Properties

Label 2025.4.a.j.1.1
Level $2025$
Weight $4$
Character 2025.1
Self dual yes
Analytic conductor $119.479$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,1,0,0,-9,-9,0,0,37,0,112,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.37228 q^{2} +3.37228 q^{4} -1.62772 q^{7} +15.6060 q^{8} +32.8614 q^{11} +33.0217 q^{13} +5.48913 q^{14} -79.6060 q^{16} +110.307 q^{17} -54.3070 q^{19} -110.818 q^{22} -67.4375 q^{23} -111.359 q^{26} -5.48913 q^{28} -274.519 q^{29} -6.00000 q^{31} +143.606 q^{32} -371.986 q^{34} +347.723 q^{37} +183.139 q^{38} -291.337 q^{41} -201.388 q^{43} +110.818 q^{44} +227.418 q^{46} -482.095 q^{47} -340.351 q^{49} +111.359 q^{52} -175.228 q^{53} -25.4021 q^{56} +925.755 q^{58} +183.242 q^{59} +436.595 q^{61} +20.2337 q^{62} +152.568 q^{64} +831.500 q^{67} +371.986 q^{68} +118.951 q^{71} -183.318 q^{73} -1172.62 q^{74} -183.139 q^{76} -53.4891 q^{77} -638.293 q^{79} +982.470 q^{82} -1494.64 q^{83} +679.139 q^{86} +512.834 q^{88} +1437.27 q^{89} -53.7501 q^{91} -227.418 q^{92} +1625.76 q^{94} +891.769 q^{97} +1147.76 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{4} - 9 q^{7} - 9 q^{8} + 37 q^{11} + 112 q^{13} - 12 q^{14} - 119 q^{16} + 77 q^{17} + 35 q^{19} - 101 q^{22} - 267 q^{23} + 76 q^{26} + 12 q^{28} - 325 q^{29} - 12 q^{31} + 247 q^{32}+ \cdots + 463 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.37228 −1.19228 −0.596141 0.802880i \(-0.703300\pi\)
−0.596141 + 0.802880i \(0.703300\pi\)
\(3\) 0 0
\(4\) 3.37228 0.421535
\(5\) 0 0
\(6\) 0 0
\(7\) −1.62772 −0.0878885 −0.0439443 0.999034i \(-0.513992\pi\)
−0.0439443 + 0.999034i \(0.513992\pi\)
\(8\) 15.6060 0.689693
\(9\) 0 0
\(10\) 0 0
\(11\) 32.8614 0.900735 0.450368 0.892843i \(-0.351293\pi\)
0.450368 + 0.892843i \(0.351293\pi\)
\(12\) 0 0
\(13\) 33.0217 0.704507 0.352253 0.935905i \(-0.385416\pi\)
0.352253 + 0.935905i \(0.385416\pi\)
\(14\) 5.48913 0.104788
\(15\) 0 0
\(16\) −79.6060 −1.24384
\(17\) 110.307 1.57373 0.786864 0.617126i \(-0.211703\pi\)
0.786864 + 0.617126i \(0.211703\pi\)
\(18\) 0 0
\(19\) −54.3070 −0.655731 −0.327865 0.944724i \(-0.606329\pi\)
−0.327865 + 0.944724i \(0.606329\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −110.818 −1.07393
\(23\) −67.4375 −0.611378 −0.305689 0.952131i \(-0.598887\pi\)
−0.305689 + 0.952131i \(0.598887\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −111.359 −0.839970
\(27\) 0 0
\(28\) −5.48913 −0.0370481
\(29\) −274.519 −1.75782 −0.878912 0.476984i \(-0.841730\pi\)
−0.878912 + 0.476984i \(0.841730\pi\)
\(30\) 0 0
\(31\) −6.00000 −0.0347623 −0.0173812 0.999849i \(-0.505533\pi\)
−0.0173812 + 0.999849i \(0.505533\pi\)
\(32\) 143.606 0.793318
\(33\) 0 0
\(34\) −371.986 −1.87633
\(35\) 0 0
\(36\) 0 0
\(37\) 347.723 1.54501 0.772504 0.635010i \(-0.219004\pi\)
0.772504 + 0.635010i \(0.219004\pi\)
\(38\) 183.139 0.781816
\(39\) 0 0
\(40\) 0 0
\(41\) −291.337 −1.10974 −0.554868 0.831938i \(-0.687231\pi\)
−0.554868 + 0.831938i \(0.687231\pi\)
\(42\) 0 0
\(43\) −201.388 −0.714220 −0.357110 0.934062i \(-0.616238\pi\)
−0.357110 + 0.934062i \(0.616238\pi\)
\(44\) 110.818 0.379692
\(45\) 0 0
\(46\) 227.418 0.728935
\(47\) −482.095 −1.49619 −0.748094 0.663593i \(-0.769031\pi\)
−0.748094 + 0.663593i \(0.769031\pi\)
\(48\) 0 0
\(49\) −340.351 −0.992276
\(50\) 0 0
\(51\) 0 0
\(52\) 111.359 0.296974
\(53\) −175.228 −0.454140 −0.227070 0.973878i \(-0.572915\pi\)
−0.227070 + 0.973878i \(0.572915\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −25.4021 −0.0606161
\(57\) 0 0
\(58\) 925.755 2.09582
\(59\) 183.242 0.404340 0.202170 0.979350i \(-0.435201\pi\)
0.202170 + 0.979350i \(0.435201\pi\)
\(60\) 0 0
\(61\) 436.595 0.916397 0.458199 0.888850i \(-0.348495\pi\)
0.458199 + 0.888850i \(0.348495\pi\)
\(62\) 20.2337 0.0414465
\(63\) 0 0
\(64\) 152.568 0.297984
\(65\) 0 0
\(66\) 0 0
\(67\) 831.500 1.51618 0.758089 0.652152i \(-0.226133\pi\)
0.758089 + 0.652152i \(0.226133\pi\)
\(68\) 371.986 0.663382
\(69\) 0 0
\(70\) 0 0
\(71\) 118.951 0.198829 0.0994146 0.995046i \(-0.468303\pi\)
0.0994146 + 0.995046i \(0.468303\pi\)
\(72\) 0 0
\(73\) −183.318 −0.293914 −0.146957 0.989143i \(-0.546948\pi\)
−0.146957 + 0.989143i \(0.546948\pi\)
\(74\) −1172.62 −1.84208
\(75\) 0 0
\(76\) −183.139 −0.276414
\(77\) −53.4891 −0.0791643
\(78\) 0 0
\(79\) −638.293 −0.909033 −0.454517 0.890738i \(-0.650188\pi\)
−0.454517 + 0.890738i \(0.650188\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 982.470 1.32312
\(83\) −1494.64 −1.97661 −0.988304 0.152498i \(-0.951268\pi\)
−0.988304 + 0.152498i \(0.951268\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 679.139 0.851551
\(87\) 0 0
\(88\) 512.834 0.621231
\(89\) 1437.27 1.71180 0.855900 0.517142i \(-0.173004\pi\)
0.855900 + 0.517142i \(0.173004\pi\)
\(90\) 0 0
\(91\) −53.7501 −0.0619181
\(92\) −227.418 −0.257717
\(93\) 0 0
\(94\) 1625.76 1.78388
\(95\) 0 0
\(96\) 0 0
\(97\) 891.769 0.933458 0.466729 0.884400i \(-0.345432\pi\)
0.466729 + 0.884400i \(0.345432\pi\)
\(98\) 1147.76 1.18307
\(99\) 0 0
\(100\) 0 0
\(101\) 153.744 0.151466 0.0757332 0.997128i \(-0.475870\pi\)
0.0757332 + 0.997128i \(0.475870\pi\)
\(102\) 0 0
\(103\) −135.294 −0.129426 −0.0647131 0.997904i \(-0.520613\pi\)
−0.0647131 + 0.997904i \(0.520613\pi\)
\(104\) 515.336 0.485893
\(105\) 0 0
\(106\) 590.919 0.541463
\(107\) −718.783 −0.649414 −0.324707 0.945815i \(-0.605266\pi\)
−0.324707 + 0.945815i \(0.605266\pi\)
\(108\) 0 0
\(109\) −2010.56 −1.76676 −0.883378 0.468661i \(-0.844736\pi\)
−0.883378 + 0.468661i \(0.844736\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 129.576 0.109320
\(113\) −226.745 −0.188764 −0.0943820 0.995536i \(-0.530088\pi\)
−0.0943820 + 0.995536i \(0.530088\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −925.755 −0.740985
\(117\) 0 0
\(118\) −617.943 −0.482087
\(119\) −179.549 −0.138313
\(120\) 0 0
\(121\) −251.128 −0.188676
\(122\) −1472.32 −1.09260
\(123\) 0 0
\(124\) −20.2337 −0.0146535
\(125\) 0 0
\(126\) 0 0
\(127\) −1132.24 −0.791100 −0.395550 0.918444i \(-0.629446\pi\)
−0.395550 + 0.918444i \(0.629446\pi\)
\(128\) −1663.35 −1.14860
\(129\) 0 0
\(130\) 0 0
\(131\) −777.505 −0.518557 −0.259278 0.965803i \(-0.583485\pi\)
−0.259278 + 0.965803i \(0.583485\pi\)
\(132\) 0 0
\(133\) 88.3966 0.0576312
\(134\) −2804.05 −1.80771
\(135\) 0 0
\(136\) 1721.45 1.08539
\(137\) 623.638 0.388913 0.194456 0.980911i \(-0.437706\pi\)
0.194456 + 0.980911i \(0.437706\pi\)
\(138\) 0 0
\(139\) 1282.68 0.782702 0.391351 0.920241i \(-0.372008\pi\)
0.391351 + 0.920241i \(0.372008\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −401.136 −0.237060
\(143\) 1085.14 0.634574
\(144\) 0 0
\(145\) 0 0
\(146\) 618.199 0.350428
\(147\) 0 0
\(148\) 1172.62 0.651275
\(149\) −1524.31 −0.838098 −0.419049 0.907964i \(-0.637636\pi\)
−0.419049 + 0.907964i \(0.637636\pi\)
\(150\) 0 0
\(151\) 3162.56 1.70441 0.852203 0.523211i \(-0.175266\pi\)
0.852203 + 0.523211i \(0.175266\pi\)
\(152\) −847.514 −0.452253
\(153\) 0 0
\(154\) 180.380 0.0943861
\(155\) 0 0
\(156\) 0 0
\(157\) 2388.70 1.21426 0.607131 0.794602i \(-0.292320\pi\)
0.607131 + 0.794602i \(0.292320\pi\)
\(158\) 2152.50 1.08382
\(159\) 0 0
\(160\) 0 0
\(161\) 109.769 0.0537331
\(162\) 0 0
\(163\) 2544.79 1.22284 0.611422 0.791305i \(-0.290598\pi\)
0.611422 + 0.791305i \(0.290598\pi\)
\(164\) −982.470 −0.467793
\(165\) 0 0
\(166\) 5040.36 2.35667
\(167\) −1374.56 −0.636925 −0.318462 0.947935i \(-0.603166\pi\)
−0.318462 + 0.947935i \(0.603166\pi\)
\(168\) 0 0
\(169\) −1106.56 −0.503670
\(170\) 0 0
\(171\) 0 0
\(172\) −679.139 −0.301069
\(173\) 2360.45 1.03735 0.518675 0.854971i \(-0.326425\pi\)
0.518675 + 0.854971i \(0.326425\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2615.96 −1.12037
\(177\) 0 0
\(178\) −4846.87 −2.04095
\(179\) −1305.11 −0.544963 −0.272482 0.962161i \(-0.587844\pi\)
−0.272482 + 0.962161i \(0.587844\pi\)
\(180\) 0 0
\(181\) 3099.43 1.27281 0.636406 0.771355i \(-0.280420\pi\)
0.636406 + 0.771355i \(0.280420\pi\)
\(182\) 181.261 0.0738238
\(183\) 0 0
\(184\) −1052.43 −0.421663
\(185\) 0 0
\(186\) 0 0
\(187\) 3624.84 1.41751
\(188\) −1625.76 −0.630696
\(189\) 0 0
\(190\) 0 0
\(191\) −380.712 −0.144227 −0.0721135 0.997396i \(-0.522974\pi\)
−0.0721135 + 0.997396i \(0.522974\pi\)
\(192\) 0 0
\(193\) −1546.04 −0.576613 −0.288307 0.957538i \(-0.593092\pi\)
−0.288307 + 0.957538i \(0.593092\pi\)
\(194\) −3007.30 −1.11294
\(195\) 0 0
\(196\) −1147.76 −0.418279
\(197\) −4284.60 −1.54957 −0.774784 0.632226i \(-0.782141\pi\)
−0.774784 + 0.632226i \(0.782141\pi\)
\(198\) 0 0
\(199\) −1402.85 −0.499727 −0.249863 0.968281i \(-0.580386\pi\)
−0.249863 + 0.968281i \(0.580386\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −518.468 −0.180591
\(203\) 446.840 0.154493
\(204\) 0 0
\(205\) 0 0
\(206\) 456.249 0.154312
\(207\) 0 0
\(208\) −2628.73 −0.876296
\(209\) −1784.61 −0.590640
\(210\) 0 0
\(211\) −2150.46 −0.701628 −0.350814 0.936445i \(-0.614095\pi\)
−0.350814 + 0.936445i \(0.614095\pi\)
\(212\) −590.919 −0.191436
\(213\) 0 0
\(214\) 2423.94 0.774285
\(215\) 0 0
\(216\) 0 0
\(217\) 9.76631 0.00305521
\(218\) 6780.16 2.10647
\(219\) 0 0
\(220\) 0 0
\(221\) 3642.53 1.10870
\(222\) 0 0
\(223\) 2558.15 0.768190 0.384095 0.923294i \(-0.374514\pi\)
0.384095 + 0.923294i \(0.374514\pi\)
\(224\) −233.750 −0.0697236
\(225\) 0 0
\(226\) 764.646 0.225060
\(227\) −4084.54 −1.19428 −0.597138 0.802139i \(-0.703695\pi\)
−0.597138 + 0.802139i \(0.703695\pi\)
\(228\) 0 0
\(229\) −2741.91 −0.791225 −0.395612 0.918418i \(-0.629468\pi\)
−0.395612 + 0.918418i \(0.629468\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4284.13 −1.21236
\(233\) 5084.70 1.42966 0.714828 0.699300i \(-0.246505\pi\)
0.714828 + 0.699300i \(0.246505\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 617.943 0.170443
\(237\) 0 0
\(238\) 605.489 0.164908
\(239\) −1476.47 −0.399603 −0.199801 0.979836i \(-0.564030\pi\)
−0.199801 + 0.979836i \(0.564030\pi\)
\(240\) 0 0
\(241\) 1763.46 0.471345 0.235673 0.971833i \(-0.424271\pi\)
0.235673 + 0.971833i \(0.424271\pi\)
\(242\) 846.874 0.224955
\(243\) 0 0
\(244\) 1472.32 0.386294
\(245\) 0 0
\(246\) 0 0
\(247\) −1793.31 −0.461967
\(248\) −93.6358 −0.0239753
\(249\) 0 0
\(250\) 0 0
\(251\) −1705.16 −0.428801 −0.214400 0.976746i \(-0.568780\pi\)
−0.214400 + 0.976746i \(0.568780\pi\)
\(252\) 0 0
\(253\) −2216.09 −0.550690
\(254\) 3818.22 0.943214
\(255\) 0 0
\(256\) 4388.74 1.07147
\(257\) 228.596 0.0554842 0.0277421 0.999615i \(-0.491168\pi\)
0.0277421 + 0.999615i \(0.491168\pi\)
\(258\) 0 0
\(259\) −565.995 −0.135788
\(260\) 0 0
\(261\) 0 0
\(262\) 2621.97 0.618266
\(263\) −1288.76 −0.302161 −0.151081 0.988521i \(-0.548275\pi\)
−0.151081 + 0.988521i \(0.548275\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −298.098 −0.0687127
\(267\) 0 0
\(268\) 2804.05 0.639122
\(269\) −973.981 −0.220761 −0.110380 0.993889i \(-0.535207\pi\)
−0.110380 + 0.993889i \(0.535207\pi\)
\(270\) 0 0
\(271\) −4021.83 −0.901508 −0.450754 0.892648i \(-0.648845\pi\)
−0.450754 + 0.892648i \(0.648845\pi\)
\(272\) −8781.10 −1.95747
\(273\) 0 0
\(274\) −2103.08 −0.463693
\(275\) 0 0
\(276\) 0 0
\(277\) 3379.17 0.732977 0.366489 0.930422i \(-0.380560\pi\)
0.366489 + 0.930422i \(0.380560\pi\)
\(278\) −4325.56 −0.933201
\(279\) 0 0
\(280\) 0 0
\(281\) −733.307 −0.155678 −0.0778388 0.996966i \(-0.524802\pi\)
−0.0778388 + 0.996966i \(0.524802\pi\)
\(282\) 0 0
\(283\) −6909.03 −1.45123 −0.725617 0.688099i \(-0.758445\pi\)
−0.725617 + 0.688099i \(0.758445\pi\)
\(284\) 401.136 0.0838135
\(285\) 0 0
\(286\) −3659.40 −0.756591
\(287\) 474.214 0.0975331
\(288\) 0 0
\(289\) 7254.64 1.47662
\(290\) 0 0
\(291\) 0 0
\(292\) −618.199 −0.123895
\(293\) −4649.49 −0.927051 −0.463525 0.886084i \(-0.653416\pi\)
−0.463525 + 0.886084i \(0.653416\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 5426.55 1.06558
\(297\) 0 0
\(298\) 5140.41 0.999248
\(299\) −2226.91 −0.430720
\(300\) 0 0
\(301\) 327.804 0.0627717
\(302\) −10665.0 −2.03213
\(303\) 0 0
\(304\) 4323.16 0.815627
\(305\) 0 0
\(306\) 0 0
\(307\) 7361.42 1.36853 0.684264 0.729234i \(-0.260123\pi\)
0.684264 + 0.729234i \(0.260123\pi\)
\(308\) −180.380 −0.0333705
\(309\) 0 0
\(310\) 0 0
\(311\) 2709.21 0.493971 0.246986 0.969019i \(-0.420560\pi\)
0.246986 + 0.969019i \(0.420560\pi\)
\(312\) 0 0
\(313\) 6243.72 1.12753 0.563763 0.825936i \(-0.309353\pi\)
0.563763 + 0.825936i \(0.309353\pi\)
\(314\) −8055.37 −1.44774
\(315\) 0 0
\(316\) −2152.50 −0.383189
\(317\) 2084.03 0.369245 0.184623 0.982809i \(-0.440894\pi\)
0.184623 + 0.982809i \(0.440894\pi\)
\(318\) 0 0
\(319\) −9021.08 −1.58333
\(320\) 0 0
\(321\) 0 0
\(322\) −370.173 −0.0640650
\(323\) −5990.45 −1.03194
\(324\) 0 0
\(325\) 0 0
\(326\) −8581.76 −1.45797
\(327\) 0 0
\(328\) −4546.59 −0.765377
\(329\) 784.715 0.131498
\(330\) 0 0
\(331\) −227.876 −0.0378406 −0.0189203 0.999821i \(-0.506023\pi\)
−0.0189203 + 0.999821i \(0.506023\pi\)
\(332\) −5040.36 −0.833210
\(333\) 0 0
\(334\) 4635.39 0.759394
\(335\) 0 0
\(336\) 0 0
\(337\) −3417.48 −0.552409 −0.276205 0.961099i \(-0.589077\pi\)
−0.276205 + 0.961099i \(0.589077\pi\)
\(338\) 3731.65 0.600517
\(339\) 0 0
\(340\) 0 0
\(341\) −197.168 −0.0313116
\(342\) 0 0
\(343\) 1112.30 0.175098
\(344\) −3142.86 −0.492592
\(345\) 0 0
\(346\) −7960.10 −1.23681
\(347\) 3609.60 0.558425 0.279212 0.960229i \(-0.409927\pi\)
0.279212 + 0.960229i \(0.409927\pi\)
\(348\) 0 0
\(349\) −8800.83 −1.34985 −0.674925 0.737886i \(-0.735824\pi\)
−0.674925 + 0.737886i \(0.735824\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4719.09 0.714570
\(353\) 8510.49 1.28319 0.641597 0.767042i \(-0.278272\pi\)
0.641597 + 0.767042i \(0.278272\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4846.87 0.721584
\(357\) 0 0
\(358\) 4401.19 0.649750
\(359\) −4320.35 −0.635152 −0.317576 0.948233i \(-0.602869\pi\)
−0.317576 + 0.948233i \(0.602869\pi\)
\(360\) 0 0
\(361\) −3909.75 −0.570017
\(362\) −10452.2 −1.51755
\(363\) 0 0
\(364\) −181.261 −0.0261006
\(365\) 0 0
\(366\) 0 0
\(367\) −6600.39 −0.938794 −0.469397 0.882987i \(-0.655529\pi\)
−0.469397 + 0.882987i \(0.655529\pi\)
\(368\) 5368.43 0.760459
\(369\) 0 0
\(370\) 0 0
\(371\) 285.222 0.0399137
\(372\) 0 0
\(373\) 8608.45 1.19498 0.597492 0.801875i \(-0.296164\pi\)
0.597492 + 0.801875i \(0.296164\pi\)
\(374\) −12224.0 −1.69007
\(375\) 0 0
\(376\) −7523.56 −1.03191
\(377\) −9065.10 −1.23840
\(378\) 0 0
\(379\) −7129.80 −0.966314 −0.483157 0.875534i \(-0.660510\pi\)
−0.483157 + 0.875534i \(0.660510\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1283.87 0.171959
\(383\) 5927.46 0.790807 0.395404 0.918507i \(-0.370605\pi\)
0.395404 + 0.918507i \(0.370605\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 5213.68 0.687486
\(387\) 0 0
\(388\) 3007.30 0.393485
\(389\) −1038.86 −0.135405 −0.0677024 0.997706i \(-0.521567\pi\)
−0.0677024 + 0.997706i \(0.521567\pi\)
\(390\) 0 0
\(391\) −7438.83 −0.962143
\(392\) −5311.50 −0.684365
\(393\) 0 0
\(394\) 14448.9 1.84752
\(395\) 0 0
\(396\) 0 0
\(397\) −13441.4 −1.69926 −0.849628 0.527382i \(-0.823174\pi\)
−0.849628 + 0.527382i \(0.823174\pi\)
\(398\) 4730.81 0.595815
\(399\) 0 0
\(400\) 0 0
\(401\) −13075.4 −1.62831 −0.814157 0.580644i \(-0.802801\pi\)
−0.814157 + 0.580644i \(0.802801\pi\)
\(402\) 0 0
\(403\) −198.130 −0.0244903
\(404\) 518.468 0.0638484
\(405\) 0 0
\(406\) −1506.87 −0.184199
\(407\) 11426.7 1.39164
\(408\) 0 0
\(409\) −5273.19 −0.637512 −0.318756 0.947837i \(-0.603265\pi\)
−0.318756 + 0.947837i \(0.603265\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −456.249 −0.0545577
\(413\) −298.266 −0.0355368
\(414\) 0 0
\(415\) 0 0
\(416\) 4742.12 0.558898
\(417\) 0 0
\(418\) 6018.19 0.704209
\(419\) −13846.1 −1.61438 −0.807192 0.590289i \(-0.799014\pi\)
−0.807192 + 0.590289i \(0.799014\pi\)
\(420\) 0 0
\(421\) 1097.37 0.127037 0.0635184 0.997981i \(-0.479768\pi\)
0.0635184 + 0.997981i \(0.479768\pi\)
\(422\) 7251.94 0.836538
\(423\) 0 0
\(424\) −2734.60 −0.313217
\(425\) 0 0
\(426\) 0 0
\(427\) −710.654 −0.0805408
\(428\) −2423.94 −0.273751
\(429\) 0 0
\(430\) 0 0
\(431\) −15912.8 −1.77841 −0.889205 0.457509i \(-0.848742\pi\)
−0.889205 + 0.457509i \(0.848742\pi\)
\(432\) 0 0
\(433\) −3566.31 −0.395810 −0.197905 0.980221i \(-0.563414\pi\)
−0.197905 + 0.980221i \(0.563414\pi\)
\(434\) −32.9348 −0.00364267
\(435\) 0 0
\(436\) −6780.16 −0.744750
\(437\) 3662.33 0.400900
\(438\) 0 0
\(439\) −580.822 −0.0631461 −0.0315730 0.999501i \(-0.510052\pi\)
−0.0315730 + 0.999501i \(0.510052\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12283.6 −1.32188
\(443\) −10792.8 −1.15752 −0.578759 0.815499i \(-0.696463\pi\)
−0.578759 + 0.815499i \(0.696463\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −8626.80 −0.915898
\(447\) 0 0
\(448\) −248.338 −0.0261894
\(449\) −2894.01 −0.304180 −0.152090 0.988367i \(-0.548600\pi\)
−0.152090 + 0.988367i \(0.548600\pi\)
\(450\) 0 0
\(451\) −9573.74 −0.999578
\(452\) −764.646 −0.0795707
\(453\) 0 0
\(454\) 13774.2 1.42391
\(455\) 0 0
\(456\) 0 0
\(457\) −3199.92 −0.327540 −0.163770 0.986499i \(-0.552365\pi\)
−0.163770 + 0.986499i \(0.552365\pi\)
\(458\) 9246.49 0.943363
\(459\) 0 0
\(460\) 0 0
\(461\) −7316.38 −0.739171 −0.369585 0.929197i \(-0.620500\pi\)
−0.369585 + 0.929197i \(0.620500\pi\)
\(462\) 0 0
\(463\) −7011.98 −0.703832 −0.351916 0.936032i \(-0.614470\pi\)
−0.351916 + 0.936032i \(0.614470\pi\)
\(464\) 21853.3 2.18646
\(465\) 0 0
\(466\) −17147.1 −1.70455
\(467\) −8002.63 −0.792971 −0.396485 0.918041i \(-0.629770\pi\)
−0.396485 + 0.918041i \(0.629770\pi\)
\(468\) 0 0
\(469\) −1353.45 −0.133255
\(470\) 0 0
\(471\) 0 0
\(472\) 2859.67 0.278870
\(473\) −6617.91 −0.643323
\(474\) 0 0
\(475\) 0 0
\(476\) −605.489 −0.0583037
\(477\) 0 0
\(478\) 4979.08 0.476439
\(479\) 3178.84 0.303225 0.151613 0.988440i \(-0.451553\pi\)
0.151613 + 0.988440i \(0.451553\pi\)
\(480\) 0 0
\(481\) 11482.4 1.08847
\(482\) −5946.87 −0.561976
\(483\) 0 0
\(484\) −846.874 −0.0795336
\(485\) 0 0
\(486\) 0 0
\(487\) −13060.3 −1.21523 −0.607615 0.794232i \(-0.707874\pi\)
−0.607615 + 0.794232i \(0.707874\pi\)
\(488\) 6813.49 0.632033
\(489\) 0 0
\(490\) 0 0
\(491\) 4401.61 0.404566 0.202283 0.979327i \(-0.435164\pi\)
0.202283 + 0.979327i \(0.435164\pi\)
\(492\) 0 0
\(493\) −30281.4 −2.76634
\(494\) 6047.56 0.550794
\(495\) 0 0
\(496\) 477.636 0.0432389
\(497\) −193.619 −0.0174748
\(498\) 0 0
\(499\) 18725.2 1.67987 0.839935 0.542687i \(-0.182593\pi\)
0.839935 + 0.542687i \(0.182593\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 5750.29 0.511251
\(503\) −3811.68 −0.337882 −0.168941 0.985626i \(-0.554035\pi\)
−0.168941 + 0.985626i \(0.554035\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 7473.29 0.656577
\(507\) 0 0
\(508\) −3818.22 −0.333477
\(509\) −4495.48 −0.391471 −0.195735 0.980657i \(-0.562709\pi\)
−0.195735 + 0.980657i \(0.562709\pi\)
\(510\) 0 0
\(511\) 298.390 0.0258317
\(512\) −1493.27 −0.128894
\(513\) 0 0
\(514\) −770.891 −0.0661528
\(515\) 0 0
\(516\) 0 0
\(517\) −15842.3 −1.34767
\(518\) 1908.69 0.161898
\(519\) 0 0
\(520\) 0 0
\(521\) −12095.0 −1.01706 −0.508531 0.861043i \(-0.669811\pi\)
−0.508531 + 0.861043i \(0.669811\pi\)
\(522\) 0 0
\(523\) −7385.38 −0.617476 −0.308738 0.951147i \(-0.599907\pi\)
−0.308738 + 0.951147i \(0.599907\pi\)
\(524\) −2621.97 −0.218590
\(525\) 0 0
\(526\) 4346.06 0.360261
\(527\) −661.842 −0.0547064
\(528\) 0 0
\(529\) −7619.18 −0.626217
\(530\) 0 0
\(531\) 0 0
\(532\) 298.098 0.0242936
\(533\) −9620.45 −0.781816
\(534\) 0 0
\(535\) 0 0
\(536\) 12976.4 1.04570
\(537\) 0 0
\(538\) 3284.54 0.263209
\(539\) −11184.4 −0.893778
\(540\) 0 0
\(541\) −5935.19 −0.471670 −0.235835 0.971793i \(-0.575783\pi\)
−0.235835 + 0.971793i \(0.575783\pi\)
\(542\) 13562.7 1.07485
\(543\) 0 0
\(544\) 15840.7 1.24847
\(545\) 0 0
\(546\) 0 0
\(547\) 10157.2 0.793951 0.396976 0.917829i \(-0.370060\pi\)
0.396976 + 0.917829i \(0.370060\pi\)
\(548\) 2103.08 0.163940
\(549\) 0 0
\(550\) 0 0
\(551\) 14908.3 1.15266
\(552\) 0 0
\(553\) 1038.96 0.0798936
\(554\) −11395.5 −0.873915
\(555\) 0 0
\(556\) 4325.56 0.329937
\(557\) 5709.62 0.434334 0.217167 0.976134i \(-0.430318\pi\)
0.217167 + 0.976134i \(0.430318\pi\)
\(558\) 0 0
\(559\) −6650.20 −0.503173
\(560\) 0 0
\(561\) 0 0
\(562\) 2472.92 0.185612
\(563\) 12939.1 0.968595 0.484297 0.874903i \(-0.339075\pi\)
0.484297 + 0.874903i \(0.339075\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 23299.2 1.73028
\(567\) 0 0
\(568\) 1856.34 0.137131
\(569\) 6125.42 0.451302 0.225651 0.974208i \(-0.427549\pi\)
0.225651 + 0.974208i \(0.427549\pi\)
\(570\) 0 0
\(571\) −19282.4 −1.41321 −0.706605 0.707608i \(-0.749774\pi\)
−0.706605 + 0.707608i \(0.749774\pi\)
\(572\) 3659.40 0.267495
\(573\) 0 0
\(574\) −1599.18 −0.116287
\(575\) 0 0
\(576\) 0 0
\(577\) 4988.14 0.359894 0.179947 0.983676i \(-0.442407\pi\)
0.179947 + 0.983676i \(0.442407\pi\)
\(578\) −24464.7 −1.76055
\(579\) 0 0
\(580\) 0 0
\(581\) 2432.86 0.173721
\(582\) 0 0
\(583\) −5758.24 −0.409060
\(584\) −2860.85 −0.202710
\(585\) 0 0
\(586\) 15679.4 1.10531
\(587\) −15294.0 −1.07539 −0.537693 0.843141i \(-0.680704\pi\)
−0.537693 + 0.843141i \(0.680704\pi\)
\(588\) 0 0
\(589\) 325.842 0.0227947
\(590\) 0 0
\(591\) 0 0
\(592\) −27680.8 −1.92175
\(593\) −11090.9 −0.768040 −0.384020 0.923325i \(-0.625461\pi\)
−0.384020 + 0.923325i \(0.625461\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5140.41 −0.353288
\(597\) 0 0
\(598\) 7509.75 0.513539
\(599\) 28201.6 1.92368 0.961840 0.273612i \(-0.0882184\pi\)
0.961840 + 0.273612i \(0.0882184\pi\)
\(600\) 0 0
\(601\) 21144.0 1.43508 0.717539 0.696518i \(-0.245268\pi\)
0.717539 + 0.696518i \(0.245268\pi\)
\(602\) −1105.45 −0.0748416
\(603\) 0 0
\(604\) 10665.0 0.718467
\(605\) 0 0
\(606\) 0 0
\(607\) 8798.98 0.588369 0.294184 0.955749i \(-0.404952\pi\)
0.294184 + 0.955749i \(0.404952\pi\)
\(608\) −7798.81 −0.520203
\(609\) 0 0
\(610\) 0 0
\(611\) −15919.6 −1.05407
\(612\) 0 0
\(613\) −19539.8 −1.28745 −0.643724 0.765257i \(-0.722612\pi\)
−0.643724 + 0.765257i \(0.722612\pi\)
\(614\) −24824.8 −1.63167
\(615\) 0 0
\(616\) −834.750 −0.0545991
\(617\) −3273.87 −0.213616 −0.106808 0.994280i \(-0.534063\pi\)
−0.106808 + 0.994280i \(0.534063\pi\)
\(618\) 0 0
\(619\) 9386.47 0.609490 0.304745 0.952434i \(-0.401429\pi\)
0.304745 + 0.952434i \(0.401429\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9136.21 −0.588953
\(623\) −2339.47 −0.150448
\(624\) 0 0
\(625\) 0 0
\(626\) −21055.6 −1.34433
\(627\) 0 0
\(628\) 8055.37 0.511854
\(629\) 38356.3 2.43142
\(630\) 0 0
\(631\) 9647.08 0.608628 0.304314 0.952572i \(-0.401573\pi\)
0.304314 + 0.952572i \(0.401573\pi\)
\(632\) −9961.19 −0.626954
\(633\) 0 0
\(634\) −7027.94 −0.440245
\(635\) 0 0
\(636\) 0 0
\(637\) −11239.0 −0.699065
\(638\) 30421.6 1.88778
\(639\) 0 0
\(640\) 0 0
\(641\) 7003.77 0.431563 0.215782 0.976442i \(-0.430770\pi\)
0.215782 + 0.976442i \(0.430770\pi\)
\(642\) 0 0
\(643\) 6288.89 0.385707 0.192853 0.981228i \(-0.438226\pi\)
0.192853 + 0.981228i \(0.438226\pi\)
\(644\) 370.173 0.0226504
\(645\) 0 0
\(646\) 20201.5 1.23037
\(647\) −5900.85 −0.358557 −0.179279 0.983798i \(-0.557376\pi\)
−0.179279 + 0.983798i \(0.557376\pi\)
\(648\) 0 0
\(649\) 6021.58 0.364203
\(650\) 0 0
\(651\) 0 0
\(652\) 8581.76 0.515472
\(653\) −7885.15 −0.472542 −0.236271 0.971687i \(-0.575925\pi\)
−0.236271 + 0.971687i \(0.575925\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 23192.2 1.38034
\(657\) 0 0
\(658\) −2646.28 −0.156782
\(659\) −28757.8 −1.69992 −0.849959 0.526848i \(-0.823374\pi\)
−0.849959 + 0.526848i \(0.823374\pi\)
\(660\) 0 0
\(661\) 8260.23 0.486060 0.243030 0.970019i \(-0.421859\pi\)
0.243030 + 0.970019i \(0.421859\pi\)
\(662\) 768.464 0.0451166
\(663\) 0 0
\(664\) −23325.4 −1.36325
\(665\) 0 0
\(666\) 0 0
\(667\) 18512.9 1.07470
\(668\) −4635.39 −0.268486
\(669\) 0 0
\(670\) 0 0
\(671\) 14347.1 0.825431
\(672\) 0 0
\(673\) −804.962 −0.0461055 −0.0230528 0.999734i \(-0.507339\pi\)
−0.0230528 + 0.999734i \(0.507339\pi\)
\(674\) 11524.7 0.658627
\(675\) 0 0
\(676\) −3731.65 −0.212315
\(677\) 1363.27 0.0773926 0.0386963 0.999251i \(-0.487680\pi\)
0.0386963 + 0.999251i \(0.487680\pi\)
\(678\) 0 0
\(679\) −1451.55 −0.0820403
\(680\) 0 0
\(681\) 0 0
\(682\) 664.907 0.0373323
\(683\) −11434.6 −0.640604 −0.320302 0.947315i \(-0.603784\pi\)
−0.320302 + 0.947315i \(0.603784\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −3751.00 −0.208766
\(687\) 0 0
\(688\) 16031.7 0.888378
\(689\) −5786.34 −0.319945
\(690\) 0 0
\(691\) −19530.6 −1.07522 −0.537611 0.843193i \(-0.680673\pi\)
−0.537611 + 0.843193i \(0.680673\pi\)
\(692\) 7960.10 0.437280
\(693\) 0 0
\(694\) −12172.6 −0.665799
\(695\) 0 0
\(696\) 0 0
\(697\) −32136.5 −1.74642
\(698\) 29678.9 1.60940
\(699\) 0 0
\(700\) 0 0
\(701\) 11041.4 0.594903 0.297452 0.954737i \(-0.403863\pi\)
0.297452 + 0.954737i \(0.403863\pi\)
\(702\) 0 0
\(703\) −18883.8 −1.01311
\(704\) 5013.60 0.268405
\(705\) 0 0
\(706\) −28699.8 −1.52993
\(707\) −250.252 −0.0133122
\(708\) 0 0
\(709\) 3939.08 0.208653 0.104327 0.994543i \(-0.466731\pi\)
0.104327 + 0.994543i \(0.466731\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 22430.0 1.18062
\(713\) 404.625 0.0212529
\(714\) 0 0
\(715\) 0 0
\(716\) −4401.19 −0.229721
\(717\) 0 0
\(718\) 14569.4 0.757280
\(719\) 23298.2 1.20845 0.604225 0.796814i \(-0.293483\pi\)
0.604225 + 0.796814i \(0.293483\pi\)
\(720\) 0 0
\(721\) 220.220 0.0113751
\(722\) 13184.8 0.679621
\(723\) 0 0
\(724\) 10452.2 0.536535
\(725\) 0 0
\(726\) 0 0
\(727\) 9504.48 0.484872 0.242436 0.970167i \(-0.422054\pi\)
0.242436 + 0.970167i \(0.422054\pi\)
\(728\) −838.823 −0.0427044
\(729\) 0 0
\(730\) 0 0
\(731\) −22214.6 −1.12399
\(732\) 0 0
\(733\) −7320.81 −0.368895 −0.184448 0.982842i \(-0.559050\pi\)
−0.184448 + 0.982842i \(0.559050\pi\)
\(734\) 22258.4 1.11931
\(735\) 0 0
\(736\) −9684.43 −0.485018
\(737\) 27324.3 1.36567
\(738\) 0 0
\(739\) −1274.52 −0.0634424 −0.0317212 0.999497i \(-0.510099\pi\)
−0.0317212 + 0.999497i \(0.510099\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −961.849 −0.0475884
\(743\) 1941.15 0.0958465 0.0479232 0.998851i \(-0.484740\pi\)
0.0479232 + 0.998851i \(0.484740\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −29030.1 −1.42476
\(747\) 0 0
\(748\) 12224.0 0.597531
\(749\) 1169.98 0.0570761
\(750\) 0 0
\(751\) 16540.0 0.803667 0.401834 0.915713i \(-0.368373\pi\)
0.401834 + 0.915713i \(0.368373\pi\)
\(752\) 38377.6 1.86102
\(753\) 0 0
\(754\) 30570.1 1.47652
\(755\) 0 0
\(756\) 0 0
\(757\) −21145.7 −1.01526 −0.507631 0.861575i \(-0.669479\pi\)
−0.507631 + 0.861575i \(0.669479\pi\)
\(758\) 24043.7 1.15212
\(759\) 0 0
\(760\) 0 0
\(761\) 20134.2 0.959087 0.479543 0.877518i \(-0.340802\pi\)
0.479543 + 0.877518i \(0.340802\pi\)
\(762\) 0 0
\(763\) 3272.62 0.155278
\(764\) −1283.87 −0.0607968
\(765\) 0 0
\(766\) −19989.1 −0.942865
\(767\) 6050.96 0.284860
\(768\) 0 0
\(769\) 2194.72 0.102917 0.0514587 0.998675i \(-0.483613\pi\)
0.0514587 + 0.998675i \(0.483613\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5213.68 −0.243063
\(773\) −8327.70 −0.387486 −0.193743 0.981052i \(-0.562063\pi\)
−0.193743 + 0.981052i \(0.562063\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 13916.9 0.643799
\(777\) 0 0
\(778\) 3503.34 0.161441
\(779\) 15821.6 0.727688
\(780\) 0 0
\(781\) 3908.90 0.179093
\(782\) 25085.8 1.14715
\(783\) 0 0
\(784\) 27093.9 1.23424
\(785\) 0 0
\(786\) 0 0
\(787\) 18963.3 0.858918 0.429459 0.903086i \(-0.358704\pi\)
0.429459 + 0.903086i \(0.358704\pi\)
\(788\) −14448.9 −0.653197
\(789\) 0 0
\(790\) 0 0
\(791\) 369.076 0.0165902
\(792\) 0 0
\(793\) 14417.1 0.645608
\(794\) 45328.2 2.02599
\(795\) 0 0
\(796\) −4730.81 −0.210652
\(797\) 34265.1 1.52288 0.761439 0.648237i \(-0.224493\pi\)
0.761439 + 0.648237i \(0.224493\pi\)
\(798\) 0 0
\(799\) −53178.5 −2.35459
\(800\) 0 0
\(801\) 0 0
\(802\) 44093.9 1.94141
\(803\) −6024.08 −0.264739
\(804\) 0 0
\(805\) 0 0
\(806\) 668.152 0.0291993
\(807\) 0 0
\(808\) 2399.33 0.104465
\(809\) −36425.5 −1.58300 −0.791502 0.611166i \(-0.790701\pi\)
−0.791502 + 0.611166i \(0.790701\pi\)
\(810\) 0 0
\(811\) 45174.0 1.95595 0.977973 0.208732i \(-0.0669335\pi\)
0.977973 + 0.208732i \(0.0669335\pi\)
\(812\) 1506.87 0.0651241
\(813\) 0 0
\(814\) −38533.9 −1.65923
\(815\) 0 0
\(816\) 0 0
\(817\) 10936.8 0.468336
\(818\) 17782.7 0.760093
\(819\) 0 0
\(820\) 0 0
\(821\) 6919.30 0.294136 0.147068 0.989126i \(-0.453016\pi\)
0.147068 + 0.989126i \(0.453016\pi\)
\(822\) 0 0
\(823\) 11398.5 0.482780 0.241390 0.970428i \(-0.422397\pi\)
0.241390 + 0.970428i \(0.422397\pi\)
\(824\) −2111.39 −0.0892643
\(825\) 0 0
\(826\) 1005.84 0.0423699
\(827\) 34712.0 1.45956 0.729779 0.683683i \(-0.239623\pi\)
0.729779 + 0.683683i \(0.239623\pi\)
\(828\) 0 0
\(829\) 2732.97 0.114500 0.0572498 0.998360i \(-0.481767\pi\)
0.0572498 + 0.998360i \(0.481767\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5038.06 0.209932
\(833\) −37543.1 −1.56157
\(834\) 0 0
\(835\) 0 0
\(836\) −6018.19 −0.248975
\(837\) 0 0
\(838\) 46693.0 1.92480
\(839\) 9575.79 0.394032 0.197016 0.980400i \(-0.436875\pi\)
0.197016 + 0.980400i \(0.436875\pi\)
\(840\) 0 0
\(841\) 50971.7 2.08994
\(842\) −3700.64 −0.151464
\(843\) 0 0
\(844\) −7251.94 −0.295761
\(845\) 0 0
\(846\) 0 0
\(847\) 408.766 0.0165825
\(848\) 13949.2 0.564879
\(849\) 0 0
\(850\) 0 0
\(851\) −23449.6 −0.944584
\(852\) 0 0
\(853\) −9041.89 −0.362941 −0.181470 0.983396i \(-0.558086\pi\)
−0.181470 + 0.983396i \(0.558086\pi\)
\(854\) 2396.52 0.0960274
\(855\) 0 0
\(856\) −11217.3 −0.447896
\(857\) −2315.28 −0.0922851 −0.0461426 0.998935i \(-0.514693\pi\)
−0.0461426 + 0.998935i \(0.514693\pi\)
\(858\) 0 0
\(859\) −31403.1 −1.24733 −0.623667 0.781690i \(-0.714358\pi\)
−0.623667 + 0.781690i \(0.714358\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 53662.6 2.12036
\(863\) −40883.5 −1.61262 −0.806310 0.591493i \(-0.798539\pi\)
−0.806310 + 0.591493i \(0.798539\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 12026.6 0.471917
\(867\) 0 0
\(868\) 32.9348 0.00128788
\(869\) −20975.2 −0.818798
\(870\) 0 0
\(871\) 27457.6 1.06816
\(872\) −31376.7 −1.21852
\(873\) 0 0
\(874\) −12350.4 −0.477985
\(875\) 0 0
\(876\) 0 0
\(877\) 28314.7 1.09021 0.545107 0.838366i \(-0.316489\pi\)
0.545107 + 0.838366i \(0.316489\pi\)
\(878\) 1958.70 0.0752879
\(879\) 0 0
\(880\) 0 0
\(881\) −6479.51 −0.247787 −0.123893 0.992296i \(-0.539538\pi\)
−0.123893 + 0.992296i \(0.539538\pi\)
\(882\) 0 0
\(883\) 17769.0 0.677208 0.338604 0.940929i \(-0.390045\pi\)
0.338604 + 0.940929i \(0.390045\pi\)
\(884\) 12283.6 0.467357
\(885\) 0 0
\(886\) 36396.3 1.38009
\(887\) −25888.1 −0.979976 −0.489988 0.871729i \(-0.662999\pi\)
−0.489988 + 0.871729i \(0.662999\pi\)
\(888\) 0 0
\(889\) 1842.96 0.0695287
\(890\) 0 0
\(891\) 0 0
\(892\) 8626.80 0.323819
\(893\) 26181.2 0.981096
\(894\) 0 0
\(895\) 0 0
\(896\) 2707.47 0.100949
\(897\) 0 0
\(898\) 9759.41 0.362668
\(899\) 1647.11 0.0611060
\(900\) 0 0
\(901\) −19328.9 −0.714694
\(902\) 32285.3 1.19178
\(903\) 0 0
\(904\) −3538.57 −0.130189
\(905\) 0 0
\(906\) 0 0
\(907\) 45188.2 1.65430 0.827150 0.561981i \(-0.189960\pi\)
0.827150 + 0.561981i \(0.189960\pi\)
\(908\) −13774.2 −0.503429
\(909\) 0 0
\(910\) 0 0
\(911\) −13174.2 −0.479121 −0.239560 0.970881i \(-0.577003\pi\)
−0.239560 + 0.970881i \(0.577003\pi\)
\(912\) 0 0
\(913\) −49116.1 −1.78040
\(914\) 10791.0 0.390520
\(915\) 0 0
\(916\) −9246.49 −0.333529
\(917\) 1265.56 0.0455752
\(918\) 0 0
\(919\) −54078.5 −1.94112 −0.970558 0.240867i \(-0.922568\pi\)
−0.970558 + 0.240867i \(0.922568\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 24672.9 0.881299
\(923\) 3927.97 0.140077
\(924\) 0 0
\(925\) 0 0
\(926\) 23646.4 0.839166
\(927\) 0 0
\(928\) −39422.6 −1.39451
\(929\) 45717.8 1.61459 0.807294 0.590150i \(-0.200931\pi\)
0.807294 + 0.590150i \(0.200931\pi\)
\(930\) 0 0
\(931\) 18483.4 0.650666
\(932\) 17147.1 0.602651
\(933\) 0 0
\(934\) 26987.1 0.945445
\(935\) 0 0
\(936\) 0 0
\(937\) 5055.54 0.176262 0.0881309 0.996109i \(-0.471911\pi\)
0.0881309 + 0.996109i \(0.471911\pi\)
\(938\) 4564.21 0.158877
\(939\) 0 0
\(940\) 0 0
\(941\) −28112.0 −0.973883 −0.486942 0.873435i \(-0.661888\pi\)
−0.486942 + 0.873435i \(0.661888\pi\)
\(942\) 0 0
\(943\) 19647.0 0.678468
\(944\) −14587.1 −0.502935
\(945\) 0 0
\(946\) 22317.4 0.767022
\(947\) 30120.4 1.03356 0.516780 0.856118i \(-0.327130\pi\)
0.516780 + 0.856118i \(0.327130\pi\)
\(948\) 0 0
\(949\) −6053.47 −0.207064
\(950\) 0 0
\(951\) 0 0
\(952\) −2802.03 −0.0953933
\(953\) 19362.7 0.658154 0.329077 0.944303i \(-0.393262\pi\)
0.329077 + 0.944303i \(0.393262\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −4979.08 −0.168447
\(957\) 0 0
\(958\) −10719.9 −0.361530
\(959\) −1015.11 −0.0341810
\(960\) 0 0
\(961\) −29755.0 −0.998792
\(962\) −38721.9 −1.29776
\(963\) 0 0
\(964\) 5946.87 0.198689
\(965\) 0 0
\(966\) 0 0
\(967\) 30724.5 1.02175 0.510876 0.859654i \(-0.329321\pi\)
0.510876 + 0.859654i \(0.329321\pi\)
\(968\) −3919.10 −0.130129
\(969\) 0 0
\(970\) 0 0
\(971\) 49791.0 1.64559 0.822796 0.568336i \(-0.192413\pi\)
0.822796 + 0.568336i \(0.192413\pi\)
\(972\) 0 0
\(973\) −2087.84 −0.0687906
\(974\) 44042.9 1.44890
\(975\) 0 0
\(976\) −34755.6 −1.13985
\(977\) −22391.9 −0.733244 −0.366622 0.930370i \(-0.619486\pi\)
−0.366622 + 0.930370i \(0.619486\pi\)
\(978\) 0 0
\(979\) 47230.7 1.54188
\(980\) 0 0
\(981\) 0 0
\(982\) −14843.5 −0.482357
\(983\) −24619.3 −0.798815 −0.399408 0.916773i \(-0.630784\pi\)
−0.399408 + 0.916773i \(0.630784\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 102117. 3.29825
\(987\) 0 0
\(988\) −6047.56 −0.194735
\(989\) 13581.1 0.436658
\(990\) 0 0
\(991\) 24540.3 0.786629 0.393314 0.919404i \(-0.371328\pi\)
0.393314 + 0.919404i \(0.371328\pi\)
\(992\) −861.636 −0.0275776
\(993\) 0 0
\(994\) 652.937 0.0208349
\(995\) 0 0
\(996\) 0 0
\(997\) −45956.1 −1.45982 −0.729912 0.683542i \(-0.760439\pi\)
−0.729912 + 0.683542i \(0.760439\pi\)
\(998\) −63146.7 −2.00288
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.4.a.j.1.1 2
3.2 odd 2 2025.4.a.l.1.2 2
5.4 even 2 405.4.a.e.1.2 2
9.2 odd 6 225.4.e.a.76.1 4
9.5 odd 6 225.4.e.a.151.1 4
15.14 odd 2 405.4.a.d.1.1 2
45.2 even 12 225.4.k.a.49.4 8
45.4 even 6 135.4.e.a.46.1 4
45.14 odd 6 45.4.e.a.16.2 4
45.23 even 12 225.4.k.a.124.4 8
45.29 odd 6 45.4.e.a.31.2 yes 4
45.32 even 12 225.4.k.a.124.1 8
45.34 even 6 135.4.e.a.91.1 4
45.38 even 12 225.4.k.a.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.e.a.16.2 4 45.14 odd 6
45.4.e.a.31.2 yes 4 45.29 odd 6
135.4.e.a.46.1 4 45.4 even 6
135.4.e.a.91.1 4 45.34 even 6
225.4.e.a.76.1 4 9.2 odd 6
225.4.e.a.151.1 4 9.5 odd 6
225.4.k.a.49.1 8 45.38 even 12
225.4.k.a.49.4 8 45.2 even 12
225.4.k.a.124.1 8 45.32 even 12
225.4.k.a.124.4 8 45.23 even 12
405.4.a.d.1.1 2 15.14 odd 2
405.4.a.e.1.2 2 5.4 even 2
2025.4.a.j.1.1 2 1.1 even 1 trivial
2025.4.a.l.1.2 2 3.2 odd 2