Properties

Label 2100.3.e.a.449.2
Level $2100$
Weight $3$
Character 2100.449
Analytic conductor $57.221$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2100,3,Mod(449,2100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2100.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.2208555157\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.13463425024.14
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 6x^{6} + 6x^{5} - 10x^{4} + 18x^{3} + 338x^{2} + 618x + 333 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(0.555499 + 2.40882i\) of defining polynomial
Character \(\chi\) \(=\) 2100.449
Dual form 2100.3.e.a.449.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.99477 + 0.177124i) q^{3} +2.64575i q^{7} +(8.93725 - 1.06089i) q^{9} +14.1009i q^{11} +20.2288i q^{13} -21.8363 q^{17} -6.93725 q^{19} +(-0.468627 - 7.92341i) q^{21} -7.73550 q^{23} +(-26.5771 + 4.76013i) q^{27} +37.3073i q^{29} +15.2915 q^{31} +(-2.49760 - 42.2288i) q^{33} +12.1255i q^{37} +(-3.58301 - 60.5804i) q^{39} -42.3026i q^{41} +16.1255i q^{43} +71.8744 q^{47} -7.00000 q^{49} +(65.3948 - 3.86775i) q^{51} -101.446 q^{53} +(20.7755 - 1.22876i) q^{57} +25.7041i q^{59} +78.1033 q^{61} +(2.80686 + 23.6458i) q^{63} +123.166i q^{67} +(23.1660 - 1.37014i) q^{69} -34.5671i q^{71} -100.539i q^{73} -37.3073 q^{77} +42.5830 q^{79} +(78.7490 - 18.9629i) q^{81} +82.1075 q^{83} +(-6.60804 - 111.727i) q^{87} +42.3026i q^{89} -53.5203 q^{91} +(-45.7945 + 2.70850i) q^{93} -48.3320i q^{97} +(14.9595 + 126.023i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{9} + 8 q^{19} + 28 q^{21} + 80 q^{31} + 56 q^{39} - 56 q^{49} + 248 q^{51} + 392 q^{61} + 16 q^{69} + 256 q^{79} + 376 q^{81} - 280 q^{91} + 416 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.99477 + 0.177124i −0.998256 + 0.0590414i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) 8.93725 1.06089i 0.993028 0.117877i
\(10\) 0 0
\(11\) 14.1009i 1.28190i 0.767585 + 0.640948i \(0.221458\pi\)
−0.767585 + 0.640948i \(0.778542\pi\)
\(12\) 0 0
\(13\) 20.2288i 1.55606i 0.628228 + 0.778029i \(0.283780\pi\)
−0.628228 + 0.778029i \(0.716220\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −21.8363 −1.28449 −0.642246 0.766499i \(-0.721997\pi\)
−0.642246 + 0.766499i \(0.721997\pi\)
\(18\) 0 0
\(19\) −6.93725 −0.365119 −0.182559 0.983195i \(-0.558438\pi\)
−0.182559 + 0.983195i \(0.558438\pi\)
\(20\) 0 0
\(21\) −0.468627 7.92341i −0.0223156 0.377305i
\(22\) 0 0
\(23\) −7.73550 −0.336326 −0.168163 0.985759i \(-0.553783\pi\)
−0.168163 + 0.985759i \(0.553783\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −26.5771 + 4.76013i −0.984336 + 0.176301i
\(28\) 0 0
\(29\) 37.3073i 1.28646i 0.765673 + 0.643230i \(0.222406\pi\)
−0.765673 + 0.643230i \(0.777594\pi\)
\(30\) 0 0
\(31\) 15.2915 0.493274 0.246637 0.969108i \(-0.420674\pi\)
0.246637 + 0.969108i \(0.420674\pi\)
\(32\) 0 0
\(33\) −2.49760 42.2288i −0.0756850 1.27966i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 12.1255i 0.327716i 0.986484 + 0.163858i \(0.0523939\pi\)
−0.986484 + 0.163858i \(0.947606\pi\)
\(38\) 0 0
\(39\) −3.58301 60.5804i −0.0918719 1.55334i
\(40\) 0 0
\(41\) 42.3026i 1.03177i −0.856658 0.515885i \(-0.827463\pi\)
0.856658 0.515885i \(-0.172537\pi\)
\(42\) 0 0
\(43\) 16.1255i 0.375011i 0.982264 + 0.187506i \(0.0600403\pi\)
−0.982264 + 0.187506i \(0.939960\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 71.8744 1.52924 0.764621 0.644480i \(-0.222926\pi\)
0.764621 + 0.644480i \(0.222926\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 65.3948 3.86775i 1.28225 0.0758382i
\(52\) 0 0
\(53\) −101.446 −1.91408 −0.957040 0.289956i \(-0.906359\pi\)
−0.957040 + 0.289956i \(0.906359\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 20.7755 1.22876i 0.364482 0.0215571i
\(58\) 0 0
\(59\) 25.7041i 0.435663i 0.975986 + 0.217831i \(0.0698983\pi\)
−0.975986 + 0.217831i \(0.930102\pi\)
\(60\) 0 0
\(61\) 78.1033 1.28038 0.640191 0.768216i \(-0.278855\pi\)
0.640191 + 0.768216i \(0.278855\pi\)
\(62\) 0 0
\(63\) 2.80686 + 23.6458i 0.0445533 + 0.375329i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 123.166i 1.83830i 0.393909 + 0.919149i \(0.371122\pi\)
−0.393909 + 0.919149i \(0.628878\pi\)
\(68\) 0 0
\(69\) 23.1660 1.37014i 0.335739 0.0198572i
\(70\) 0 0
\(71\) 34.5671i 0.486860i −0.969918 0.243430i \(-0.921727\pi\)
0.969918 0.243430i \(-0.0782726\pi\)
\(72\) 0 0
\(73\) 100.539i 1.37724i −0.725122 0.688620i \(-0.758217\pi\)
0.725122 0.688620i \(-0.241783\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −37.3073 −0.484511
\(78\) 0 0
\(79\) 42.5830 0.539025 0.269513 0.962997i \(-0.413137\pi\)
0.269513 + 0.962997i \(0.413137\pi\)
\(80\) 0 0
\(81\) 78.7490 18.9629i 0.972210 0.234110i
\(82\) 0 0
\(83\) 82.1075 0.989247 0.494623 0.869107i \(-0.335306\pi\)
0.494623 + 0.869107i \(0.335306\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.60804 111.727i −0.0759545 1.28422i
\(88\) 0 0
\(89\) 42.3026i 0.475310i 0.971350 + 0.237655i \(0.0763787\pi\)
−0.971350 + 0.237655i \(0.923621\pi\)
\(90\) 0 0
\(91\) −53.5203 −0.588135
\(92\) 0 0
\(93\) −45.7945 + 2.70850i −0.492414 + 0.0291236i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 48.3320i 0.498268i −0.968469 0.249134i \(-0.919854\pi\)
0.968469 0.249134i \(-0.0801460\pi\)
\(98\) 0 0
\(99\) 14.9595 + 126.023i 0.151106 + 1.27296i
\(100\) 0 0
\(101\) 80.7374i 0.799380i −0.916650 0.399690i \(-0.869118\pi\)
0.916650 0.399690i \(-0.130882\pi\)
\(102\) 0 0
\(103\) 48.2510i 0.468456i 0.972182 + 0.234228i \(0.0752563\pi\)
−0.972182 + 0.234228i \(0.924744\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −196.527 −1.83670 −0.918351 0.395767i \(-0.870479\pi\)
−0.918351 + 0.395767i \(0.870479\pi\)
\(108\) 0 0
\(109\) 53.2915 0.488913 0.244456 0.969660i \(-0.421390\pi\)
0.244456 + 0.969660i \(0.421390\pi\)
\(110\) 0 0
\(111\) −2.14772 36.3130i −0.0193488 0.327144i
\(112\) 0 0
\(113\) −140.124 −1.24003 −0.620017 0.784589i \(-0.712874\pi\)
−0.620017 + 0.784589i \(0.712874\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 21.4605 + 180.790i 0.183423 + 1.54521i
\(118\) 0 0
\(119\) 57.7735i 0.485492i
\(120\) 0 0
\(121\) −77.8340 −0.643256
\(122\) 0 0
\(123\) 7.49281 + 126.686i 0.0609172 + 1.02997i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 115.579i 0.910071i 0.890473 + 0.455036i \(0.150374\pi\)
−0.890473 + 0.455036i \(0.849626\pi\)
\(128\) 0 0
\(129\) −2.85622 48.2921i −0.0221412 0.374357i
\(130\) 0 0
\(131\) 82.5929i 0.630480i −0.949012 0.315240i \(-0.897915\pi\)
0.949012 0.315240i \(-0.102085\pi\)
\(132\) 0 0
\(133\) 18.3542i 0.138002i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −153.739 −1.12218 −0.561092 0.827753i \(-0.689619\pi\)
−0.561092 + 0.827753i \(0.689619\pi\)
\(138\) 0 0
\(139\) −220.516 −1.58645 −0.793224 0.608930i \(-0.791599\pi\)
−0.793224 + 0.608930i \(0.791599\pi\)
\(140\) 0 0
\(141\) −215.247 + 12.7307i −1.52657 + 0.0902887i
\(142\) 0 0
\(143\) −285.243 −1.99470
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 20.9634 1.23987i 0.142608 0.00843449i
\(148\) 0 0
\(149\) 194.272i 1.30384i −0.758288 0.651920i \(-0.773964\pi\)
0.758288 0.651920i \(-0.226036\pi\)
\(150\) 0 0
\(151\) 128.081 0.848219 0.424109 0.905611i \(-0.360587\pi\)
0.424109 + 0.905611i \(0.360587\pi\)
\(152\) 0 0
\(153\) −195.157 + 23.1660i −1.27554 + 0.151412i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 147.682i 0.940652i −0.882493 0.470326i \(-0.844136\pi\)
0.882493 0.470326i \(-0.155864\pi\)
\(158\) 0 0
\(159\) 303.808 17.9686i 1.91074 0.113010i
\(160\) 0 0
\(161\) 20.4662i 0.127119i
\(162\) 0 0
\(163\) 210.369i 1.29060i −0.763927 0.645302i \(-0.776731\pi\)
0.763927 0.645302i \(-0.223269\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 85.0905 0.509524 0.254762 0.967004i \(-0.418003\pi\)
0.254762 + 0.967004i \(0.418003\pi\)
\(168\) 0 0
\(169\) −240.203 −1.42132
\(170\) 0 0
\(171\) −62.0000 + 7.35968i −0.362573 + 0.0430391i
\(172\) 0 0
\(173\) 93.4681 0.540278 0.270139 0.962821i \(-0.412930\pi\)
0.270139 + 0.962821i \(0.412930\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.55282 76.9778i −0.0257222 0.434903i
\(178\) 0 0
\(179\) 196.527i 1.09792i 0.835850 + 0.548958i \(0.184975\pi\)
−0.835850 + 0.548958i \(0.815025\pi\)
\(180\) 0 0
\(181\) −164.022 −0.906200 −0.453100 0.891460i \(-0.649682\pi\)
−0.453100 + 0.891460i \(0.649682\pi\)
\(182\) 0 0
\(183\) −233.901 + 13.8340i −1.27815 + 0.0755956i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 307.911i 1.64658i
\(188\) 0 0
\(189\) −12.5941 70.3163i −0.0666356 0.372044i
\(190\) 0 0
\(191\) 230.209i 1.20528i −0.798011 0.602642i \(-0.794115\pi\)
0.798011 0.602642i \(-0.205885\pi\)
\(192\) 0 0
\(193\) 184.620i 0.956578i −0.878202 0.478289i \(-0.841257\pi\)
0.878202 0.478289i \(-0.158743\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −91.4558 −0.464243 −0.232121 0.972687i \(-0.574567\pi\)
−0.232121 + 0.972687i \(0.574567\pi\)
\(198\) 0 0
\(199\) 203.749 1.02386 0.511932 0.859026i \(-0.328930\pi\)
0.511932 + 0.859026i \(0.328930\pi\)
\(200\) 0 0
\(201\) −21.8157 368.853i −0.108536 1.83509i
\(202\) 0 0
\(203\) −98.7060 −0.486236
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −69.1341 + 8.20653i −0.333981 + 0.0396451i
\(208\) 0 0
\(209\) 97.8212i 0.468044i
\(210\) 0 0
\(211\) 188.243 0.892147 0.446074 0.894996i \(-0.352822\pi\)
0.446074 + 0.894996i \(0.352822\pi\)
\(212\) 0 0
\(213\) 6.12267 + 103.520i 0.0287449 + 0.486011i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 40.4575i 0.186440i
\(218\) 0 0
\(219\) 17.8078 + 301.089i 0.0813143 + 1.37484i
\(220\) 0 0
\(221\) 441.722i 1.99874i
\(222\) 0 0
\(223\) 154.125i 0.691146i 0.938392 + 0.345573i \(0.112315\pi\)
−0.938392 + 0.345573i \(0.887685\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 233.592 1.02904 0.514519 0.857479i \(-0.327970\pi\)
0.514519 + 0.857479i \(0.327970\pi\)
\(228\) 0 0
\(229\) −275.269 −1.20205 −0.601025 0.799231i \(-0.705241\pi\)
−0.601025 + 0.799231i \(0.705241\pi\)
\(230\) 0 0
\(231\) 111.727 6.60804i 0.483666 0.0286062i
\(232\) 0 0
\(233\) −35.4518 −0.152154 −0.0760769 0.997102i \(-0.524239\pi\)
−0.0760769 + 0.997102i \(0.524239\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −127.526 + 7.54249i −0.538085 + 0.0318248i
\(238\) 0 0
\(239\) 56.8888i 0.238028i 0.992893 + 0.119014i \(0.0379734\pi\)
−0.992893 + 0.119014i \(0.962027\pi\)
\(240\) 0 0
\(241\) −209.749 −0.870328 −0.435164 0.900351i \(-0.643310\pi\)
−0.435164 + 0.900351i \(0.643310\pi\)
\(242\) 0 0
\(243\) −232.476 + 70.7379i −0.956692 + 0.291102i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 140.332i 0.568146i
\(248\) 0 0
\(249\) −245.893 + 14.5432i −0.987521 + 0.0584066i
\(250\) 0 0
\(251\) 77.1123i 0.307220i 0.988132 + 0.153610i \(0.0490900\pi\)
−0.988132 + 0.153610i \(0.950910\pi\)
\(252\) 0 0
\(253\) 109.077i 0.431135i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −158.335 −0.616090 −0.308045 0.951372i \(-0.599675\pi\)
−0.308045 + 0.951372i \(0.599675\pi\)
\(258\) 0 0
\(259\) −32.0810 −0.123865
\(260\) 0 0
\(261\) 39.5791 + 333.425i 0.151644 + 1.27749i
\(262\) 0 0
\(263\) −150.114 −0.570776 −0.285388 0.958412i \(-0.592122\pi\)
−0.285388 + 0.958412i \(0.592122\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −7.49281 126.686i −0.0280630 0.474480i
\(268\) 0 0
\(269\) 190.804i 0.709308i 0.934998 + 0.354654i \(0.115401\pi\)
−0.934998 + 0.354654i \(0.884599\pi\)
\(270\) 0 0
\(271\) −342.450 −1.26365 −0.631826 0.775110i \(-0.717694\pi\)
−0.631826 + 0.775110i \(0.717694\pi\)
\(272\) 0 0
\(273\) 160.281 9.47974i 0.587109 0.0347243i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 93.2470i 0.336632i 0.985733 + 0.168316i \(0.0538329\pi\)
−0.985733 + 0.168316i \(0.946167\pi\)
\(278\) 0 0
\(279\) 136.664 16.2226i 0.489835 0.0581456i
\(280\) 0 0
\(281\) 251.075i 0.893505i 0.894657 + 0.446753i \(0.147420\pi\)
−0.894657 + 0.446753i \(0.852580\pi\)
\(282\) 0 0
\(283\) 16.6497i 0.0588328i 0.999567 + 0.0294164i \(0.00936489\pi\)
−0.999567 + 0.0294164i \(0.990635\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 111.922 0.389972
\(288\) 0 0
\(289\) 187.826 0.649917
\(290\) 0 0
\(291\) 8.56078 + 144.743i 0.0294185 + 0.497399i
\(292\) 0 0
\(293\) −307.322 −1.04888 −0.524440 0.851448i \(-0.675725\pi\)
−0.524440 + 0.851448i \(0.675725\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −67.1219 374.759i −0.226000 1.26182i
\(298\) 0 0
\(299\) 156.480i 0.523343i
\(300\) 0 0
\(301\) −42.6640 −0.141741
\(302\) 0 0
\(303\) 14.3006 + 241.790i 0.0471965 + 0.797985i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 126.775i 0.412948i −0.978452 0.206474i \(-0.933801\pi\)
0.978452 0.206474i \(-0.0661990\pi\)
\(308\) 0 0
\(309\) −8.54642 144.500i −0.0276583 0.467639i
\(310\) 0 0
\(311\) 328.915i 1.05761i −0.848745 0.528803i \(-0.822641\pi\)
0.848745 0.528803i \(-0.177359\pi\)
\(312\) 0 0
\(313\) 259.284i 0.828382i −0.910190 0.414191i \(-0.864065\pi\)
0.910190 0.414191i \(-0.135935\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.62027 0.0271933 0.0135966 0.999908i \(-0.495672\pi\)
0.0135966 + 0.999908i \(0.495672\pi\)
\(318\) 0 0
\(319\) −526.065 −1.64911
\(320\) 0 0
\(321\) 588.553 34.8097i 1.83350 0.108442i
\(322\) 0 0
\(323\) 151.484 0.468992
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −159.596 + 9.43922i −0.488060 + 0.0288661i
\(328\) 0 0
\(329\) 190.162i 0.577999i
\(330\) 0 0
\(331\) −474.369 −1.43314 −0.716569 0.697516i \(-0.754288\pi\)
−0.716569 + 0.697516i \(0.754288\pi\)
\(332\) 0 0
\(333\) 12.8638 + 108.369i 0.0386301 + 0.325431i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 609.195i 1.80770i 0.427850 + 0.903850i \(0.359271\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(338\) 0 0
\(339\) 419.638 24.8193i 1.23787 0.0732133i
\(340\) 0 0
\(341\) 215.623i 0.632326i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 427.136 1.23094 0.615470 0.788161i \(-0.288966\pi\)
0.615470 + 0.788161i \(0.288966\pi\)
\(348\) 0 0
\(349\) −316.759 −0.907620 −0.453810 0.891098i \(-0.649936\pi\)
−0.453810 + 0.891098i \(0.649936\pi\)
\(350\) 0 0
\(351\) −96.2915 537.621i −0.274335 1.53168i
\(352\) 0 0
\(353\) −86.4606 −0.244931 −0.122465 0.992473i \(-0.539080\pi\)
−0.122465 + 0.992473i \(0.539080\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.2331 + 173.018i 0.0286642 + 0.484645i
\(358\) 0 0
\(359\) 286.213i 0.797252i 0.917114 + 0.398626i \(0.130513\pi\)
−0.917114 + 0.398626i \(0.869487\pi\)
\(360\) 0 0
\(361\) −312.875 −0.866688
\(362\) 0 0
\(363\) 233.095 13.7863i 0.642134 0.0379788i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 111.616i 0.304130i −0.988371 0.152065i \(-0.951408\pi\)
0.988371 0.152065i \(-0.0485923\pi\)
\(368\) 0 0
\(369\) −44.8784 378.069i −0.121622 1.02458i
\(370\) 0 0
\(371\) 268.402i 0.723454i
\(372\) 0 0
\(373\) 85.0850i 0.228110i 0.993474 + 0.114055i \(0.0363840\pi\)
−0.993474 + 0.114055i \(0.963616\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −754.681 −2.00181
\(378\) 0 0
\(379\) 26.5464 0.0700433 0.0350217 0.999387i \(-0.488850\pi\)
0.0350217 + 0.999387i \(0.488850\pi\)
\(380\) 0 0
\(381\) −20.4719 346.132i −0.0537319 0.908484i
\(382\) 0 0
\(383\) −115.547 −0.301690 −0.150845 0.988557i \(-0.548199\pi\)
−0.150845 + 0.988557i \(0.548199\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 17.1074 + 144.118i 0.0442052 + 0.372397i
\(388\) 0 0
\(389\) 385.718i 0.991563i −0.868447 0.495782i \(-0.834882\pi\)
0.868447 0.495782i \(-0.165118\pi\)
\(390\) 0 0
\(391\) 168.915 0.432008
\(392\) 0 0
\(393\) 14.6292 + 247.346i 0.0372244 + 0.629380i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 47.5934i 0.119883i −0.998202 0.0599413i \(-0.980909\pi\)
0.998202 0.0599413i \(-0.0190914\pi\)
\(398\) 0 0
\(399\) 3.25098 + 54.9667i 0.00814783 + 0.137761i
\(400\) 0 0
\(401\) 458.563i 1.14355i 0.820411 + 0.571775i \(0.193745\pi\)
−0.820411 + 0.571775i \(0.806255\pi\)
\(402\) 0 0
\(403\) 309.328i 0.767563i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −170.980 −0.420098
\(408\) 0 0
\(409\) 57.8666 0.141483 0.0707416 0.997495i \(-0.477463\pi\)
0.0707416 + 0.997495i \(0.477463\pi\)
\(410\) 0 0
\(411\) 460.413 27.2310i 1.12023 0.0662554i
\(412\) 0 0
\(413\) −68.0066 −0.164665
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 660.395 39.0588i 1.58368 0.0936662i
\(418\) 0 0
\(419\) 115.304i 0.275190i 0.990489 + 0.137595i \(0.0439372\pi\)
−0.990489 + 0.137595i \(0.956063\pi\)
\(420\) 0 0
\(421\) 622.664 1.47901 0.739506 0.673150i \(-0.235059\pi\)
0.739506 + 0.673150i \(0.235059\pi\)
\(422\) 0 0
\(423\) 642.360 76.2510i 1.51858 0.180262i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 206.642i 0.483939i
\(428\) 0 0
\(429\) 854.235 50.5234i 1.99122 0.117770i
\(430\) 0 0
\(431\) 170.666i 0.395978i 0.980204 + 0.197989i \(0.0634410\pi\)
−0.980204 + 0.197989i \(0.936559\pi\)
\(432\) 0 0
\(433\) 251.992i 0.581968i −0.956728 0.290984i \(-0.906017\pi\)
0.956728 0.290984i \(-0.0939826\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 53.6631 0.122799
\(438\) 0 0
\(439\) 452.089 1.02982 0.514908 0.857246i \(-0.327826\pi\)
0.514908 + 0.857246i \(0.327826\pi\)
\(440\) 0 0
\(441\) −62.5608 + 7.42624i −0.141861 + 0.0168396i
\(442\) 0 0
\(443\) −109.182 −0.246460 −0.123230 0.992378i \(-0.539325\pi\)
−0.123230 + 0.992378i \(0.539325\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 34.4103 + 581.800i 0.0769806 + 1.30157i
\(448\) 0 0
\(449\) 565.005i 1.25836i −0.777259 0.629181i \(-0.783390\pi\)
0.777259 0.629181i \(-0.216610\pi\)
\(450\) 0 0
\(451\) 596.502 1.32262
\(452\) 0 0
\(453\) −383.573 + 22.6863i −0.846739 + 0.0500801i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 595.705i 1.30351i −0.758429 0.651756i \(-0.774033\pi\)
0.758429 0.651756i \(-0.225967\pi\)
\(458\) 0 0
\(459\) 580.346 103.944i 1.26437 0.226457i
\(460\) 0 0
\(461\) 445.590i 0.966573i 0.875462 + 0.483286i \(0.160557\pi\)
−0.875462 + 0.483286i \(0.839443\pi\)
\(462\) 0 0
\(463\) 333.919i 0.721207i −0.932719 0.360604i \(-0.882571\pi\)
0.932719 0.360604i \(-0.117429\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 448.244 0.959838 0.479919 0.877313i \(-0.340666\pi\)
0.479919 + 0.877313i \(0.340666\pi\)
\(468\) 0 0
\(469\) −325.867 −0.694812
\(470\) 0 0
\(471\) 26.1581 + 442.274i 0.0555374 + 0.939011i
\(472\) 0 0
\(473\) −227.383 −0.480725
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −906.651 + 107.624i −1.90074 + 0.225626i
\(478\) 0 0
\(479\) 13.7014i 0.0286043i −0.999898 0.0143021i \(-0.995447\pi\)
0.999898 0.0143021i \(-0.00455267\pi\)
\(480\) 0 0
\(481\) −245.284 −0.509945
\(482\) 0 0
\(483\) 3.62506 + 61.2915i 0.00750531 + 0.126898i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 11.2549i 0.0231107i −0.999933 0.0115554i \(-0.996322\pi\)
0.999933 0.0115554i \(-0.00367827\pi\)
\(488\) 0 0
\(489\) 37.2614 + 630.005i 0.0761992 + 1.28835i
\(490\) 0 0
\(491\) 285.642i 0.581756i 0.956760 + 0.290878i \(0.0939473\pi\)
−0.956760 + 0.290878i \(0.906053\pi\)
\(492\) 0 0
\(493\) 814.656i 1.65245i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 91.4558 0.184016
\(498\) 0 0
\(499\) −780.818 −1.56477 −0.782383 0.622798i \(-0.785996\pi\)
−0.782383 + 0.622798i \(0.785996\pi\)
\(500\) 0 0
\(501\) −254.826 + 15.0716i −0.508635 + 0.0300830i
\(502\) 0 0
\(503\) 420.771 0.836522 0.418261 0.908327i \(-0.362640\pi\)
0.418261 + 0.908327i \(0.362640\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 719.351 42.5457i 1.41884 0.0839166i
\(508\) 0 0
\(509\) 102.973i 0.202305i −0.994871 0.101152i \(-0.967747\pi\)
0.994871 0.101152i \(-0.0322530\pi\)
\(510\) 0 0
\(511\) 266.000 0.520548
\(512\) 0 0
\(513\) 184.372 33.0222i 0.359400 0.0643708i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1013.49i 1.96033i
\(518\) 0 0
\(519\) −279.915 + 16.5555i −0.539335 + 0.0318988i
\(520\) 0 0
\(521\) 76.7836i 0.147377i −0.997281 0.0736887i \(-0.976523\pi\)
0.997281 0.0736887i \(-0.0234771\pi\)
\(522\) 0 0
\(523\) 404.561i 0.773539i −0.922176 0.386769i \(-0.873591\pi\)
0.922176 0.386769i \(-0.126409\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −333.911 −0.633606
\(528\) 0 0
\(529\) −469.162 −0.886885
\(530\) 0 0
\(531\) 27.2693 + 229.724i 0.0513546 + 0.432625i
\(532\) 0 0
\(533\) 855.728 1.60549
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −34.8097 588.553i −0.0648226 1.09600i
\(538\) 0 0
\(539\) 98.7060i 0.183128i
\(540\) 0 0
\(541\) 592.907 1.09595 0.547973 0.836496i \(-0.315400\pi\)
0.547973 + 0.836496i \(0.315400\pi\)
\(542\) 0 0
\(543\) 491.208 29.0523i 0.904619 0.0535034i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 793.689i 1.45099i 0.688230 + 0.725493i \(0.258388\pi\)
−0.688230 + 0.725493i \(0.741612\pi\)
\(548\) 0 0
\(549\) 698.029 82.8591i 1.27145 0.150927i
\(550\) 0 0
\(551\) 258.811i 0.469711i
\(552\) 0 0
\(553\) 112.664i 0.203732i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −368.963 −0.662411 −0.331206 0.943559i \(-0.607455\pi\)
−0.331206 + 0.943559i \(0.607455\pi\)
\(558\) 0 0
\(559\) −326.199 −0.583540
\(560\) 0 0
\(561\) 54.5385 + 922.122i 0.0972167 + 1.64371i
\(562\) 0 0
\(563\) 529.796 0.941022 0.470511 0.882394i \(-0.344070\pi\)
0.470511 + 0.882394i \(0.344070\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 50.1712 + 208.350i 0.0884853 + 0.367461i
\(568\) 0 0
\(569\) 1068.04i 1.87705i 0.345216 + 0.938523i \(0.387806\pi\)
−0.345216 + 0.938523i \(0.612194\pi\)
\(570\) 0 0
\(571\) −118.191 −0.206989 −0.103495 0.994630i \(-0.533002\pi\)
−0.103495 + 0.994630i \(0.533002\pi\)
\(572\) 0 0
\(573\) 40.7757 + 689.423i 0.0711618 + 1.20318i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 586.559i 1.01657i −0.861190 0.508284i \(-0.830280\pi\)
0.861190 0.508284i \(-0.169720\pi\)
\(578\) 0 0
\(579\) 32.7006 + 552.893i 0.0564778 + 0.954909i
\(580\) 0 0
\(581\) 217.236i 0.373900i
\(582\) 0 0
\(583\) 1430.48i 2.45365i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 809.558 1.37914 0.689572 0.724217i \(-0.257799\pi\)
0.689572 + 0.724217i \(0.257799\pi\)
\(588\) 0 0
\(589\) −106.081 −0.180104
\(590\) 0 0
\(591\) 273.889 16.1991i 0.463433 0.0274096i
\(592\) 0 0
\(593\) 480.314 0.809973 0.404986 0.914323i \(-0.367276\pi\)
0.404986 + 0.914323i \(0.367276\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −610.181 + 36.0889i −1.02208 + 0.0604504i
\(598\) 0 0
\(599\) 386.689i 0.645557i 0.946474 + 0.322779i \(0.104617\pi\)
−0.946474 + 0.322779i \(0.895383\pi\)
\(600\) 0 0
\(601\) −474.369 −0.789299 −0.394649 0.918832i \(-0.629134\pi\)
−0.394649 + 0.918832i \(0.629134\pi\)
\(602\) 0 0
\(603\) 130.666 + 1100.77i 0.216693 + 1.82548i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 434.199i 0.715319i 0.933852 + 0.357660i \(0.116425\pi\)
−0.933852 + 0.357660i \(0.883575\pi\)
\(608\) 0 0
\(609\) 295.601 17.4832i 0.485388 0.0287081i
\(610\) 0 0
\(611\) 1453.93i 2.37959i
\(612\) 0 0
\(613\) 614.782i 1.00291i 0.865185 + 0.501453i \(0.167201\pi\)
−0.865185 + 0.501453i \(0.832799\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 527.697 0.855263 0.427632 0.903953i \(-0.359348\pi\)
0.427632 + 0.903953i \(0.359348\pi\)
\(618\) 0 0
\(619\) 679.970 1.09850 0.549249 0.835659i \(-0.314914\pi\)
0.549249 + 0.835659i \(0.314914\pi\)
\(620\) 0 0
\(621\) 205.587 36.8220i 0.331058 0.0592946i
\(622\) 0 0
\(623\) −111.922 −0.179650
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 17.3265 + 292.952i 0.0276340 + 0.467227i
\(628\) 0 0
\(629\) 264.776i 0.420948i
\(630\) 0 0
\(631\) −929.239 −1.47265 −0.736323 0.676631i \(-0.763439\pi\)
−0.736323 + 0.676631i \(0.763439\pi\)
\(632\) 0 0
\(633\) −563.744 + 33.3424i −0.890591 + 0.0526737i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 141.601i 0.222294i
\(638\) 0 0
\(639\) −36.6719 308.935i −0.0573895 0.483466i
\(640\) 0 0
\(641\) 798.925i 1.24637i −0.782073 0.623187i \(-0.785838\pi\)
0.782073 0.623187i \(-0.214162\pi\)
\(642\) 0 0
\(643\) 306.051i 0.475973i 0.971268 + 0.237987i \(0.0764875\pi\)
−0.971268 + 0.237987i \(0.923513\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 856.527 1.32384 0.661922 0.749573i \(-0.269741\pi\)
0.661922 + 0.749573i \(0.269741\pi\)
\(648\) 0 0
\(649\) −362.450 −0.558474
\(650\) 0 0
\(651\) −7.16601 121.161i −0.0110077 0.186115i
\(652\) 0 0
\(653\) 610.533 0.934966 0.467483 0.884002i \(-0.345161\pi\)
0.467483 + 0.884002i \(0.345161\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −106.661 898.539i −0.162345 1.36764i
\(658\) 0 0
\(659\) 41.3318i 0.0627190i 0.999508 + 0.0313595i \(0.00998367\pi\)
−0.999508 + 0.0313595i \(0.990016\pi\)
\(660\) 0 0
\(661\) 259.285 0.392262 0.196131 0.980578i \(-0.437162\pi\)
0.196131 + 0.980578i \(0.437162\pi\)
\(662\) 0 0
\(663\) 78.2398 + 1322.85i 0.118009 + 1.99526i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 288.591i 0.432670i
\(668\) 0 0
\(669\) −27.2994 461.570i −0.0408062 0.689940i
\(670\) 0 0
\(671\) 1101.32i 1.64132i
\(672\) 0 0
\(673\) 113.498i 0.168645i 0.996439 + 0.0843225i \(0.0268726\pi\)
−0.996439 + 0.0843225i \(0.973127\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1239.43 1.83077 0.915387 0.402575i \(-0.131885\pi\)
0.915387 + 0.402575i \(0.131885\pi\)
\(678\) 0 0
\(679\) 127.875 0.188328
\(680\) 0 0
\(681\) −699.553 + 41.3748i −1.02724 + 0.0607559i
\(682\) 0 0
\(683\) 1286.58 1.88371 0.941856 0.336017i \(-0.109080\pi\)
0.941856 + 0.336017i \(0.109080\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 824.367 48.7569i 1.19995 0.0709707i
\(688\) 0 0
\(689\) 2052.13i 2.97842i
\(690\) 0 0
\(691\) −888.278 −1.28550 −0.642748 0.766077i \(-0.722206\pi\)
−0.642748 + 0.766077i \(0.722206\pi\)
\(692\) 0 0
\(693\) −333.425 + 39.5791i −0.481133 + 0.0571127i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 923.733i 1.32530i
\(698\) 0 0
\(699\) 106.170 6.27938i 0.151888 0.00898338i
\(700\) 0 0
\(701\) 270.171i 0.385408i −0.981257 0.192704i \(-0.938274\pi\)
0.981257 0.192704i \(-0.0617257\pi\)
\(702\) 0 0
\(703\) 84.1176i 0.119655i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 213.611 0.302137
\(708\) 0 0
\(709\) −81.8824 −0.115490 −0.0577450 0.998331i \(-0.518391\pi\)
−0.0577450 + 0.998331i \(0.518391\pi\)
\(710\) 0 0
\(711\) 380.575 45.1760i 0.535267 0.0635386i
\(712\) 0 0
\(713\) −118.287 −0.165901
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −10.0764 170.369i −0.0140535 0.237613i
\(718\) 0 0
\(719\) 680.552i 0.946526i 0.880921 + 0.473263i \(0.156924\pi\)
−0.880921 + 0.473263i \(0.843076\pi\)
\(720\) 0 0
\(721\) −127.660 −0.177060
\(722\) 0 0
\(723\) 628.149 37.1517i 0.868810 0.0513854i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 333.344i 0.458520i −0.973365 0.229260i \(-0.926369\pi\)
0.973365 0.229260i \(-0.0736306\pi\)
\(728\) 0 0
\(729\) 683.682 253.021i 0.937836 0.347079i
\(730\) 0 0
\(731\) 352.122i 0.481699i
\(732\) 0 0
\(733\) 825.261i 1.12587i −0.826502 0.562934i \(-0.809672\pi\)
0.826502 0.562934i \(-0.190328\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1736.75 −2.35651
\(738\) 0 0
\(739\) −1074.77 −1.45435 −0.727176 0.686451i \(-0.759168\pi\)
−0.727176 + 0.686451i \(0.759168\pi\)
\(740\) 0 0
\(741\) 24.8562 + 420.262i 0.0335442 + 0.567155i
\(742\) 0 0
\(743\) −171.465 −0.230774 −0.115387 0.993321i \(-0.536811\pi\)
−0.115387 + 0.993321i \(0.536811\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 733.816 87.1072i 0.982350 0.116609i
\(748\) 0 0
\(749\) 519.962i 0.694208i
\(750\) 0 0
\(751\) 352.640 0.469561 0.234781 0.972048i \(-0.424563\pi\)
0.234781 + 0.972048i \(0.424563\pi\)
\(752\) 0 0
\(753\) −13.6585 230.933i −0.0181387 0.306684i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 624.790i 0.825349i −0.910878 0.412675i \(-0.864595\pi\)
0.910878 0.412675i \(-0.135405\pi\)
\(758\) 0 0
\(759\) 19.3202 + 326.660i 0.0254548 + 0.430383i
\(760\) 0 0
\(761\) 539.144i 0.708468i −0.935157 0.354234i \(-0.884742\pi\)
0.935157 0.354234i \(-0.115258\pi\)
\(762\) 0 0
\(763\) 140.996i 0.184792i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −519.962 −0.677916
\(768\) 0 0
\(769\) 357.409 0.464771 0.232386 0.972624i \(-0.425347\pi\)
0.232386 + 0.972624i \(0.425347\pi\)
\(770\) 0 0
\(771\) 474.176 28.0450i 0.615015 0.0363748i
\(772\) 0 0
\(773\) 232.707 0.301044 0.150522 0.988607i \(-0.451905\pi\)
0.150522 + 0.988607i \(0.451905\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 96.0752 5.68233i 0.123649 0.00731317i
\(778\) 0 0
\(779\) 293.464i 0.376718i
\(780\) 0 0
\(781\) 487.425 0.624104
\(782\) 0 0
\(783\) −177.588 991.520i −0.226804 1.26631i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1202.71i 1.52823i −0.645082 0.764114i \(-0.723177\pi\)
0.645082 0.764114i \(-0.276823\pi\)
\(788\) 0 0
\(789\) 449.557 26.5889i 0.569781 0.0336995i
\(790\) 0 0
\(791\) 370.733i 0.468688i
\(792\) 0 0
\(793\) 1579.93i 1.99235i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1108.42 −1.39074 −0.695368 0.718654i \(-0.744758\pi\)
−0.695368 + 0.718654i \(0.744758\pi\)
\(798\) 0 0
\(799\) −1569.47 −1.96430
\(800\) 0 0
\(801\) 44.8784 + 378.069i 0.0560280 + 0.471996i
\(802\) 0 0
\(803\) 1417.68 1.76548
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −33.7960 571.413i −0.0418786 0.708071i
\(808\) 0 0
\(809\) 867.089i 1.07180i −0.844281 0.535901i \(-0.819972\pi\)
0.844281 0.535901i \(-0.180028\pi\)
\(810\) 0 0
\(811\) −1008.35 −1.24335 −0.621673 0.783277i \(-0.713547\pi\)
−0.621673 + 0.783277i \(0.713547\pi\)
\(812\) 0 0
\(813\) 1025.56 60.6562i 1.26145 0.0746078i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 111.867i 0.136924i
\(818\) 0 0
\(819\) −478.324 + 56.7792i −0.584034 + 0.0693275i
\(820\) 0 0
\(821\) 1316.06i 1.60300i 0.597996 + 0.801499i \(0.295964\pi\)
−0.597996 + 0.801499i \(0.704036\pi\)
\(822\) 0 0
\(823\) 992.146i 1.20552i −0.797921 0.602762i \(-0.794067\pi\)
0.797921 0.602762i \(-0.205933\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39.2488 0.0474593 0.0237296 0.999718i \(-0.492446\pi\)
0.0237296 + 0.999718i \(0.492446\pi\)
\(828\) 0 0
\(829\) −1083.74 −1.30729 −0.653643 0.756803i \(-0.726760\pi\)
−0.653643 + 0.756803i \(0.726760\pi\)
\(830\) 0 0
\(831\) −16.5163 279.253i −0.0198752 0.336045i
\(832\) 0 0
\(833\) 152.854 0.183499
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −406.403 + 72.7895i −0.485548 + 0.0869648i
\(838\) 0 0
\(839\) 570.971i 0.680537i 0.940328 + 0.340269i \(0.110518\pi\)
−0.940328 + 0.340269i \(0.889482\pi\)
\(840\) 0 0
\(841\) −550.838 −0.654980
\(842\) 0 0
\(843\) −44.4715 751.911i −0.0527539 0.891947i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 205.929i 0.243128i
\(848\) 0 0
\(849\) −2.94907 49.8619i −0.00347357 0.0587302i
\(850\) 0 0
\(851\) 93.7967i 0.110219i
\(852\) 0 0
\(853\) 381.290i 0.446999i −0.974704 0.223499i \(-0.928252\pi\)
0.974704 0.223499i \(-0.0717481\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 342.531 0.399686 0.199843 0.979828i \(-0.435957\pi\)
0.199843 + 0.979828i \(0.435957\pi\)
\(858\) 0 0
\(859\) −522.051 −0.607743 −0.303871 0.952713i \(-0.598279\pi\)
−0.303871 + 0.952713i \(0.598279\pi\)
\(860\) 0 0
\(861\) −335.180 + 19.8241i −0.389292 + 0.0230245i
\(862\) 0 0
\(863\) −118.373 −0.137165 −0.0685825 0.997645i \(-0.521848\pi\)
−0.0685825 + 0.997645i \(0.521848\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −562.495 + 33.2686i −0.648784 + 0.0383721i
\(868\) 0 0
\(869\) 600.457i 0.690974i
\(870\) 0 0
\(871\) −2491.50 −2.86050
\(872\) 0 0
\(873\) −51.2751 431.956i −0.0587343 0.494794i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 60.7321i 0.0692499i −0.999400 0.0346249i \(-0.988976\pi\)
0.999400 0.0346249i \(-0.0110237\pi\)
\(878\) 0 0
\(879\) 920.357 54.4342i 1.04705 0.0619274i
\(880\) 0 0
\(881\) 817.935i 0.928417i 0.885726 + 0.464208i \(0.153661\pi\)
−0.885726 + 0.464208i \(0.846339\pi\)
\(882\) 0 0
\(883\) 19.9764i 0.0226233i 0.999936 + 0.0113117i \(0.00360069\pi\)
−0.999936 + 0.0113117i \(0.996399\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 682.008 0.768893 0.384446 0.923147i \(-0.374392\pi\)
0.384446 + 0.923147i \(0.374392\pi\)
\(888\) 0 0
\(889\) −305.793 −0.343975
\(890\) 0 0
\(891\) 267.393 + 1110.43i 0.300105 + 1.24627i
\(892\) 0 0
\(893\) −498.611 −0.558355
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 27.7163 + 468.620i 0.0308989 + 0.522430i
\(898\) 0 0
\(899\) 570.485i 0.634578i
\(900\) 0 0
\(901\) 2215.22 2.45862
\(902\) 0 0
\(903\) 127.769 7.55684i 0.141494 0.00836859i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 649.895i 0.716533i −0.933619 0.358266i \(-0.883368\pi\)
0.933619 0.358266i \(-0.116632\pi\)
\(908\) 0 0
\(909\) −85.6536 721.570i −0.0942284 0.793807i
\(910\) 0 0
\(911\) 1522.75i 1.67152i 0.549099 + 0.835758i \(0.314971\pi\)
−0.549099 + 0.835758i \(0.685029\pi\)
\(912\) 0 0
\(913\) 1157.79i 1.26811i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 218.520 0.238299
\(918\) 0 0
\(919\) 753.652 0.820079 0.410039 0.912068i \(-0.365515\pi\)
0.410039 + 0.912068i \(0.365515\pi\)
\(920\) 0 0
\(921\) 22.4550 + 379.662i 0.0243811 + 0.412228i
\(922\) 0 0
\(923\) 699.249 0.757582
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 51.1891 + 431.231i 0.0552202 + 0.465190i
\(928\) 0 0
\(929\) 555.100i 0.597525i −0.954328 0.298762i \(-0.903426\pi\)
0.954328 0.298762i \(-0.0965738\pi\)
\(930\) 0 0
\(931\) 48.5608 0.0521598
\(932\) 0 0
\(933\) 58.2589 + 985.025i 0.0624426 + 1.05576i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 231.357i 0.246912i 0.992350 + 0.123456i \(0.0393978\pi\)
−0.992350 + 0.123456i \(0.960602\pi\)
\(938\) 0 0
\(939\) 45.9254 + 776.494i 0.0489089 + 0.826937i
\(940\) 0 0
\(941\) 525.513i 0.558463i −0.960224 0.279231i \(-0.909920\pi\)
0.960224 0.279231i \(-0.0900796\pi\)
\(942\) 0 0
\(943\) 327.231i 0.347011i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −571.855 −0.603860 −0.301930 0.953330i \(-0.597631\pi\)
−0.301930 + 0.953330i \(0.597631\pi\)
\(948\) 0 0
\(949\) 2033.77 2.14307
\(950\) 0 0
\(951\) −25.8157 + 1.52686i −0.0271458 + 0.00160553i
\(952\) 0 0
\(953\) −596.119 −0.625518 −0.312759 0.949833i \(-0.601253\pi\)
−0.312759 + 0.949833i \(0.601253\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1575.44 93.1790i 1.64623 0.0973657i
\(958\) 0 0
\(959\) 406.756i 0.424146i
\(960\) 0 0
\(961\) −727.170 −0.756680
\(962\) 0 0
\(963\) −1756.41 + 208.494i −1.82390 + 0.216505i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1519.98i 1.57185i −0.618324 0.785924i \(-0.712188\pi\)
0.618324 0.785924i \(-0.287812\pi\)
\(968\) 0 0
\(969\) −453.660 + 26.8316i −0.468173 + 0.0276899i
\(970\) 0 0
\(971\) 1077.39i 1.10957i −0.831995 0.554783i \(-0.812801\pi\)
0.831995 0.554783i \(-0.187199\pi\)
\(972\) 0 0
\(973\) 583.431i 0.599621i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1800.57 1.84296 0.921480 0.388427i \(-0.126981\pi\)
0.921480 + 0.388427i \(0.126981\pi\)
\(978\) 0 0
\(979\) −596.502 −0.609297
\(980\) 0 0
\(981\) 476.280 56.5365i 0.485504 0.0576315i
\(982\) 0 0
\(983\) −512.798 −0.521666 −0.260833 0.965384i \(-0.583997\pi\)
−0.260833 + 0.965384i \(0.583997\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −33.6823 569.490i −0.0341259 0.576991i
\(988\) 0 0
\(989\) 124.739i 0.126126i
\(990\) 0 0
\(991\) −191.749 −0.193490 −0.0967452 0.995309i \(-0.530843\pi\)
−0.0967452 + 0.995309i \(0.530843\pi\)
\(992\) 0 0
\(993\) 1420.62 84.0222i 1.43064 0.0846145i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1677.56i 1.68260i 0.540565 + 0.841302i \(0.318211\pi\)
−0.540565 + 0.841302i \(0.681789\pi\)
\(998\) 0 0
\(999\) −57.7189 322.260i −0.0577767 0.322583i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.3.e.a.449.2 8
3.2 odd 2 inner 2100.3.e.a.449.8 8
5.2 odd 4 84.3.c.a.29.2 yes 4
5.3 odd 4 2100.3.g.a.701.3 4
5.4 even 2 inner 2100.3.e.a.449.7 8
15.2 even 4 84.3.c.a.29.1 4
15.8 even 4 2100.3.g.a.701.4 4
15.14 odd 2 inner 2100.3.e.a.449.1 8
20.7 even 4 336.3.d.a.113.3 4
35.2 odd 12 588.3.p.f.557.1 8
35.12 even 12 588.3.p.h.557.4 8
35.17 even 12 588.3.p.h.569.1 8
35.27 even 4 588.3.c.h.197.3 4
35.32 odd 12 588.3.p.f.569.4 8
40.27 even 4 1344.3.d.g.449.2 4
40.37 odd 4 1344.3.d.a.449.3 4
45.2 even 12 2268.3.bg.a.701.3 8
45.7 odd 12 2268.3.bg.a.701.2 8
45.22 odd 12 2268.3.bg.a.2213.3 8
45.32 even 12 2268.3.bg.a.2213.2 8
60.47 odd 4 336.3.d.a.113.4 4
105.2 even 12 588.3.p.f.557.4 8
105.17 odd 12 588.3.p.h.569.4 8
105.32 even 12 588.3.p.f.569.1 8
105.47 odd 12 588.3.p.h.557.1 8
105.62 odd 4 588.3.c.h.197.4 4
120.77 even 4 1344.3.d.a.449.4 4
120.107 odd 4 1344.3.d.g.449.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.c.a.29.1 4 15.2 even 4
84.3.c.a.29.2 yes 4 5.2 odd 4
336.3.d.a.113.3 4 20.7 even 4
336.3.d.a.113.4 4 60.47 odd 4
588.3.c.h.197.3 4 35.27 even 4
588.3.c.h.197.4 4 105.62 odd 4
588.3.p.f.557.1 8 35.2 odd 12
588.3.p.f.557.4 8 105.2 even 12
588.3.p.f.569.1 8 105.32 even 12
588.3.p.f.569.4 8 35.32 odd 12
588.3.p.h.557.1 8 105.47 odd 12
588.3.p.h.557.4 8 35.12 even 12
588.3.p.h.569.1 8 35.17 even 12
588.3.p.h.569.4 8 105.17 odd 12
1344.3.d.a.449.3 4 40.37 odd 4
1344.3.d.a.449.4 4 120.77 even 4
1344.3.d.g.449.1 4 120.107 odd 4
1344.3.d.g.449.2 4 40.27 even 4
2100.3.e.a.449.1 8 15.14 odd 2 inner
2100.3.e.a.449.2 8 1.1 even 1 trivial
2100.3.e.a.449.7 8 5.4 even 2 inner
2100.3.e.a.449.8 8 3.2 odd 2 inner
2100.3.g.a.701.3 4 5.3 odd 4
2100.3.g.a.701.4 4 15.8 even 4
2268.3.bg.a.701.2 8 45.7 odd 12
2268.3.bg.a.701.3 8 45.2 even 12
2268.3.bg.a.2213.2 8 45.32 even 12
2268.3.bg.a.2213.3 8 45.22 odd 12