.406922i \(0.866602\pi\)
\(710\) 2005.68 0.106017
\(711\) 1069.31 17200.7i 0.0564027 0.907282i
\(712\) −22430.0 −1.18062
\(713\) −202.313 350.416i −0.0106265 0.0184056i
\(714\) 2154.59 + 2292.69i 0.112932 + 0.120170i
\(715\) −2712.85 + 4698.80i −0.141895 + 0.245769i
\(716\) −2200.60 + 3811.55i −0.114861 + 0.198944i
\(717\) −5253.91 5590.67i −0.273655 0.291196i
\(718\) 7284.72 + 12617.5i 0.378640 + 0.655824i
\(719\) −23298.2 −1.20845 −0.604225 0.796814i \(-0.706517\pi\)
−0.604225 + 0.796814i \(0.706517\pi\)
\(720\) 8955.67 + 5940.52i 0.463553 + 0.307486i
\(721\) 220.220 0.0113751
\(722\) −6592.38 11418.3i −0.339810 0.588569i
\(723\) 8920.31 2095.75i 0.458852 0.107803i
\(724\) −5226.08 + 9051.83i −0.268267 + 0.464653i
\(725\) −3431.49 + 5943.51i −0.175782 + 0.304464i
\(726\) −1270.31 + 4213.15i −0.0649389 + 0.215378i
\(727\) 4752.24 + 8231.12i 0.242436 + 0.419911i 0.961408 0.275128i \(-0.0887203\pi\)
−0.718972 + 0.695039i \(0.755387\pi\)
\(728\) −838.823 −0.0427044
\(729\) 3645.00 19342.6i 0.185185 0.982704i
\(730\) −3090.99 −0.156716
\(731\) −11107.3 19238.4i −0.561994 0.973402i
\(732\) −2208.48 + 7324.70i −0.111513 + 0.369848i
\(733\) −3660.40 + 6340.01i −0.184448 + 0.319473i −0.943390 0.331685i \(-0.892383\pi\)
0.758943 + 0.651157i \(0.225716\pi\)
\(734\) 11129.2 19276.3i 0.559653 0.969348i
\(735\) −8608.18 + 2022.41i −0.431997 + 0.101494i
\(736\) 4842.22 + 8386.96i 0.242509 + 0.420037i
\(737\) 27324.3 1.36567
\(738\) 22105.6 + 14663.2i 1.10260 + 0.731381i
\(739\) −1274.52 −0.0634424 −0.0317212 0.999497i \(-0.510099\pi\)
−0.0317212 + 0.999497i \(0.510099\pi\)
\(740\) 2931.55 + 5077.59i 0.145630 + 0.252238i
\(741\) −6381.37 6790.39i −0.316363 0.336641i
\(742\) −480.925 + 832.986i −0.0237942 + 0.0412128i
\(743\) −970.576 + 1681.09i −0.0479232 + 0.0830055i −0.888992 0.457923i \(-0.848594\pi\)
0.841069 + 0.540928i \(0.181927\pi\)
\(744\) 333.196 + 354.553i 0.0164187 + 0.0174711i
\(745\) −3810.78 6600.47i −0.187404 0.324594i
\(746\) 29030.1 1.42476
\(747\) 2503.93 40277.6i 0.122642 1.97280i
\(748\) −12224.0 −0.597531
\(749\) 584.988 + 1013.23i 0.0285380 + 0.0494293i
\(750\) −2132.30 + 500.965i −0.103814 + 0.0243902i
\(751\) −8270.01 + 14324.1i −0.401834 + 0.695996i −0.993947 0.109858i \(-0.964960\pi\)
0.592114 + 0.805854i \(0.298294\pi\)
\(752\) −19188.8 + 33236.0i −0.930511 + 1.61169i
\(753\) −2557.75 + 8483.08i −0.123784 + 0.410545i
\(754\) −15285.0 26474.4i −0.738260 1.27870i
\(755\) 15812.8 0.762234
\(756\) 592.826 491.545i 0.0285197 0.0236472i
\(757\) 21145.7 1.01526 0.507631 0.861575i \(-0.330521\pi\)
0.507631 + 0.861575i \(0.330521\pi\)
\(758\) −12021.8 20822.4i −0.576059 0.997764i
\(759\) −3324.14 + 11024.9i −0.158970 + 0.527245i
\(760\) 2118.78 3669.84i 0.101127 0.175157i
\(761\) 10067.1 17436.7i 0.479543 0.830593i −0.520181 0.854056i \(-0.674136\pi\)
0.999725 + 0.0234624i \(0.00746901\pi\)
\(762\) −19314.2 + 4537.69i −0.918213 + 0.215726i
\(763\) 1636.31 + 2834.17i 0.0776388 + 0.134474i
\(764\) 1283.87 0.0607968
\(765\) 13333.5 6631.20i 0.630162 0.313401i
\(766\) −19989.1 −0.942865
\(767\) −3025.48 5240.29i −0.142430 0.246696i
\(768\) −15617.0 16618.0i −0.733762 0.780795i
\(769\) −1097.36 + 1900.68i −0.0514587 + 0.0891291i −0.890607 0.454773i \(-0.849720\pi\)
0.839149 + 0.543902i \(0.183054\pi\)
\(770\) −450.951 + 781.070i −0.0211054 + 0.0365556i
\(771\) −813.442 865.581i −0.0379966 0.0404321i
\(772\) −2606.84 4515.18i −0.121531 0.210499i
\(773\) −8327.70 −0.387486 −0.193743 0.981052i \(-0.562063\pi\)
−0.193743 + 0.981052i \(0.562063\pi\)
\(774\) −16418.4 + 8165.40i −0.762462 + 0.379198i
\(775\) −150.000 −0.00695246
\(776\) 6958.46 + 12052.4i 0.321900 + 0.557547i
\(777\) −2863.04 + 672.646i −0.132189 + 0.0310567i
\(778\) 1751.67 3033.98i 0.0807204 0.139812i
\(779\) 7910.82 13701.9i 0.363844 0.630196i
\(780\) 835.190 2770.01i 0.0383392 0.127157i
\(781\) −1954.45 3385.20i −0.0895463 0.155099i
\(782\) 25085.8 1.14715
\(783\) −36113.4 13384.5i −1.64826 0.610887i
\(784\) 27093.9 1.23424
\(785\) 5971.75 + 10343.4i 0.271517 + 0.470281i
\(786\) 3932.95 13044.1i 0.178478 0.591944i
\(787\) 9481.64 16422.7i 0.429459 0.743845i −0.567366 0.823465i \(-0.692038\pi\)
0.996825 + 0.0796209i \(0.0253710\pi\)
\(788\) 7224.43 12513.1i 0.326599 0.565686i
\(789\) −6519.10 + 1531.60i −0.294152 + 0.0691084i
\(790\) −5381.26 9320.62i −0.242350 0.419763i
\(791\) −369.076 −0.0165902
\(792\) 859.134 13819.8i 0.0385454 0.620034i
\(793\) −14417.1 −0.645608
\(794\) 22664.1 + 39255.4i 1.01300 + 1.75456i
\(795\) 3117.68 + 3317.51i 0.139085 + 0.148000i
\(796\) 2365.41 4097.01i 0.105326 0.182430i
\(797\) −17132.6 + 29674.5i −0.761439 + 1.31885i 0.180670 + 0.983544i \(0.442173\pi\)
−0.942109 + 0.335307i \(0.891160\pi\)
\(798\) −1060.76 1128.75i −0.0470557 0.0500718i
\(799\) 26589.2 + 46053.9i 1.17730 + 2.03914i
\(800\) 3590.15 0.158664
\(801\) 32338.5 + 21451.0i 1.42650 + 0.946233i
\(802\) −44093.9 −1.94141
\(803\) 3012.04 + 5217.00i 0.132369 + 0.229270i
\(804\) −14184.1 + 3332.42i −0.622181 + 0.146176i
\(805\) 274.423 475.315i 0.0120151 0.0208108i
\(806\) 334.076 578.636i 0.0145997 0.0252873i
\(807\) −1460.97 + 4845.49i −0.0637282 + 0.211362i
\(808\) 1199.66 + 2077.88i 0.0522327 + 0.0904696i
\(809\) 36425.5 1.58300 0.791502 0.611166i \(-0.209299\pi\)
0.791502 + 0.611166i \(0.209299\pi\)
\(810\) −4780.21 11324.4i −0.207357 0.491233i
\(811\) 45174.0 1.95595 0.977973 0.208732i \(-0.0669335\pi\)
0.977973 + 0.208732i \(0.0669335\pi\)
\(812\) −753.435 1304.99i −0.0325620 0.0563991i
\(813\) 6032.74 20008.3i 0.260243 0.863128i
\(814\) 19267.0 33371.3i 0.829615 1.43694i
\(815\) 6361.98 11019.3i 0.273436 0.473605i
\(816\) −44418.5 + 10435.7i −1.90559 + 0.447700i
\(817\) 5468.41 + 9471.56i 0.234168 + 0.405591i
\(818\) 17782.7 0.760093
\(819\) 1209.38 + 802.210i 0.0515984 + 0.0342265i
\(820\) 4912.35 0.209203
\(821\) 3459.65 + 5992.29i 0.147068 + 0.254729i 0.930143 0.367199i \(-0.119683\pi\)
−0.783075 + 0.621928i \(0.786350\pi\)
\(822\) 7483.66 + 7963.34i 0.317546 + 0.337900i
\(823\) 5699.26 9871.42i 0.241390 0.418100i −0.719721 0.694264i \(-0.755730\pi\)
0.961110 + 0.276164i \(0.0890634\pi\)
\(824\) −1055.70 + 1828.52i −0.0446322 + 0.0773052i
\(825\) 2923.37 + 3110.75i 0.123368 + 0.131276i
\(826\) −502.919 871.080i −0.0211850 0.0366934i
\(827\) 34712.0 1.45956 0.729779 0.683683i \(-0.239623\pi\)
0.729779 + 0.683683i \(0.239623\pi\)
\(828\) 380.986 6128.46i 0.0159906 0.257221i
\(829\) 2732.97 0.114500 0.0572498 0.998360i \(-0.481767\pi\)
0.0572498 + 0.998360i \(0.481767\pi\)
\(830\) −12600.9 21825.4i −0.526968 0.912735i
\(831\) −17093.3 + 4015.91i −0.713549 + 0.167642i
\(832\) 2519.03 4363.09i 0.104966 0.181806i
\(833\) 18771.5 32513.2i 0.780786 1.35236i
\(834\) 6488.34 21519.4i 0.269392 0.893472i
\(835\) 3436.39 + 5952.01i 0.142421 + 0.246680i
\(836\) 6018.19 0.248975
\(837\) −141.310 829.831i −0.00583557 0.0342690i
\(838\) −46693.0 −1.92480
\(839\) 4787.89 + 8292.87i 0.197016 + 0.341242i 0.947560 0.319579i \(-0.103542\pi\)
−0.750544 + 0.660821i \(0.770208\pi\)
\(840\) −190.516 + 631.870i −0.00782551 + 0.0259543i
\(841\) −25485.8 + 44142.8i −1.04497 + 1.80995i
\(842\) 1850.32 3204.85i 0.0757318 0.131171i
\(843\) 3709.38 871.484i 0.151551 0.0356056i
\(844\) 3625.97 + 6280.37i 0.147880 + 0.256136i
\(845\) −5532.82 −0.225248
\(846\) 39303.2 19546.8i 1.59725 0.794364i
\(847\) −408.766 −0.0165825
\(848\) −6974.60 12080.4i −0.282440 0.489200i
\(849\) −24585.2 26161.1i −0.993832 1.05753i
\(850\) 4649.83 8053.74i 0.187633 0.324989i
\(851\) −11724.8 + 20307.9i −0.472292 + 0.818034i
\(852\) 1427.41 + 1518.90i 0.0573971 + 0.0610761i
\(853\) −4520.95 7830.51i −0.181470 0.314316i 0.760911 0.648856i \(-0.224752\pi\)
−0.942381 + 0.334540i \(0.891419\pi\)
\(854\) −2396.52 −0.0960274
\(855\) −6564.43 + 3264.71i −0.262572 + 0.130586i
\(856\) −11217.3 −0.447896
\(857\) 1157.64 + 2005.09i 0.0461426 + 0.0799213i 0.888174 0.459507i \(-0.151974\pi\)
−0.842032 + 0.539428i \(0.818640\pi\)
\(858\) −18510.8 + 4348.94i −0.736536 + 0.173043i
\(859\) 15701.6 27195.9i 0.623667 1.08022i −0.365130 0.930957i \(-0.618975\pi\)
0.988797 0.149266i \(-0.0476912\pi\)
\(860\) −1697.85 + 2940.76i −0.0673210 + 0.116603i
\(861\) −711.322 + 2359.19i −0.0281554 + 0.0933808i
\(862\) 26831.3 + 46473.2i 1.06018 + 1.83629i
\(863\) −40883.5 −1.61262 −0.806310 0.591493i \(-0.798539\pi\)
−0.806310 + 0.591493i \(0.798539\pi\)
\(864\) 3382.15 + 19861.4i 0.133175 + 0.782060i
\(865\) 11802.3 0.463917
\(866\) 6013.30 + 10415.3i 0.235959 + 0.408692i
\(867\) −10882.0 + 36091.4i −0.426264 + 1.41376i
\(868\) 16.4674 28.5223i 0.000643939 0.00111534i
\(869\) −10487.6 + 18165.1i −0.409399 + 0.709100i
\(870\) −23414.3 + 5500.98i −0.912436 + 0.214369i
\(871\) −13728.8 23779.0i −0.534078 0.925051i
\(872\) −31376.7 −1.21852
\(873\) 1493.95 24031.4i 0.0579182 0.931659i
\(874\) −12350.4 −0.477985
\(875\) −101.732 176.206i −0.00393050 0.00680782i
\(876\) −2199.81 2340.81i −0.0848456 0.0902840i
\(877\) 14157.3 24521.2i 0.545107 0.944154i −0.453493 0.891260i \(-0.649822\pi\)
0.998600 0.0528937i \(-0.0168444\pi\)
\(878\) −979.348 + 1696.28i −0.0376440 + 0.0652013i
\(879\) 16544.8 + 17605.3i 0.634862 + 0.675554i
\(880\) −6539.91 11327.5i −0.250523 0.433919i
\(881\) 6479.51 0.247787 0.123893 0.992296i \(-0.460462\pi\)
0.123893 + 0.992296i \(0.460462\pi\)
\(882\) −25824.5 17130.1i −0.985893 0.653968i
\(883\) −17769.0 −0.677208 −0.338604 0.940929i \(-0.609955\pi\)
−0.338604 + 0.940929i \(0.609955\pi\)
\(884\) 6141.82 + 10637.9i 0.233678 + 0.404743i
\(885\) −4634.57 + 1088.85i −0.176033 + 0.0413574i
\(886\) −18198.1 + 31520.1i −0.690044 + 1.19519i
\(887\) 12944.1 22419.8i 0.489988 0.848684i −0.509945 0.860207i \(-0.670334\pi\)
0.999934 + 0.0115224i \(0.00366776\pi\)
\(888\) 8139.83 26996.8i 0.307607 1.02022i
\(889\) −921.481 1596.05i −0.0347643 0.0602136i
\(890\) 24234.4 0.912739
\(891\) −14455.3 + 19103.2i −0.543514 + 0.718273i
\(892\) −8626.80 −0.323819
\(893\) −13090.6 22673.5i −0.490548 0.849654i
\(894\) 7710.62 25573.2i 0.288458 0.956707i
\(895\) −3262.77 + 5651.29i −0.121857 + 0.211063i
\(896\) 1353.73 2344.73i 0.0504744 0.0874242i
\(897\) 11264.6 2646.52i 0.419303 0.0985115i
\(898\) 4879.71 + 8451.90i 0.181334 + 0.314080i
\(899\) −1647.11 −0.0611060
\(900\) −1896.91 1258.27i −0.0702559 0.0466025i
\(901\) −19328.9 −0.714694
\(902\) −16142.7 27959.9i −0.595889 1.03211i
\(903\) −1166.46 1241.23i −0.0429873 0.0457426i
\(904\) 1769.28 3064.49i 0.0650946 0.112747i
\(905\) −7748.58 + 13420.9i −0.284609 + 0.492958i
\(906\) 37950.7 + 40383.2i 1.39164 + 1.48084i
\(907\) 22594.1 + 39134.2i 0.827150 + 1.43267i 0.900265 + 0.435343i \(0.143373\pi\)
−0.0731143 + 0.997324i \(0.523294\pi\)
\(908\) −13774.2 −0.503429
\(909\) 257.562 4143.09i 0.00939802 0.151175i
\(910\) 906.303 0.0330150
\(911\) −6587.08 11409.2i −0.239560 0.414931i 0.721028 0.692906i \(-0.243670\pi\)
−0.960588 + 0.277975i \(0.910337\pi\)
\(912\) 21868.4 5137.78i 0.794007 0.186545i
\(913\) −24558.0 + 42535.8i −0.890200 + 1.54187i
\(914\) 5395.51 9345.29i 0.195260 0.338200i
\(915\) −3274.46 + 10860.2i −0.118306 + 0.392378i
\(916\) 4623.24 + 8007.69i 0.166765 + 0.288845i
\(917\) 1265.56 0.0455752
\(918\) 48935.4 + 18136.7i 1.75938 + 0.652069i
\(919\) −54078.5 −1.94112 −0.970558 0.240867i \(-0.922568\pi\)
−0.970558 + 0.240867i \(0.922568\pi\)
\(920\) 2631.07 + 4557.15i 0.0942868 + 0.163309i
\(921\) 11042.1 36622.6i 0.395060 1.31027i
\(922\) 12336.4 21367.3i 0.440650 0.763228i
\(923\) −1963.98 + 3401.72i −0.0700383 + 0.121310i
\(924\) −912.440 + 214.370i −0.0324860 + 0.00763229i
\(925\) 4346.54 + 7528.42i 0.154501 + 0.267603i
\(926\) −23646.4 −0.839166
\(927\) 3270.76 1626.66i 0.115886 0.0576338i
\(928\) 39422.6 1.39451
\(929\) 22858.9 + 39592.8i 0.807294 + 1.39827i 0.914732 + 0.404062i \(0.132402\pi\)
−0.107438 + 0.994212i \(0.534265\pi\)
\(930\) −360.000 383.075i −0.0126934 0.0135070i
\(931\) −9241.71 + 16007.1i −0.325333 + 0.563493i
\(932\) −8573.53 + 14849.8i −0.301325 + 0.521911i
\(933\) 9640.50 + 10258.4i 0.338281 + 0.359963i
\(934\) −13493.6 23371.5i −0.472722 0.818779i
\(935\) −18124.2 −0.633931
\(936\) −12458.4 + 6195.98i −0.435059 + 0.216369i
\(937\) −5055.54 −0.176262 −0.0881309 0.996109i \(-0.528089\pi\)
−0.0881309 + 0.996109i \(0.528089\pi\)
\(938\) −2282.10 3952.72i −0.0794385 0.137592i
\(939\) −31583.4 + 7420.23i −1.09764 + 0.257881i
\(940\) 4064.40 7039.75i 0.141028 0.244267i
\(941\) −14056.0 + 24345.7i −0.486942 + 0.843407i −0.999887 0.0150136i \(-0.995221\pi\)
0.512946 + 0.858421i \(0.328554\pi\)
\(942\) −12083.1 + 40075.0i −0.417927 + 1.38611i
\(943\) 9823.52 + 17014.8i 0.339234 + 0.587571i
\(944\) 14587.1 0.502935
\(945\) 878.968 728.802i 0.0302570 0.0250878i
\(946\) 22317.4 0.767022
\(947\) −15060.2 26085.0i −0.516780 0.895090i −0.999810 0.0194859i \(-0.993797\pi\)
0.483030 0.875604i \(-0.339536\pi\)
\(948\) 3228.76 10708.6i 0.110617 0.366876i
\(949\) 3026.74 5242.46i 0.103532 0.179323i
\(950\) −2289.23 + 3965.07i −0.0781816 + 0.135414i
\(951\) 10541.9 2476.73i 0.359458 0.0844514i
\(952\) −1401.02 2426.63i −0.0476967 0.0826130i
\(953\) 19362.7 0.658154 0.329077 0.944303i \(-0.393262\pi\)
0.329077 + 0.944303i \(0.393262\pi\)
\(954\) −989.946 + 15924.1i −0.0335961 + 0.540420i
\(955\) 1903.56 0.0645003
\(956\) −2489.54 4312.01i −0.0842233 0.145879i
\(957\) 32100.8 + 34158.4i 1.08430 + 1.15380i
\(958\) −5359.97 + 9283.74i −0.180765 + 0.313094i
\(959\) −507.554 + 879.109i −0.0170905 + 0.0296016i
\(960\) −2714.51 2888.50i −0.0912608 0.0971103i
\(961\) 14877.5 + 25768.6i 0.499396 + 0.864979i
\(962\) −38721.9 −1.29776
\(963\) 16172.6 + 10727.7i 0.541179 + 0.358977i
\(964\) 5946.87 0.198689
\(965\) −3865.10 6694.55i −0.128935 0.223321i
\(966\) 1872.49 439.925i 0.0623669 0.0146525i
\(967\) 15362.3 26608.2i 0.510876 0.884863i −0.489045 0.872259i \(-0.662654\pi\)
0.999921 0.0126043i \(-0.00401218\pi\)
\(968\) 1959.55 3394.04i 0.0650643 0.112695i
\(969\) 8985.67 29802.1i 0.297896 0.988010i
\(970\) −7518.24 13022.0i −0.248862 0.431042i
\(971\) −49791.0 −1.64559 −0.822796 0.568336i \(-0.807587\pi\)
−0.822796 + 0.568336i \(0.807587\pi\)
\(972\) 5173.98 11679.5i 0.170736 0.385410i
\(973\) 2087.84 0.0687906
\(974\) 22021.4 + 38142.3i 0.724448 + 1.25478i
\(975\) 1238.32 4107.03i 0.0406747 0.134903i
\(976\) 17377.8 30099.2i 0.569927 0.987143i
\(977\) 11195.9 19391.9i 0.366622 0.635008i −0.622413 0.782689i \(-0.713847\pi\)
0.989035 + 0.147681i \(0.0471808\pi\)
\(978\) 43410.2 10198.8i 1.41933 0.333458i
\(979\) −23615.3 40903.0i −0.770939 1.33531i
\(980\) −5738.79 −0.187060
\(981\) 45237.5 + 30007.2i 1.47230 + 0.976611i
\(982\) 14843.5 0.482357
\(983\) 12309.7 + 21321.0i 0.399408 + 0.691794i 0.993653 0.112490i \(-0.0358825\pi\)
−0.594245 + 0.804284i \(0.702549\pi\)
\(984\) −16178.7 17215.7i −0.524144 0.557741i
\(985\) 10711.5 18552.8i 0.346494 0.600145i
\(986\) 51058.7 88436.2i 1.64913 2.85637i
\(987\) 2792.35 + 2971.33i 0.0900521 + 0.0958242i
\(988\) −3023.78 5237.34i −0.0973676 0.168646i
\(989\) −13581.1 −0.436658
\(990\) −928.247 + 14931.6i −0.0297996 + 0.479351i
\(991\) 24540.3 0.786629 0.393314 0.919404i \(-0.371328\pi\)
0.393314 + 0.919404i \(0.371328\pi\)
\(992\) 430.818 + 746.199i 0.0137888 + 0.0238829i
\(993\) −1152.70 + 270.815i −0.0368375 + 0.00865465i
\(994\) −326.468 + 565.460i −0.0104175 + 0.0180436i
\(995\) 3507.13 6074.53i 0.111742 0.193543i
\(996\) 7560.54 25075.5i 0.240527 0.797737i
\(997\) −22978.0 39799.1i −0.729912 1.26424i −0.956920 0.290351i \(-0.906228\pi\)
0.227008 0.973893i \(-0.427105\pi\)
\(998\) −63146.7 −2.00288
\(999\) −37554.1 + 31138.2i −1.18935 + 0.986155i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.4.e.a.31.2 yes 4
3.2 odd 2 135.4.e.a.91.1 4
5.2 odd 4 225.4.k.a.49.1 8
5.3 odd 4 225.4.k.a.49.4 8
5.4 even 2 225.4.e.a.76.1 4
9.2 odd 6 135.4.e.a.46.1 4
9.4 even 3 405.4.a.d.1.1 2
9.5 odd 6 405.4.a.e.1.2 2
9.7 even 3 inner 45.4.e.a.16.2 4
45.4 even 6 2025.4.a.l.1.2 2
45.7 odd 12 225.4.k.a.124.4 8
45.14 odd 6 2025.4.a.j.1.1 2
45.34 even 6 225.4.e.a.151.1 4
45.43 odd 12 225.4.k.a.124.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.e.a.16.2 4 9.7 even 3 inner
45.4.e.a.31.2 yes 4 1.1 even 1 trivial
135.4.e.a.46.1 4 9.2 odd 6
135.4.e.a.91.1 4 3.2 odd 2
225.4.e.a.76.1 4 5.4 even 2
225.4.e.a.151.1 4 45.34 even 6
225.4.k.a.49.1 8 5.2 odd 4
225.4.k.a.49.4 8 5.3 odd 4
225.4.k.a.124.1 8 45.43 odd 12
225.4.k.a.124.4 8 45.7 odd 12
405.4.a.d.1.1 2 9.4 even 3
405.4.a.e.1.2 2 9.5 odd 6
2025.4.a.j.1.1 2 45.14 odd 6
2025.4.a.l.1.2 2 45.4 even 6