Properties

Label 588.3.p.f.557.4
Level $588$
Weight $3$
Character 588.557
Analytic conductor $16.022$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(557,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.557"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-6,0,0,0,0,0,4,0,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.1090537426944.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 4x^{6} - 44x^{5} + 71x^{4} + 196x^{3} + 28x^{2} + 294x + 441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 557.4
Root \(-1.68211 + 3.07604i\) of defining polynomial
Character \(\chi\) \(=\) 588.557
Dual form 588.3.p.f.569.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.50498 + 1.65078i) q^{3} +(-3.34957 + 1.93387i) q^{5} +(3.54987 + 8.27034i) q^{9} +(12.2117 + 7.05043i) q^{11} +20.2288 q^{13} +(-11.5830 - 0.685072i) q^{15} +(-18.9108 - 10.9182i) q^{17} +(-3.46863 - 6.00784i) q^{19} +(-6.69914 + 3.86775i) q^{23} +(-5.02026 + 8.69534i) q^{25} +(-4.76013 + 26.5771i) q^{27} +37.3073i q^{29} +(-7.64575 + 13.2428i) q^{31} +(18.9514 + 37.8200i) q^{33} +(6.06275 + 10.5010i) q^{37} +(50.6727 + 33.3932i) q^{39} +42.3026i q^{41} +16.1255 q^{43} +(-27.8843 - 20.8371i) q^{45} +(-62.2451 + 35.9372i) q^{47} +(-29.3478 - 58.5674i) q^{51} +(87.8550 + 50.7231i) q^{53} -54.5385 q^{55} +(1.22876 - 20.7755i) q^{57} +(-22.2604 - 12.8520i) q^{59} +(-39.0516 - 67.6394i) q^{61} +(-67.7576 + 39.1199i) q^{65} +(61.5830 - 106.665i) q^{67} +(-23.1660 - 1.37014i) q^{69} +34.5671i q^{71} +(50.2693 - 87.0689i) q^{73} +(-26.9297 + 13.4943i) q^{75} +(21.2915 + 36.8780i) q^{79} +(-55.7969 + 58.7172i) q^{81} +82.1075i q^{83} +84.4575 q^{85} +(-61.5861 + 93.4542i) q^{87} +(36.6351 - 21.1513i) q^{89} +(-41.0134 + 20.5516i) q^{93} +(23.2368 + 13.4158i) q^{95} +48.3320 q^{97} +(-14.9595 + 126.023i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} + 4 q^{9} + 56 q^{13} - 8 q^{15} + 4 q^{19} + 108 q^{25} + 36 q^{27} - 40 q^{31} + 116 q^{33} + 112 q^{37} + 28 q^{39} + 256 q^{43} - 100 q^{45} - 124 q^{51} + 368 q^{55} - 96 q^{57} - 196 q^{61}+ \cdots - 416 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.50498 + 1.65078i 0.834994 + 0.550259i
\(4\) 0 0
\(5\) −3.34957 + 1.93387i −0.669914 + 0.386775i −0.796044 0.605239i \(-0.793078\pi\)
0.126130 + 0.992014i \(0.459744\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 3.54987 + 8.27034i 0.394430 + 0.918926i
\(10\) 0 0
\(11\) 12.2117 + 7.05043i 1.11015 + 0.640948i 0.938869 0.344274i \(-0.111875\pi\)
0.171285 + 0.985222i \(0.445208\pi\)
\(12\) 0 0
\(13\) 20.2288 1.55606 0.778029 0.628228i \(-0.216220\pi\)
0.778029 + 0.628228i \(0.216220\pi\)
\(14\) 0 0
\(15\) −11.5830 0.685072i −0.772200 0.0456715i
\(16\) 0 0
\(17\) −18.9108 10.9182i −1.11240 0.642246i −0.172951 0.984930i \(-0.555330\pi\)
−0.939450 + 0.342685i \(0.888664\pi\)
\(18\) 0 0
\(19\) −3.46863 6.00784i −0.182559 0.316202i 0.760192 0.649698i \(-0.225105\pi\)
−0.942751 + 0.333496i \(0.891771\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.69914 + 3.86775i −0.291267 + 0.168163i −0.638513 0.769611i \(-0.720450\pi\)
0.347246 + 0.937774i \(0.387117\pi\)
\(24\) 0 0
\(25\) −5.02026 + 8.69534i −0.200810 + 0.347814i
\(26\) 0 0
\(27\) −4.76013 + 26.5771i −0.176301 + 0.984336i
\(28\) 0 0
\(29\) 37.3073i 1.28646i 0.765673 + 0.643230i \(0.222406\pi\)
−0.765673 + 0.643230i \(0.777594\pi\)
\(30\) 0 0
\(31\) −7.64575 + 13.2428i −0.246637 + 0.427188i −0.962591 0.270960i \(-0.912659\pi\)
0.715953 + 0.698148i \(0.245992\pi\)
\(32\) 0 0
\(33\) 18.9514 + 37.8200i 0.574285 + 1.14606i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.06275 + 10.5010i 0.163858 + 0.283810i 0.936249 0.351337i \(-0.114273\pi\)
−0.772391 + 0.635147i \(0.780939\pi\)
\(38\) 0 0
\(39\) 50.6727 + 33.3932i 1.29930 + 0.856235i
\(40\) 0 0
\(41\) 42.3026i 1.03177i 0.856658 + 0.515885i \(0.172537\pi\)
−0.856658 + 0.515885i \(0.827463\pi\)
\(42\) 0 0
\(43\) 16.1255 0.375011 0.187506 0.982264i \(-0.439960\pi\)
0.187506 + 0.982264i \(0.439960\pi\)
\(44\) 0 0
\(45\) −27.8843 20.8371i −0.619651 0.463046i
\(46\) 0 0
\(47\) −62.2451 + 35.9372i −1.32436 + 0.764621i −0.984421 0.175825i \(-0.943741\pi\)
−0.339941 + 0.940447i \(0.610407\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −29.3478 58.5674i −0.575447 1.14838i
\(52\) 0 0
\(53\) 87.8550 + 50.7231i 1.65764 + 0.957040i 0.973799 + 0.227411i \(0.0730261\pi\)
0.683843 + 0.729629i \(0.260307\pi\)
\(54\) 0 0
\(55\) −54.5385 −0.991610
\(56\) 0 0
\(57\) 1.22876 20.7755i 0.0215571 0.364482i
\(58\) 0 0
\(59\) −22.2604 12.8520i −0.377295 0.217831i 0.299346 0.954145i \(-0.403232\pi\)
−0.676641 + 0.736313i \(0.736565\pi\)
\(60\) 0 0
\(61\) −39.0516 67.6394i −0.640191 1.10884i −0.985390 0.170313i \(-0.945522\pi\)
0.345199 0.938529i \(-0.387811\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −67.7576 + 39.1199i −1.04242 + 0.601844i
\(66\) 0 0
\(67\) 61.5830 106.665i 0.919149 1.59201i 0.118439 0.992961i \(-0.462211\pi\)
0.800710 0.599052i \(-0.204456\pi\)
\(68\) 0 0
\(69\) −23.1660 1.37014i −0.335739 0.0198572i
\(70\) 0 0
\(71\) 34.5671i 0.486860i 0.969918 + 0.243430i \(0.0782726\pi\)
−0.969918 + 0.243430i \(0.921727\pi\)
\(72\) 0 0
\(73\) 50.2693 87.0689i 0.688620 1.19273i −0.283664 0.958924i \(-0.591550\pi\)
0.972284 0.233801i \(-0.0751166\pi\)
\(74\) 0 0
\(75\) −26.9297 + 13.4943i −0.359063 + 0.179925i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 21.2915 + 36.8780i 0.269513 + 0.466810i 0.968736 0.248094i \(-0.0798040\pi\)
−0.699223 + 0.714903i \(0.746471\pi\)
\(80\) 0 0
\(81\) −55.7969 + 58.7172i −0.688850 + 0.724904i
\(82\) 0 0
\(83\) 82.1075i 0.989247i 0.869107 + 0.494623i \(0.164694\pi\)
−0.869107 + 0.494623i \(0.835306\pi\)
\(84\) 0 0
\(85\) 84.4575 0.993618
\(86\) 0 0
\(87\) −61.5861 + 93.4542i −0.707886 + 1.07419i
\(88\) 0 0
\(89\) 36.6351 21.1513i 0.411630 0.237655i −0.279860 0.960041i \(-0.590288\pi\)
0.691490 + 0.722386i \(0.256955\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −41.0134 + 20.5516i −0.441005 + 0.220985i
\(94\) 0 0
\(95\) 23.2368 + 13.4158i 0.244598 + 0.141219i
\(96\) 0 0
\(97\) 48.3320 0.498268 0.249134 0.968469i \(-0.419854\pi\)
0.249134 + 0.968469i \(0.419854\pi\)
\(98\) 0 0
\(99\) −14.9595 + 126.023i −0.151106 + 1.27296i
\(100\) 0 0
\(101\) −69.9206 40.3687i −0.692283 0.399690i 0.112184 0.993687i \(-0.464216\pi\)
−0.804467 + 0.593998i \(0.797549\pi\)
\(102\) 0 0
\(103\) −24.1255 41.7866i −0.234228 0.405695i 0.724820 0.688938i \(-0.241923\pi\)
−0.959048 + 0.283243i \(0.908590\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 170.197 98.2636i 1.59063 0.918351i 0.597432 0.801920i \(-0.296188\pi\)
0.993199 0.116432i \(-0.0371456\pi\)
\(108\) 0 0
\(109\) 26.6458 46.1518i 0.244456 0.423411i −0.717522 0.696536i \(-0.754724\pi\)
0.961979 + 0.273125i \(0.0880572\pi\)
\(110\) 0 0
\(111\) −2.14772 + 36.3130i −0.0193488 + 0.327144i
\(112\) 0 0
\(113\) 140.124i 1.24003i −0.784589 0.620017i \(-0.787126\pi\)
0.784589 0.620017i \(-0.212874\pi\)
\(114\) 0 0
\(115\) 14.9595 25.9106i 0.130082 0.225309i
\(116\) 0 0
\(117\) 71.8094 + 167.299i 0.613756 + 1.42990i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 38.9170 + 67.4062i 0.321628 + 0.557076i
\(122\) 0 0
\(123\) −69.8321 + 105.967i −0.567741 + 0.861521i
\(124\) 0 0
\(125\) 135.528i 1.08422i
\(126\) 0 0
\(127\) −115.579 −0.910071 −0.455036 0.890473i \(-0.650374\pi\)
−0.455036 + 0.890473i \(0.650374\pi\)
\(128\) 0 0
\(129\) 40.3941 + 26.6196i 0.313132 + 0.206353i
\(130\) 0 0
\(131\) 71.5275 41.2964i 0.546012 0.315240i −0.201500 0.979488i \(-0.564582\pi\)
0.747512 + 0.664249i \(0.231248\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −35.4524 98.2273i −0.262610 0.727609i
\(136\) 0 0
\(137\) −133.142 76.8696i −0.971840 0.561092i −0.0720432 0.997402i \(-0.522952\pi\)
−0.899797 + 0.436309i \(0.856285\pi\)
\(138\) 0 0
\(139\) 220.516 1.58645 0.793224 0.608930i \(-0.208401\pi\)
0.793224 + 0.608930i \(0.208401\pi\)
\(140\) 0 0
\(141\) −215.247 12.7307i −1.52657 0.0902887i
\(142\) 0 0
\(143\) 247.027 + 142.621i 1.72746 + 0.997352i
\(144\) 0 0
\(145\) −72.1477 124.964i −0.497570 0.861817i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −168.245 + 97.1361i −1.12916 + 0.651920i −0.943723 0.330736i \(-0.892703\pi\)
−0.185436 + 0.982656i \(0.559370\pi\)
\(150\) 0 0
\(151\) −64.0405 + 110.921i −0.424109 + 0.734579i −0.996337 0.0855160i \(-0.972746\pi\)
0.572227 + 0.820095i \(0.306079\pi\)
\(152\) 0 0
\(153\) 23.1660 195.157i 0.151412 1.27554i
\(154\) 0 0
\(155\) 59.1437i 0.381572i
\(156\) 0 0
\(157\) −73.8412 + 127.897i −0.470326 + 0.814628i −0.999424 0.0339322i \(-0.989197\pi\)
0.529098 + 0.848561i \(0.322530\pi\)
\(158\) 0 0
\(159\) 136.343 + 272.090i 0.857501 + 1.71126i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 105.184 + 182.185i 0.645302 + 1.11770i 0.984232 + 0.176885i \(0.0566020\pi\)
−0.338929 + 0.940812i \(0.610065\pi\)
\(164\) 0 0
\(165\) −136.618 90.0310i −0.827988 0.545642i
\(166\) 0 0
\(167\) 85.0905i 0.509524i −0.967004 0.254762i \(-0.918003\pi\)
0.967004 0.254762i \(-0.0819971\pi\)
\(168\) 0 0
\(169\) 240.203 1.42132
\(170\) 0 0
\(171\) 37.3737 50.0137i 0.218559 0.292478i
\(172\) 0 0
\(173\) 80.9457 46.7340i 0.467894 0.270139i −0.247464 0.968897i \(-0.579597\pi\)
0.715358 + 0.698758i \(0.246264\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −34.5460 68.9411i −0.195175 0.389498i
\(178\) 0 0
\(179\) −170.197 98.2636i −0.950824 0.548958i −0.0574872 0.998346i \(-0.518309\pi\)
−0.893337 + 0.449388i \(0.851642\pi\)
\(180\) 0 0
\(181\) −164.022 −0.906200 −0.453100 0.891460i \(-0.649682\pi\)
−0.453100 + 0.891460i \(0.649682\pi\)
\(182\) 0 0
\(183\) 13.8340 233.901i 0.0755956 1.27815i
\(184\) 0 0
\(185\) −40.6152 23.4492i −0.219541 0.126752i
\(186\) 0 0
\(187\) −153.956 266.659i −0.823292 1.42598i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 199.367 115.105i 1.04381 0.602642i 0.122898 0.992419i \(-0.460781\pi\)
0.920909 + 0.389777i \(0.127448\pi\)
\(192\) 0 0
\(193\) 92.3098 159.885i 0.478289 0.828421i −0.521401 0.853312i \(-0.674590\pi\)
0.999690 + 0.0248907i \(0.00792378\pi\)
\(194\) 0 0
\(195\) −234.310 13.8582i −1.20159 0.0710675i
\(196\) 0 0
\(197\) 91.4558i 0.464243i 0.972687 + 0.232121i \(0.0745667\pi\)
−0.972687 + 0.232121i \(0.925433\pi\)
\(198\) 0 0
\(199\) 101.875 176.452i 0.511932 0.886693i −0.487972 0.872859i \(-0.662263\pi\)
0.999904 0.0138334i \(-0.00440344\pi\)
\(200\) 0 0
\(201\) 330.344 165.534i 1.64350 0.823551i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −81.8078 141.695i −0.399063 0.691197i
\(206\) 0 0
\(207\) −55.7686 41.6741i −0.269414 0.201324i
\(208\) 0 0
\(209\) 97.8212i 0.468044i
\(210\) 0 0
\(211\) 188.243 0.892147 0.446074 0.894996i \(-0.352822\pi\)
0.446074 + 0.894996i \(0.352822\pi\)
\(212\) 0 0
\(213\) −57.0625 + 86.5898i −0.267899 + 0.406525i
\(214\) 0 0
\(215\) −54.0134 + 31.1847i −0.251225 + 0.145045i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 269.655 135.123i 1.23130 0.616999i
\(220\) 0 0
\(221\) −382.543 220.861i −1.73096 0.999371i
\(222\) 0 0
\(223\) 154.125 0.691146 0.345573 0.938392i \(-0.387685\pi\)
0.345573 + 0.938392i \(0.387685\pi\)
\(224\) 0 0
\(225\) −89.7347 10.6519i −0.398821 0.0473418i
\(226\) 0 0
\(227\) 202.296 + 116.796i 0.891174 + 0.514519i 0.874326 0.485339i \(-0.161304\pi\)
0.0168475 + 0.999858i \(0.494637\pi\)
\(228\) 0 0
\(229\) −137.635 238.390i −0.601025 1.04101i −0.992666 0.120887i \(-0.961426\pi\)
0.391642 0.920118i \(-0.371907\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −30.7022 + 17.7259i −0.131769 + 0.0760769i −0.564435 0.825477i \(-0.690906\pi\)
0.432666 + 0.901554i \(0.357573\pi\)
\(234\) 0 0
\(235\) 138.996 240.748i 0.591473 1.02446i
\(236\) 0 0
\(237\) −7.54249 + 127.526i −0.0318248 + 0.538085i
\(238\) 0 0
\(239\) 56.8888i 0.238028i 0.992893 + 0.119014i \(0.0379734\pi\)
−0.992893 + 0.119014i \(0.962027\pi\)
\(240\) 0 0
\(241\) 104.875 181.648i 0.435164 0.753726i −0.562145 0.827039i \(-0.690024\pi\)
0.997309 + 0.0733126i \(0.0233571\pi\)
\(242\) 0 0
\(243\) −236.699 + 54.9772i −0.974071 + 0.226244i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −70.1660 121.531i −0.284073 0.492029i
\(248\) 0 0
\(249\) −135.541 + 205.678i −0.544342 + 0.826015i
\(250\) 0 0
\(251\) 77.1123i 0.307220i −0.988132 0.153610i \(-0.950910\pi\)
0.988132 0.153610i \(-0.0490900\pi\)
\(252\) 0 0
\(253\) −109.077 −0.431135
\(254\) 0 0
\(255\) 211.565 + 139.421i 0.829665 + 0.546747i
\(256\) 0 0
\(257\) 137.122 79.1675i 0.533549 0.308045i −0.208911 0.977935i \(-0.566992\pi\)
0.742461 + 0.669890i \(0.233659\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −308.544 + 132.436i −1.18216 + 0.507418i
\(262\) 0 0
\(263\) 130.003 + 75.0571i 0.494307 + 0.285388i 0.726359 0.687315i \(-0.241211\pi\)
−0.232053 + 0.972703i \(0.574544\pi\)
\(264\) 0 0
\(265\) −392.369 −1.48064
\(266\) 0 0
\(267\) 126.686 + 7.49281i 0.474480 + 0.0280630i
\(268\) 0 0
\(269\) −165.241 95.4019i −0.614279 0.354654i 0.160359 0.987059i \(-0.448735\pi\)
−0.774638 + 0.632405i \(0.782068\pi\)
\(270\) 0 0
\(271\) 171.225 + 296.570i 0.631826 + 1.09435i 0.987178 + 0.159622i \(0.0510276\pi\)
−0.355352 + 0.934732i \(0.615639\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −122.612 + 70.7899i −0.445861 + 0.257418i
\(276\) 0 0
\(277\) 46.6235 80.7543i 0.168316 0.291532i −0.769512 0.638632i \(-0.779500\pi\)
0.937828 + 0.347101i \(0.112834\pi\)
\(278\) 0 0
\(279\) −136.664 16.2226i −0.489835 0.0581456i
\(280\) 0 0
\(281\) 251.075i 0.893505i −0.894657 0.446753i \(-0.852580\pi\)
0.894657 0.446753i \(-0.147420\pi\)
\(282\) 0 0
\(283\) −8.32484 + 14.4191i −0.0294164 + 0.0509507i −0.880359 0.474308i \(-0.842698\pi\)
0.850942 + 0.525259i \(0.176032\pi\)
\(284\) 0 0
\(285\) 36.0613 + 71.9651i 0.126531 + 0.252509i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 93.9131 + 162.662i 0.324959 + 0.562845i
\(290\) 0 0
\(291\) 121.071 + 79.7854i 0.416051 + 0.274177i
\(292\) 0 0
\(293\) 307.322i 1.04888i −0.851448 0.524440i \(-0.824275\pi\)
0.851448 0.524440i \(-0.175725\pi\)
\(294\) 0 0
\(295\) 99.4170 0.337007
\(296\) 0 0
\(297\) −245.509 + 290.990i −0.826630 + 0.979765i
\(298\) 0 0
\(299\) −135.515 + 78.2398i −0.453228 + 0.261671i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −108.510 216.546i −0.358119 0.714674i
\(304\) 0 0
\(305\) 261.612 + 151.042i 0.857745 + 0.495219i
\(306\) 0 0
\(307\) 126.775 0.412948 0.206474 0.978452i \(-0.433801\pi\)
0.206474 + 0.978452i \(0.433801\pi\)
\(308\) 0 0
\(309\) 8.54642 144.500i 0.0276583 0.467639i
\(310\) 0 0
\(311\) −284.849 164.458i −0.915913 0.528803i −0.0335844 0.999436i \(-0.510692\pi\)
−0.882329 + 0.470633i \(0.844026\pi\)
\(312\) 0 0
\(313\) 129.642 + 224.546i 0.414191 + 0.717400i 0.995343 0.0963950i \(-0.0307312\pi\)
−0.581152 + 0.813795i \(0.697398\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.46537 + 4.31014i −0.0235501 + 0.0135966i −0.511729 0.859147i \(-0.670995\pi\)
0.488179 + 0.872744i \(0.337661\pi\)
\(318\) 0 0
\(319\) −263.033 + 455.586i −0.824554 + 1.42817i
\(320\) 0 0
\(321\) 588.553 + 34.8097i 1.83350 + 0.108442i
\(322\) 0 0
\(323\) 151.484i 0.468992i
\(324\) 0 0
\(325\) −101.554 + 175.896i −0.312473 + 0.541218i
\(326\) 0 0
\(327\) 142.933 71.6232i 0.437105 0.219031i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 237.184 + 410.815i 0.716569 + 1.24113i 0.962351 + 0.271809i \(0.0876218\pi\)
−0.245782 + 0.969325i \(0.579045\pi\)
\(332\) 0 0
\(333\) −65.3247 + 87.4180i −0.196170 + 0.262517i
\(334\) 0 0
\(335\) 476.375i 1.42202i
\(336\) 0 0
\(337\) −609.195 −1.80770 −0.903850 0.427850i \(-0.859271\pi\)
−0.903850 + 0.427850i \(0.859271\pi\)
\(338\) 0 0
\(339\) 231.313 351.007i 0.682340 1.03542i
\(340\) 0 0
\(341\) −186.735 + 107.812i −0.547610 + 0.316163i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 80.2458 40.2108i 0.232597 0.116553i
\(346\) 0 0
\(347\) 369.911 + 213.568i 1.06602 + 0.615470i 0.927093 0.374832i \(-0.122300\pi\)
0.138932 + 0.990302i \(0.455633\pi\)
\(348\) 0 0
\(349\) 316.759 0.907620 0.453810 0.891098i \(-0.350064\pi\)
0.453810 + 0.891098i \(0.350064\pi\)
\(350\) 0 0
\(351\) −96.2915 + 537.621i −0.274335 + 1.53168i
\(352\) 0 0
\(353\) 74.8771 + 43.2303i 0.212116 + 0.122465i 0.602295 0.798274i \(-0.294253\pi\)
−0.390178 + 0.920739i \(0.627587\pi\)
\(354\) 0 0
\(355\) −66.8483 115.785i −0.188305 0.326154i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 247.868 143.107i 0.690440 0.398626i −0.113337 0.993557i \(-0.536154\pi\)
0.803777 + 0.594931i \(0.202821\pi\)
\(360\) 0 0
\(361\) 156.437 270.957i 0.433344 0.750574i
\(362\) 0 0
\(363\) −13.7863 + 233.095i −0.0379788 + 0.642134i
\(364\) 0 0
\(365\) 388.858i 1.06536i
\(366\) 0 0
\(367\) −55.8078 + 96.6620i −0.152065 + 0.263384i −0.931986 0.362493i \(-0.881926\pi\)
0.779922 + 0.625877i \(0.215259\pi\)
\(368\) 0 0
\(369\) −349.856 + 150.168i −0.948120 + 0.406961i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −42.5425 73.6857i −0.114055 0.197549i 0.803347 0.595512i \(-0.203051\pi\)
−0.917402 + 0.397963i \(0.869717\pi\)
\(374\) 0 0
\(375\) 223.726 339.495i 0.596604 0.905320i
\(376\) 0 0
\(377\) 754.681i 2.00181i
\(378\) 0 0
\(379\) −26.5464 −0.0700433 −0.0350217 0.999387i \(-0.511150\pi\)
−0.0350217 + 0.999387i \(0.511150\pi\)
\(380\) 0 0
\(381\) −289.523 190.795i −0.759904 0.500775i
\(382\) 0 0
\(383\) −100.067 + 57.7735i −0.261271 + 0.150845i −0.624914 0.780693i \(-0.714866\pi\)
0.363643 + 0.931538i \(0.381533\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 57.2434 + 133.363i 0.147916 + 0.344608i
\(388\) 0 0
\(389\) 334.042 + 192.859i 0.858719 + 0.495782i 0.863583 0.504206i \(-0.168215\pi\)
−0.00486402 + 0.999988i \(0.501548\pi\)
\(390\) 0 0
\(391\) 168.915 0.432008
\(392\) 0 0
\(393\) 247.346 + 14.6292i 0.629380 + 0.0372244i
\(394\) 0 0
\(395\) −142.635 82.3502i −0.361101 0.208481i
\(396\) 0 0
\(397\) −23.7967 41.2171i −0.0599413 0.103821i 0.834498 0.551012i \(-0.185758\pi\)
−0.894439 + 0.447190i \(0.852425\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −397.127 + 229.282i −0.990343 + 0.571775i −0.905377 0.424609i \(-0.860412\pi\)
−0.0849661 + 0.996384i \(0.527078\pi\)
\(402\) 0 0
\(403\) −154.664 + 267.886i −0.383782 + 0.664729i
\(404\) 0 0
\(405\) 73.3438 304.581i 0.181096 0.752053i
\(406\) 0 0
\(407\) 170.980i 0.420098i
\(408\) 0 0
\(409\) 28.9333 50.1140i 0.0707416 0.122528i −0.828485 0.560011i \(-0.810797\pi\)
0.899227 + 0.437483i \(0.144130\pi\)
\(410\) 0 0
\(411\) −206.624 412.345i −0.502734 1.00327i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −158.786 275.025i −0.382616 0.662710i
\(416\) 0 0
\(417\) 552.389 + 364.023i 1.32467 + 0.872958i
\(418\) 0 0
\(419\) 115.304i 0.275190i 0.990489 + 0.137595i \(0.0439372\pi\)
−0.990489 + 0.137595i \(0.956063\pi\)
\(420\) 0 0
\(421\) 622.664 1.47901 0.739506 0.673150i \(-0.235059\pi\)
0.739506 + 0.673150i \(0.235059\pi\)
\(422\) 0 0
\(423\) −518.174 387.215i −1.22500 0.915402i
\(424\) 0 0
\(425\) 189.875 109.624i 0.446764 0.257939i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 383.363 + 765.051i 0.893620 + 1.78334i
\(430\) 0 0
\(431\) 147.801 + 85.3332i 0.342927 + 0.197989i 0.661565 0.749887i \(-0.269892\pi\)
−0.318639 + 0.947876i \(0.603226\pi\)
\(432\) 0 0
\(433\) −251.992 −0.581968 −0.290984 0.956728i \(-0.593983\pi\)
−0.290984 + 0.956728i \(0.593983\pi\)
\(434\) 0 0
\(435\) 25.5582 432.131i 0.0587546 0.993405i
\(436\) 0 0
\(437\) 46.4736 + 26.8316i 0.106347 + 0.0613994i
\(438\) 0 0
\(439\) 226.044 + 391.520i 0.514908 + 0.891846i 0.999850 + 0.0173003i \(0.00550712\pi\)
−0.484943 + 0.874546i \(0.661160\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −94.5542 + 54.5909i −0.213441 + 0.123230i −0.602909 0.797810i \(-0.705992\pi\)
0.389469 + 0.921040i \(0.372659\pi\)
\(444\) 0 0
\(445\) −81.8078 + 141.695i −0.183838 + 0.318416i
\(446\) 0 0
\(447\) −581.800 34.4103i −1.30157 0.0769806i
\(448\) 0 0
\(449\) 565.005i 1.25836i −0.777259 0.629181i \(-0.783390\pi\)
0.777259 0.629181i \(-0.216610\pi\)
\(450\) 0 0
\(451\) −298.251 + 516.586i −0.661310 + 1.14542i
\(452\) 0 0
\(453\) −343.527 + 172.140i −0.758338 + 0.379999i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −297.852 515.895i −0.651756 1.12887i −0.982697 0.185222i \(-0.940699\pi\)
0.330941 0.943651i \(-0.392634\pi\)
\(458\) 0 0
\(459\) 380.191 450.623i 0.828303 0.981749i
\(460\) 0 0
\(461\) 445.590i 0.966573i −0.875462 0.483286i \(-0.839443\pi\)
0.875462 0.483286i \(-0.160557\pi\)
\(462\) 0 0
\(463\) −333.919 −0.721207 −0.360604 0.932719i \(-0.617429\pi\)
−0.360604 + 0.932719i \(0.617429\pi\)
\(464\) 0 0
\(465\) 97.6331 148.154i 0.209964 0.318610i
\(466\) 0 0
\(467\) −388.191 + 224.122i −0.831244 + 0.479919i −0.854278 0.519816i \(-0.826001\pi\)
0.0230345 + 0.999735i \(0.492667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −396.100 + 198.483i −0.840976 + 0.421409i
\(472\) 0 0
\(473\) 196.920 + 113.692i 0.416320 + 0.240363i
\(474\) 0 0
\(475\) 69.6536 0.146639
\(476\) 0 0
\(477\) −107.624 + 906.651i −0.225626 + 1.90074i
\(478\) 0 0
\(479\) 11.8658 + 6.85072i 0.0247720 + 0.0143021i 0.512335 0.858786i \(-0.328781\pi\)
−0.487563 + 0.873088i \(0.662114\pi\)
\(480\) 0 0
\(481\) 122.642 + 212.422i 0.254973 + 0.441625i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −161.891 + 93.4681i −0.333797 + 0.192718i
\(486\) 0 0
\(487\) −5.62746 + 9.74705i −0.0115554 + 0.0200145i −0.871745 0.489959i \(-0.837012\pi\)
0.860190 + 0.509974i \(0.170345\pi\)
\(488\) 0 0
\(489\) −37.2614 + 630.005i −0.0761992 + 1.28835i
\(490\) 0 0
\(491\) 285.642i 0.581756i −0.956760 0.290878i \(-0.906053\pi\)
0.956760 0.290878i \(-0.0939473\pi\)
\(492\) 0 0
\(493\) 407.328 705.513i 0.826223 1.43106i
\(494\) 0 0
\(495\) −193.605 451.052i −0.391120 0.911216i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −390.409 676.208i −0.782383 1.35513i −0.930550 0.366165i \(-0.880671\pi\)
0.148167 0.988962i \(-0.452663\pi\)
\(500\) 0 0
\(501\) 140.465 213.150i 0.280370 0.425449i
\(502\) 0 0
\(503\) 420.771i 0.836522i 0.908327 + 0.418261i \(0.137360\pi\)
−0.908327 + 0.418261i \(0.862640\pi\)
\(504\) 0 0
\(505\) 312.272 0.618360
\(506\) 0 0
\(507\) 601.703 + 396.521i 1.18679 + 0.782093i
\(508\) 0 0
\(509\) −89.1773 + 51.4866i −0.175201 + 0.101152i −0.585036 0.811007i \(-0.698920\pi\)
0.409835 + 0.912160i \(0.365586\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 176.182 63.5879i 0.343435 0.123953i
\(514\) 0 0
\(515\) 161.620 + 93.3113i 0.313825 + 0.181187i
\(516\) 0 0
\(517\) −1013.49 −1.96033
\(518\) 0 0
\(519\) 279.915 + 16.5555i 0.539335 + 0.0318988i
\(520\) 0 0
\(521\) −66.4966 38.3918i −0.127633 0.0736887i 0.434824 0.900515i \(-0.356810\pi\)
−0.562457 + 0.826827i \(0.690144\pi\)
\(522\) 0 0
\(523\) 202.280 + 350.360i 0.386769 + 0.669904i 0.992013 0.126136i \(-0.0402576\pi\)
−0.605244 + 0.796040i \(0.706924\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 289.175 166.955i 0.548719 0.316803i
\(528\) 0 0
\(529\) −234.581 + 406.306i −0.443442 + 0.768065i
\(530\) 0 0
\(531\) 27.2693 229.724i 0.0513546 0.432625i
\(532\) 0 0
\(533\) 855.728i 1.60549i
\(534\) 0 0
\(535\) −380.059 + 658.281i −0.710390 + 1.23043i
\(536\) 0 0
\(537\) −264.130 527.107i −0.491863 0.981577i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −296.454 513.473i −0.547973 0.949118i −0.998413 0.0563109i \(-0.982066\pi\)
0.450440 0.892807i \(-0.351267\pi\)
\(542\) 0 0
\(543\) −410.873 270.764i −0.756672 0.498645i
\(544\) 0 0
\(545\) 206.118i 0.378198i
\(546\) 0 0
\(547\) −793.689 −1.45099 −0.725493 0.688230i \(-0.758388\pi\)
−0.725493 + 0.688230i \(0.758388\pi\)
\(548\) 0 0
\(549\) 420.772 563.081i 0.766434 1.02565i
\(550\) 0 0
\(551\) 224.136 129.405i 0.406781 0.234855i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −63.0309 125.786i −0.113569 0.226642i
\(556\) 0 0
\(557\) −319.531 184.482i −0.573665 0.331206i 0.184947 0.982749i \(-0.440789\pi\)
−0.758612 + 0.651543i \(0.774122\pi\)
\(558\) 0 0
\(559\) 326.199 0.583540
\(560\) 0 0
\(561\) 54.5385 922.122i 0.0972167 1.64371i
\(562\) 0 0
\(563\) −458.816 264.898i −0.814949 0.470511i 0.0337223 0.999431i \(-0.489264\pi\)
−0.848672 + 0.528920i \(0.822597\pi\)
\(564\) 0 0
\(565\) 270.982 + 469.354i 0.479614 + 0.830715i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 924.949 534.020i 1.62557 0.938523i 0.640177 0.768227i \(-0.278861\pi\)
0.985393 0.170296i \(-0.0544724\pi\)
\(570\) 0 0
\(571\) 59.0954 102.356i 0.103495 0.179258i −0.809628 0.586944i \(-0.800331\pi\)
0.913122 + 0.407686i \(0.133664\pi\)
\(572\) 0 0
\(573\) 689.423 + 40.7757i 1.20318 + 0.0711618i
\(574\) 0 0
\(575\) 77.6684i 0.135075i
\(576\) 0 0
\(577\) −293.280 + 507.975i −0.508284 + 0.880373i 0.491670 + 0.870781i \(0.336387\pi\)
−0.999954 + 0.00959175i \(0.996947\pi\)
\(578\) 0 0
\(579\) 495.169 248.127i 0.855215 0.428544i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 715.239 + 1238.83i 1.22683 + 2.12492i
\(584\) 0 0
\(585\) −564.065 421.508i −0.964214 0.720526i
\(586\) 0 0
\(587\) 809.558i 1.37914i −0.724217 0.689572i \(-0.757799\pi\)
0.724217 0.689572i \(-0.242201\pi\)
\(588\) 0 0
\(589\) 106.081 0.180104
\(590\) 0 0
\(591\) −150.973 + 229.095i −0.255454 + 0.387640i
\(592\) 0 0
\(593\) 415.964 240.157i 0.701457 0.404986i −0.106433 0.994320i \(-0.533943\pi\)
0.807890 + 0.589334i \(0.200610\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 546.476 273.836i 0.915371 0.458688i
\(598\) 0 0
\(599\) −334.882 193.344i −0.559069 0.322779i 0.193703 0.981060i \(-0.437950\pi\)
−0.752772 + 0.658282i \(0.771284\pi\)
\(600\) 0 0
\(601\) −474.369 −0.789299 −0.394649 0.918832i \(-0.629134\pi\)
−0.394649 + 0.918832i \(0.629134\pi\)
\(602\) 0 0
\(603\) 1100.77 + 130.666i 1.82548 + 0.216693i
\(604\) 0 0
\(605\) −260.710 150.521i −0.430926 0.248795i
\(606\) 0 0
\(607\) 217.099 + 376.027i 0.357660 + 0.619484i 0.987569 0.157184i \(-0.0502415\pi\)
−0.629910 + 0.776668i \(0.716908\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1259.14 + 726.965i −2.06079 + 1.18980i
\(612\) 0 0
\(613\) −307.391 + 532.417i −0.501453 + 0.868542i 0.498545 + 0.866864i \(0.333868\pi\)
−0.999999 + 0.00167886i \(0.999466\pi\)
\(614\) 0 0
\(615\) 28.9803 489.991i 0.0471225 0.796733i
\(616\) 0 0
\(617\) 527.697i 0.855263i −0.903953 0.427632i \(-0.859348\pi\)
0.903953 0.427632i \(-0.140652\pi\)
\(618\) 0 0
\(619\) 339.985 588.871i 0.549249 0.951327i −0.449078 0.893493i \(-0.648247\pi\)
0.998326 0.0578339i \(-0.0184194\pi\)
\(620\) 0 0
\(621\) −70.9047 196.455i −0.114178 0.316352i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 136.588 + 236.577i 0.218540 + 0.378522i
\(626\) 0 0
\(627\) 161.481 245.040i 0.257545 0.390814i
\(628\) 0 0
\(629\) 264.776i 0.420948i
\(630\) 0 0
\(631\) −929.239 −1.47265 −0.736323 0.676631i \(-0.763439\pi\)
−0.736323 + 0.676631i \(0.763439\pi\)
\(632\) 0 0
\(633\) 471.546 + 310.747i 0.744938 + 0.490912i
\(634\) 0 0
\(635\) 387.140 223.515i 0.609669 0.351993i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −285.881 + 122.708i −0.447388 + 0.192032i
\(640\) 0 0
\(641\) −691.890 399.463i −1.07939 0.623187i −0.148659 0.988889i \(-0.547496\pi\)
−0.930732 + 0.365702i \(0.880829\pi\)
\(642\) 0 0
\(643\) 306.051 0.475973 0.237987 0.971268i \(-0.423513\pi\)
0.237987 + 0.971268i \(0.423513\pi\)
\(644\) 0 0
\(645\) −186.782 11.0471i −0.289584 0.0171273i
\(646\) 0 0
\(647\) 741.774 + 428.263i 1.14648 + 0.661922i 0.948028 0.318188i \(-0.103074\pi\)
0.198455 + 0.980110i \(0.436408\pi\)
\(648\) 0 0
\(649\) −181.225 313.891i −0.279237 0.483653i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 528.737 305.266i 0.809705 0.467483i −0.0371487 0.999310i \(-0.511828\pi\)
0.846853 + 0.531827i \(0.178494\pi\)
\(654\) 0 0
\(655\) −159.724 + 276.651i −0.243854 + 0.422367i
\(656\) 0 0
\(657\) 898.539 + 106.661i 1.36764 + 0.162345i
\(658\) 0 0
\(659\) 41.3318i 0.0627190i 0.999508 + 0.0313595i \(0.00998367\pi\)
−0.999508 + 0.0313595i \(0.990016\pi\)
\(660\) 0 0
\(661\) −129.643 + 224.547i −0.196131 + 0.339709i −0.947271 0.320435i \(-0.896171\pi\)
0.751140 + 0.660143i \(0.229504\pi\)
\(662\) 0 0
\(663\) −593.670 1184.75i −0.895430 1.78695i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −144.295 249.927i −0.216335 0.374703i
\(668\) 0 0
\(669\) 386.082 + 254.427i 0.577102 + 0.380309i
\(670\) 0 0
\(671\) 1101.32i 1.64132i
\(672\) 0 0
\(673\) 113.498 0.168645 0.0843225 0.996439i \(-0.473127\pi\)
0.0843225 + 0.996439i \(0.473127\pi\)
\(674\) 0 0
\(675\) −207.200 174.815i −0.306963 0.258985i
\(676\) 0 0
\(677\) −1073.38 + 619.717i −1.58550 + 0.915387i −0.591461 + 0.806334i \(0.701449\pi\)
−0.994036 + 0.109053i \(0.965218\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 313.945 + 626.518i 0.461006 + 0.919997i
\(682\) 0 0
\(683\) −1114.21 643.288i −1.63134 0.941856i −0.983680 0.179928i \(-0.942413\pi\)
−0.647662 0.761927i \(-0.724253\pi\)
\(684\) 0 0
\(685\) 594.625 0.868065
\(686\) 0 0
\(687\) 48.7569 824.367i 0.0709707 1.19995i
\(688\) 0 0
\(689\) 1777.20 + 1026.07i 2.57939 + 1.48921i
\(690\) 0 0
\(691\) 444.139 + 769.272i 0.642748 + 1.11327i 0.984817 + 0.173598i \(0.0555393\pi\)
−0.342068 + 0.939675i \(0.611127\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −738.635 + 426.451i −1.06278 + 0.613598i
\(696\) 0 0
\(697\) 461.867 799.976i 0.662649 1.14774i
\(698\) 0 0
\(699\) −106.170 6.27938i −0.151888 0.00898338i
\(700\) 0 0
\(701\) 270.171i 0.385408i 0.981257 + 0.192704i \(0.0617257\pi\)
−0.981257 + 0.192704i \(0.938274\pi\)
\(702\) 0 0
\(703\) 42.0588 72.8480i 0.0598276 0.103624i
\(704\) 0 0
\(705\) 745.604 373.618i 1.05759 0.529955i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −40.9412 70.9122i −0.0577450 0.100017i 0.835708 0.549174i \(-0.185058\pi\)
−0.893453 + 0.449157i \(0.851724\pi\)
\(710\) 0 0
\(711\) −229.411 + 307.000i −0.322660 + 0.431786i
\(712\) 0 0
\(713\) 118.287i 0.165901i
\(714\) 0 0
\(715\) −1103.25 −1.54300
\(716\) 0 0
\(717\) −93.9107 + 142.505i −0.130977 + 0.198752i
\(718\) 0 0
\(719\) 589.375 340.276i 0.819715 0.473263i −0.0306031 0.999532i \(-0.509743\pi\)
0.850318 + 0.526269i \(0.176409\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 562.569 281.900i 0.778104 0.389904i
\(724\) 0 0
\(725\) −324.400 187.293i −0.447449 0.258335i
\(726\) 0 0
\(727\) 333.344 0.458520 0.229260 0.973365i \(-0.426369\pi\)
0.229260 + 0.973365i \(0.426369\pi\)
\(728\) 0 0
\(729\) −683.682 253.021i −0.937836 0.347079i
\(730\) 0 0
\(731\) −304.946 176.061i −0.417163 0.240849i
\(732\) 0 0
\(733\) 412.631 + 714.697i 0.562934 + 0.975030i 0.997239 + 0.0742643i \(0.0236609\pi\)
−0.434304 + 0.900766i \(0.643006\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1504.07 868.373i 2.04079 1.17825i
\(738\) 0 0
\(739\) −537.383 + 930.775i −0.727176 + 1.25951i 0.230896 + 0.972978i \(0.425834\pi\)
−0.958072 + 0.286527i \(0.907499\pi\)
\(740\) 0 0
\(741\) 24.8562 420.262i 0.0335442 0.567155i
\(742\) 0 0
\(743\) 171.465i 0.230774i −0.993321 0.115387i \(-0.963189\pi\)
0.993321 0.115387i \(-0.0368108\pi\)
\(744\) 0 0
\(745\) 375.698 650.728i 0.504293 0.873461i
\(746\) 0 0
\(747\) −679.057 + 291.471i −0.909045 + 0.390188i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −176.320 305.396i −0.234781 0.406652i 0.724428 0.689350i \(-0.242104\pi\)
−0.959209 + 0.282698i \(0.908770\pi\)
\(752\) 0 0
\(753\) 127.295 193.165i 0.169051 0.256527i
\(754\) 0 0
\(755\) 495.385i 0.656139i
\(756\) 0 0
\(757\) 624.790 0.825349 0.412675 0.910878i \(-0.364595\pi\)
0.412675 + 0.910878i \(0.364595\pi\)
\(758\) 0 0
\(759\) −273.236 180.062i −0.359995 0.237236i
\(760\) 0 0
\(761\) 466.912 269.572i 0.613551 0.354234i −0.160803 0.986987i \(-0.551408\pi\)
0.774354 + 0.632753i \(0.218075\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 299.813 + 698.492i 0.391912 + 0.913061i
\(766\) 0 0
\(767\) −450.300 259.981i −0.587093 0.338958i
\(768\) 0 0
\(769\) −357.409 −0.464771 −0.232386 0.972624i \(-0.574653\pi\)
−0.232386 + 0.972624i \(0.574653\pi\)
\(770\) 0 0
\(771\) 474.176 + 28.0450i 0.615015 + 0.0363748i
\(772\) 0 0
\(773\) −201.530 116.354i −0.260712 0.150522i 0.363947 0.931419i \(-0.381429\pi\)
−0.624659 + 0.780897i \(0.714762\pi\)
\(774\) 0 0
\(775\) −76.7673 132.965i −0.0990546 0.171568i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 254.147 146.732i 0.326248 0.188359i
\(780\) 0 0
\(781\) −243.712 + 422.122i −0.312052 + 0.540490i
\(782\) 0 0
\(783\) −991.520 177.588i −1.26631 0.226804i
\(784\) 0 0
\(785\) 571.198i 0.727641i
\(786\) 0 0
\(787\) −601.357 + 1041.58i −0.764114 + 1.32348i 0.176600 + 0.984283i \(0.443490\pi\)
−0.940714 + 0.339201i \(0.889843\pi\)
\(788\) 0 0
\(789\) 201.752 + 402.622i 0.255706 + 0.510294i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −789.966 1368.26i −0.996174 1.72542i
\(794\) 0 0
\(795\) −982.876 647.713i −1.23632 0.814734i
\(796\) 0 0
\(797\) 1108.42i 1.39074i 0.718654 + 0.695368i \(0.244758\pi\)
−0.718654 + 0.695368i \(0.755242\pi\)
\(798\) 0 0
\(799\) 1569.47 1.96430
\(800\) 0 0
\(801\) 304.978 + 227.900i 0.380746 + 0.284520i
\(802\) 0 0
\(803\) 1227.75 708.840i 1.52895 0.882739i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −256.438 511.756i −0.317767 0.634147i
\(808\) 0 0
\(809\) 750.921 + 433.544i 0.928209 + 0.535901i 0.886245 0.463218i \(-0.153305\pi\)
0.0419640 + 0.999119i \(0.486639\pi\)
\(810\) 0 0
\(811\) −1008.35 −1.24335 −0.621673 0.783277i \(-0.713547\pi\)
−0.621673 + 0.783277i \(0.713547\pi\)
\(812\) 0 0
\(813\) −60.6562 + 1025.56i −0.0746078 + 1.26145i
\(814\) 0 0
\(815\) −704.644 406.826i −0.864594 0.499174i
\(816\) 0 0
\(817\) −55.9333 96.8793i −0.0684618 0.118579i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1139.74 + 658.030i −1.38824 + 0.801499i −0.993116 0.117131i \(-0.962630\pi\)
−0.395120 + 0.918630i \(0.629297\pi\)
\(822\) 0 0
\(823\) 496.073 859.224i 0.602762 1.04401i −0.389639 0.920968i \(-0.627400\pi\)
0.992401 0.123047i \(-0.0392665\pi\)
\(824\) 0 0
\(825\) −423.999 25.0772i −0.513938 0.0303967i
\(826\) 0 0
\(827\) 39.2488i 0.0474593i −0.999718 0.0237296i \(-0.992446\pi\)
0.999718 0.0237296i \(-0.00755409\pi\)
\(828\) 0 0
\(829\) −541.870 + 938.546i −0.653643 + 1.13214i 0.328589 + 0.944473i \(0.393427\pi\)
−0.982232 + 0.187670i \(0.939907\pi\)
\(830\) 0 0
\(831\) 250.098 125.323i 0.300961 0.150810i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 164.554 + 285.016i 0.197071 + 0.341337i
\(836\) 0 0
\(837\) −315.561 266.239i −0.377014 0.318088i
\(838\) 0 0
\(839\) 570.971i 0.680537i 0.940328 + 0.340269i \(0.110518\pi\)
−0.940328 + 0.340269i \(0.889482\pi\)
\(840\) 0 0
\(841\) −550.838 −0.654980
\(842\) 0 0
\(843\) 414.469 628.938i 0.491660 0.746072i
\(844\) 0 0
\(845\) −804.575 + 464.522i −0.952160 + 0.549730i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −44.6562 + 22.3770i −0.0525986 + 0.0263569i
\(850\) 0 0
\(851\) −81.2303 46.8984i −0.0954528 0.0551097i
\(852\) 0 0
\(853\) −381.290 −0.446999 −0.223499 0.974704i \(-0.571748\pi\)
−0.223499 + 0.974704i \(0.571748\pi\)
\(854\) 0 0
\(855\) −28.4654 + 239.800i −0.0332929 + 0.280468i
\(856\) 0 0
\(857\) 296.640 + 171.265i 0.346138 + 0.199843i 0.662983 0.748634i \(-0.269290\pi\)
−0.316845 + 0.948477i \(0.602623\pi\)
\(858\) 0 0
\(859\) −261.025 452.109i −0.303871 0.526321i 0.673138 0.739517i \(-0.264946\pi\)
−0.977009 + 0.213196i \(0.931613\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −102.514 + 59.1867i −0.118788 + 0.0685825i −0.558217 0.829695i \(-0.688514\pi\)
0.439429 + 0.898278i \(0.355181\pi\)
\(864\) 0 0
\(865\) −180.755 + 313.078i −0.208966 + 0.361940i
\(866\) 0 0
\(867\) −33.2686 + 562.495i −0.0383721 + 0.648784i
\(868\) 0 0
\(869\) 600.457i 0.690974i
\(870\) 0 0
\(871\) 1245.75 2157.70i 1.43025 2.47727i
\(872\) 0 0
\(873\) 171.572 + 399.722i 0.196532 + 0.457872i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −30.3661 52.5956i −0.0346249 0.0599721i 0.848194 0.529686i \(-0.177690\pi\)
−0.882819 + 0.469714i \(0.844357\pi\)
\(878\) 0 0
\(879\) 507.320 769.835i 0.577156 0.875808i
\(880\) 0 0
\(881\) 817.935i 0.928417i −0.885726 0.464208i \(-0.846339\pi\)
0.885726 0.464208i \(-0.153661\pi\)
\(882\) 0 0
\(883\) 19.9764 0.0226233 0.0113117 0.999936i \(-0.496399\pi\)
0.0113117 + 0.999936i \(0.496399\pi\)
\(884\) 0 0
\(885\) 249.038 + 164.115i 0.281399 + 0.185441i
\(886\) 0 0
\(887\) −590.636 + 341.004i −0.665881 + 0.384446i −0.794514 0.607246i \(-0.792274\pi\)
0.128633 + 0.991692i \(0.458941\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1095.36 + 323.645i −1.22936 + 0.363237i
\(892\) 0 0
\(893\) 431.810 + 249.305i 0.483550 + 0.279177i
\(894\) 0 0
\(895\) 760.118 0.849293
\(896\) 0 0
\(897\) −468.620 27.7163i −0.522430 0.0308989i
\(898\) 0 0
\(899\) −494.055 285.243i −0.549560 0.317289i
\(900\) 0 0
\(901\) −1107.61 1918.43i −1.22931 2.12923i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 549.404 317.198i 0.607076 0.350495i
\(906\) 0 0
\(907\) −324.948 + 562.826i −0.358266 + 0.620536i −0.987671 0.156542i \(-0.949965\pi\)
0.629405 + 0.777078i \(0.283299\pi\)
\(908\) 0 0
\(909\) 85.6536 721.570i 0.0942284 0.793807i
\(910\) 0 0
\(911\) 1522.75i 1.67152i −0.549099 0.835758i \(-0.685029\pi\)
0.549099 0.835758i \(-0.314971\pi\)
\(912\) 0 0
\(913\) −578.893 + 1002.67i −0.634056 + 1.09822i
\(914\) 0 0
\(915\) 405.997 + 810.221i 0.443713 + 0.885487i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 376.826 + 652.682i 0.410039 + 0.710209i 0.994894 0.100929i \(-0.0321816\pi\)
−0.584854 + 0.811138i \(0.698848\pi\)
\(920\) 0 0
\(921\) 317.570 + 209.278i 0.344809 + 0.227229i
\(922\) 0 0
\(923\) 699.249i 0.757582i
\(924\) 0 0
\(925\) −121.746 −0.131618
\(926\) 0 0
\(927\) 259.947 347.863i 0.280417 0.375256i
\(928\) 0 0
\(929\) −480.731 + 277.550i −0.517471 + 0.298762i −0.735900 0.677091i \(-0.763240\pi\)
0.218428 + 0.975853i \(0.429907\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −442.059 882.186i −0.473804 0.945537i
\(934\) 0 0
\(935\) 1031.37 + 595.461i 1.10307 + 0.636857i
\(936\) 0 0
\(937\) −231.357 −0.246912 −0.123456 0.992350i \(-0.539398\pi\)
−0.123456 + 0.992350i \(0.539398\pi\)
\(938\) 0 0
\(939\) −45.9254 + 776.494i −0.0489089 + 0.826937i
\(940\) 0 0
\(941\) −455.108 262.757i −0.483643 0.279231i 0.238291 0.971194i \(-0.423413\pi\)
−0.721933 + 0.691963i \(0.756746\pi\)
\(942\) 0 0
\(943\) −163.616 283.391i −0.173505 0.300520i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 495.241 285.928i 0.522958 0.301930i −0.215186 0.976573i \(-0.569036\pi\)
0.738144 + 0.674643i \(0.235702\pi\)
\(948\) 0 0
\(949\) 1016.88 1761.30i 1.07153 1.85595i
\(950\) 0 0
\(951\) −25.8157 1.52686i −0.0271458 0.00160553i
\(952\) 0 0
\(953\) 596.119i 0.625518i −0.949833 0.312759i \(-0.898747\pi\)
0.949833 0.312759i \(-0.101253\pi\)
\(954\) 0 0
\(955\) −445.196 + 771.102i −0.466174 + 0.807437i
\(956\) 0 0
\(957\) −1410.96 + 707.026i −1.47436 + 0.738794i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 363.585 + 629.748i 0.378340 + 0.655305i
\(962\) 0 0
\(963\) 1416.85 + 1058.77i 1.47129 + 1.09945i
\(964\) 0 0
\(965\) 714.062i 0.739961i
\(966\) 0 0
\(967\) 1519.98 1.57185 0.785924 0.618324i \(-0.212188\pi\)
0.785924 + 0.618324i \(0.212188\pi\)
\(968\) 0 0
\(969\) −250.067 + 379.465i −0.258067 + 0.391605i
\(970\) 0 0
\(971\) 933.045 538.694i 0.960912 0.554783i 0.0644582 0.997920i \(-0.479468\pi\)
0.896454 + 0.443138i \(0.146135\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −544.755 + 272.974i −0.558723 + 0.279973i
\(976\) 0 0
\(977\) 1559.34 + 900.285i 1.59605 + 0.921480i 0.992238 + 0.124352i \(0.0396853\pi\)
0.603811 + 0.797127i \(0.293648\pi\)
\(978\) 0 0
\(979\) 596.502 0.609297
\(980\) 0 0
\(981\) 476.280 + 56.5365i 0.485504 + 0.0576315i
\(982\) 0 0
\(983\) 444.096 + 256.399i 0.451776 + 0.260833i 0.708580 0.705630i \(-0.249336\pi\)
−0.256804 + 0.966464i \(0.582669\pi\)
\(984\) 0 0
\(985\) −176.864 306.338i −0.179557 0.311003i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −108.027 + 62.3694i −0.109228 + 0.0630630i
\(990\) 0 0
\(991\) 95.8745 166.060i 0.0967452 0.167568i −0.813590 0.581438i \(-0.802490\pi\)
0.910336 + 0.413871i \(0.135823\pi\)
\(992\) 0 0
\(993\) −84.0222 + 1420.62i −0.0846145 + 1.43064i
\(994\) 0 0
\(995\) 788.050i 0.792010i
\(996\) 0 0
\(997\) 838.778 1452.81i 0.841302 1.45718i −0.0474918 0.998872i \(-0.515123\pi\)
0.888794 0.458307i \(-0.151544\pi\)
\(998\) 0 0
\(999\) −307.945 + 111.144i −0.308253 + 0.111255i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.p.f.557.4 8
3.2 odd 2 inner 588.3.p.f.557.1 8
7.2 even 3 inner 588.3.p.f.569.1 8
7.3 odd 6 588.3.c.h.197.4 4
7.4 even 3 84.3.c.a.29.1 4
7.5 odd 6 588.3.p.h.569.4 8
7.6 odd 2 588.3.p.h.557.1 8
21.2 odd 6 inner 588.3.p.f.569.4 8
21.5 even 6 588.3.p.h.569.1 8
21.11 odd 6 84.3.c.a.29.2 yes 4
21.17 even 6 588.3.c.h.197.3 4
21.20 even 2 588.3.p.h.557.4 8
28.11 odd 6 336.3.d.a.113.4 4
35.4 even 6 2100.3.g.a.701.4 4
35.18 odd 12 2100.3.e.a.449.8 8
35.32 odd 12 2100.3.e.a.449.1 8
56.11 odd 6 1344.3.d.g.449.1 4
56.53 even 6 1344.3.d.a.449.4 4
63.4 even 3 2268.3.bg.a.2213.2 8
63.11 odd 6 2268.3.bg.a.701.2 8
63.25 even 3 2268.3.bg.a.701.3 8
63.32 odd 6 2268.3.bg.a.2213.3 8
84.11 even 6 336.3.d.a.113.3 4
105.32 even 12 2100.3.e.a.449.7 8
105.53 even 12 2100.3.e.a.449.2 8
105.74 odd 6 2100.3.g.a.701.3 4
168.11 even 6 1344.3.d.g.449.2 4
168.53 odd 6 1344.3.d.a.449.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.c.a.29.1 4 7.4 even 3
84.3.c.a.29.2 yes 4 21.11 odd 6
336.3.d.a.113.3 4 84.11 even 6
336.3.d.a.113.4 4 28.11 odd 6
588.3.c.h.197.3 4 21.17 even 6
588.3.c.h.197.4 4 7.3 odd 6
588.3.p.f.557.1 8 3.2 odd 2 inner
588.3.p.f.557.4 8 1.1 even 1 trivial
588.3.p.f.569.1 8 7.2 even 3 inner
588.3.p.f.569.4 8 21.2 odd 6 inner
588.3.p.h.557.1 8 7.6 odd 2
588.3.p.h.557.4 8 21.20 even 2
588.3.p.h.569.1 8 21.5 even 6
588.3.p.h.569.4 8 7.5 odd 6
1344.3.d.a.449.3 4 168.53 odd 6
1344.3.d.a.449.4 4 56.53 even 6
1344.3.d.g.449.1 4 56.11 odd 6
1344.3.d.g.449.2 4 168.11 even 6
2100.3.e.a.449.1 8 35.32 odd 12
2100.3.e.a.449.2 8 105.53 even 12
2100.3.e.a.449.7 8 105.32 even 12
2100.3.e.a.449.8 8 35.18 odd 12
2100.3.g.a.701.3 4 105.74 odd 6
2100.3.g.a.701.4 4 35.4 even 6
2268.3.bg.a.701.2 8 63.11 odd 6
2268.3.bg.a.701.3 8 63.25 even 3
2268.3.bg.a.2213.2 8 63.4 even 3
2268.3.bg.a.2213.3 8 63.32 odd 6