Properties

Label 588.3.p.f.569.1
Level $588$
Weight $3$
Character 588.569
Analytic conductor $16.022$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(557,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.557"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-6,0,0,0,0,0,4,0,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.1090537426944.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 4x^{6} - 44x^{5} + 71x^{4} + 196x^{3} + 28x^{2} + 294x + 441 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 569.1
Root \(3.50498 - 0.0812733i\) of defining polynomial
Character \(\chi\) \(=\) 588.569
Dual form 588.3.p.f.557.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.68211 + 1.34399i) q^{3} +(3.34957 + 1.93387i) q^{5} +(5.38739 - 7.20944i) q^{9} +(-12.2117 + 7.05043i) q^{11} +20.2288 q^{13} +(-11.5830 - 0.685072i) q^{15} +(18.9108 - 10.9182i) q^{17} +(-3.46863 + 6.00784i) q^{19} +(6.69914 + 3.86775i) q^{23} +(-5.02026 - 8.69534i) q^{25} +(-4.76013 + 26.5771i) q^{27} +37.3073i q^{29} +(-7.64575 - 13.2428i) q^{31} +(23.2774 - 35.3224i) q^{33} +(6.06275 - 10.5010i) q^{37} +(-54.2557 + 27.1872i) q^{39} +42.3026i q^{41} +16.1255 q^{43} +(31.9876 - 13.7300i) q^{45} +(62.2451 + 35.9372i) q^{47} +(-36.0470 + 54.6997i) q^{51} +(-87.8550 + 50.7231i) q^{53} -54.5385 q^{55} +(1.22876 - 20.7755i) q^{57} +(22.2604 - 12.8520i) q^{59} +(-39.0516 + 67.6394i) q^{61} +(67.7576 + 39.1199i) q^{65} +(61.5830 + 106.665i) q^{67} +(-23.1660 - 1.37014i) q^{69} +34.5671i q^{71} +(50.2693 + 87.0689i) q^{73} +(25.1513 + 16.5747i) q^{75} +(21.2915 - 36.8780i) q^{79} +(-22.9521 - 77.6801i) q^{81} +82.1075i q^{83} +84.4575 q^{85} +(-50.1407 - 100.062i) q^{87} +(-36.6351 - 21.1513i) q^{89} +(38.3049 + 25.2429i) q^{93} +(-23.2368 + 13.4158i) q^{95} +48.3320 q^{97} +(-14.9595 + 126.023i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} + 4 q^{9} + 56 q^{13} - 8 q^{15} + 4 q^{19} + 108 q^{25} + 36 q^{27} - 40 q^{31} + 116 q^{33} + 112 q^{37} + 28 q^{39} + 256 q^{43} - 100 q^{45} - 124 q^{51} + 368 q^{55} - 96 q^{57} - 196 q^{61}+ \cdots - 416 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.68211 + 1.34399i −0.894035 + 0.447996i
\(4\) 0 0
\(5\) 3.34957 + 1.93387i 0.669914 + 0.386775i 0.796044 0.605239i \(-0.206922\pi\)
−0.126130 + 0.992014i \(0.540256\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 5.38739 7.20944i 0.598599 0.801049i
\(10\) 0 0
\(11\) −12.2117 + 7.05043i −1.11015 + 0.640948i −0.938869 0.344274i \(-0.888125\pi\)
−0.171285 + 0.985222i \(0.554792\pi\)
\(12\) 0 0
\(13\) 20.2288 1.55606 0.778029 0.628228i \(-0.216220\pi\)
0.778029 + 0.628228i \(0.216220\pi\)
\(14\) 0 0
\(15\) −11.5830 0.685072i −0.772200 0.0456715i
\(16\) 0 0
\(17\) 18.9108 10.9182i 1.11240 0.642246i 0.172951 0.984930i \(-0.444670\pi\)
0.939450 + 0.342685i \(0.111336\pi\)
\(18\) 0 0
\(19\) −3.46863 + 6.00784i −0.182559 + 0.316202i −0.942751 0.333496i \(-0.891771\pi\)
0.760192 + 0.649698i \(0.225105\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.69914 + 3.86775i 0.291267 + 0.168163i 0.638513 0.769611i \(-0.279550\pi\)
−0.347246 + 0.937774i \(0.612883\pi\)
\(24\) 0 0
\(25\) −5.02026 8.69534i −0.200810 0.347814i
\(26\) 0 0
\(27\) −4.76013 + 26.5771i −0.176301 + 0.984336i
\(28\) 0 0
\(29\) 37.3073i 1.28646i 0.765673 + 0.643230i \(0.222406\pi\)
−0.765673 + 0.643230i \(0.777594\pi\)
\(30\) 0 0
\(31\) −7.64575 13.2428i −0.246637 0.427188i 0.715953 0.698148i \(-0.245992\pi\)
−0.962591 + 0.270960i \(0.912659\pi\)
\(32\) 0 0
\(33\) 23.2774 35.3224i 0.705375 1.07037i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.06275 10.5010i 0.163858 0.283810i −0.772391 0.635147i \(-0.780939\pi\)
0.936249 + 0.351337i \(0.114273\pi\)
\(38\) 0 0
\(39\) −54.2557 + 27.1872i −1.39117 + 0.697108i
\(40\) 0 0
\(41\) 42.3026i 1.03177i 0.856658 + 0.515885i \(0.172537\pi\)
−0.856658 + 0.515885i \(0.827463\pi\)
\(42\) 0 0
\(43\) 16.1255 0.375011 0.187506 0.982264i \(-0.439960\pi\)
0.187506 + 0.982264i \(0.439960\pi\)
\(44\) 0 0
\(45\) 31.9876 13.7300i 0.710835 0.305111i
\(46\) 0 0
\(47\) 62.2451 + 35.9372i 1.32436 + 0.764621i 0.984421 0.175825i \(-0.0562594\pi\)
0.339941 + 0.940447i \(0.389593\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −36.0470 + 54.6997i −0.706803 + 1.07254i
\(52\) 0 0
\(53\) −87.8550 + 50.7231i −1.65764 + 0.957040i −0.683843 + 0.729629i \(0.739693\pi\)
−0.973799 + 0.227411i \(0.926974\pi\)
\(54\) 0 0
\(55\) −54.5385 −0.991610
\(56\) 0 0
\(57\) 1.22876 20.7755i 0.0215571 0.364482i
\(58\) 0 0
\(59\) 22.2604 12.8520i 0.377295 0.217831i −0.299346 0.954145i \(-0.596768\pi\)
0.676641 + 0.736313i \(0.263435\pi\)
\(60\) 0 0
\(61\) −39.0516 + 67.6394i −0.640191 + 1.10884i 0.345199 + 0.938529i \(0.387811\pi\)
−0.985390 + 0.170313i \(0.945522\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 67.7576 + 39.1199i 1.04242 + 0.601844i
\(66\) 0 0
\(67\) 61.5830 + 106.665i 0.919149 + 1.59201i 0.800710 + 0.599052i \(0.204456\pi\)
0.118439 + 0.992961i \(0.462211\pi\)
\(68\) 0 0
\(69\) −23.1660 1.37014i −0.335739 0.0198572i
\(70\) 0 0
\(71\) 34.5671i 0.486860i 0.969918 + 0.243430i \(0.0782726\pi\)
−0.969918 + 0.243430i \(0.921727\pi\)
\(72\) 0 0
\(73\) 50.2693 + 87.0689i 0.688620 + 1.19273i 0.972284 + 0.233801i \(0.0751166\pi\)
−0.283664 + 0.958924i \(0.591550\pi\)
\(74\) 0 0
\(75\) 25.1513 + 16.5747i 0.335351 + 0.220995i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 21.2915 36.8780i 0.269513 0.466810i −0.699223 0.714903i \(-0.746471\pi\)
0.968736 + 0.248094i \(0.0798040\pi\)
\(80\) 0 0
\(81\) −22.9521 77.6801i −0.283360 0.959014i
\(82\) 0 0
\(83\) 82.1075i 0.989247i 0.869107 + 0.494623i \(0.164694\pi\)
−0.869107 + 0.494623i \(0.835306\pi\)
\(84\) 0 0
\(85\) 84.4575 0.993618
\(86\) 0 0
\(87\) −50.1407 100.062i −0.576329 1.15014i
\(88\) 0 0
\(89\) −36.6351 21.1513i −0.411630 0.237655i 0.279860 0.960041i \(-0.409712\pi\)
−0.691490 + 0.722386i \(0.743045\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 38.3049 + 25.2429i 0.411881 + 0.271429i
\(94\) 0 0
\(95\) −23.2368 + 13.4158i −0.244598 + 0.141219i
\(96\) 0 0
\(97\) 48.3320 0.498268 0.249134 0.968469i \(-0.419854\pi\)
0.249134 + 0.968469i \(0.419854\pi\)
\(98\) 0 0
\(99\) −14.9595 + 126.023i −0.151106 + 1.27296i
\(100\) 0 0
\(101\) 69.9206 40.3687i 0.692283 0.399690i −0.112184 0.993687i \(-0.535784\pi\)
0.804467 + 0.593998i \(0.202451\pi\)
\(102\) 0 0
\(103\) −24.1255 + 41.7866i −0.234228 + 0.405695i −0.959048 0.283243i \(-0.908590\pi\)
0.724820 + 0.688938i \(0.241923\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −170.197 98.2636i −1.59063 0.918351i −0.993199 0.116432i \(-0.962854\pi\)
−0.597432 0.801920i \(-0.703812\pi\)
\(108\) 0 0
\(109\) 26.6458 + 46.1518i 0.244456 + 0.423411i 0.961979 0.273125i \(-0.0880572\pi\)
−0.717522 + 0.696536i \(0.754724\pi\)
\(110\) 0 0
\(111\) −2.14772 + 36.3130i −0.0193488 + 0.327144i
\(112\) 0 0
\(113\) 140.124i 1.24003i −0.784589 0.620017i \(-0.787126\pi\)
0.784589 0.620017i \(-0.212874\pi\)
\(114\) 0 0
\(115\) 14.9595 + 25.9106i 0.130082 + 0.225309i
\(116\) 0 0
\(117\) 108.980 145.838i 0.931454 1.24648i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 38.9170 67.4062i 0.321628 0.557076i
\(122\) 0 0
\(123\) −56.8542 113.460i −0.462229 0.922438i
\(124\) 0 0
\(125\) 135.528i 1.08422i
\(126\) 0 0
\(127\) −115.579 −0.910071 −0.455036 0.890473i \(-0.650374\pi\)
−0.455036 + 0.890473i \(0.650374\pi\)
\(128\) 0 0
\(129\) −43.2503 + 21.6725i −0.335273 + 0.168004i
\(130\) 0 0
\(131\) −71.5275 41.2964i −0.546012 0.315240i 0.201500 0.979488i \(-0.435418\pi\)
−0.747512 + 0.664249i \(0.768752\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −67.3411 + 79.8163i −0.498823 + 0.591232i
\(136\) 0 0
\(137\) 133.142 76.8696i 0.971840 0.561092i 0.0720432 0.997402i \(-0.477048\pi\)
0.899797 + 0.436309i \(0.143715\pi\)
\(138\) 0 0
\(139\) 220.516 1.58645 0.793224 0.608930i \(-0.208401\pi\)
0.793224 + 0.608930i \(0.208401\pi\)
\(140\) 0 0
\(141\) −215.247 12.7307i −1.52657 0.0902887i
\(142\) 0 0
\(143\) −247.027 + 142.621i −1.72746 + 0.997352i
\(144\) 0 0
\(145\) −72.1477 + 124.964i −0.497570 + 0.861817i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 168.245 + 97.1361i 1.12916 + 0.651920i 0.943723 0.330736i \(-0.107297\pi\)
0.185436 + 0.982656i \(0.440630\pi\)
\(150\) 0 0
\(151\) −64.0405 110.921i −0.424109 0.734579i 0.572227 0.820095i \(-0.306079\pi\)
−0.996337 + 0.0855160i \(0.972746\pi\)
\(152\) 0 0
\(153\) 23.1660 195.157i 0.151412 1.27554i
\(154\) 0 0
\(155\) 59.1437i 0.381572i
\(156\) 0 0
\(157\) −73.8412 127.897i −0.470326 0.814628i 0.529098 0.848561i \(-0.322530\pi\)
−0.999424 + 0.0339322i \(0.989197\pi\)
\(158\) 0 0
\(159\) 167.465 254.121i 1.05324 1.59825i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 105.184 182.185i 0.645302 1.11770i −0.338929 0.940812i \(-0.610065\pi\)
0.984232 0.176885i \(-0.0566020\pi\)
\(164\) 0 0
\(165\) 146.278 73.2992i 0.886534 0.444238i
\(166\) 0 0
\(167\) 85.0905i 0.509524i −0.967004 0.254762i \(-0.918003\pi\)
0.967004 0.254762i \(-0.0819971\pi\)
\(168\) 0 0
\(169\) 240.203 1.42132
\(170\) 0 0
\(171\) 24.6263 + 57.3734i 0.144014 + 0.335517i
\(172\) 0 0
\(173\) −80.9457 46.7340i −0.467894 0.270139i 0.247464 0.968897i \(-0.420403\pi\)
−0.715358 + 0.698758i \(0.753736\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −42.4317 + 64.3883i −0.239727 + 0.363776i
\(178\) 0 0
\(179\) 170.197 98.2636i 0.950824 0.548958i 0.0574872 0.998346i \(-0.481691\pi\)
0.893337 + 0.449388i \(0.148358\pi\)
\(180\) 0 0
\(181\) −164.022 −0.906200 −0.453100 0.891460i \(-0.649682\pi\)
−0.453100 + 0.891460i \(0.649682\pi\)
\(182\) 0 0
\(183\) 13.8340 233.901i 0.0755956 1.27815i
\(184\) 0 0
\(185\) 40.6152 23.4492i 0.219541 0.126752i
\(186\) 0 0
\(187\) −153.956 + 266.659i −0.823292 + 1.42598i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −199.367 115.105i −1.04381 0.602642i −0.122898 0.992419i \(-0.539219\pi\)
−0.920909 + 0.389777i \(0.872552\pi\)
\(192\) 0 0
\(193\) 92.3098 + 159.885i 0.478289 + 0.828421i 0.999690 0.0248907i \(-0.00792378\pi\)
−0.521401 + 0.853312i \(0.674590\pi\)
\(194\) 0 0
\(195\) −234.310 13.8582i −1.20159 0.0710675i
\(196\) 0 0
\(197\) 91.4558i 0.464243i 0.972687 + 0.232121i \(0.0745667\pi\)
−0.972687 + 0.232121i \(0.925433\pi\)
\(198\) 0 0
\(199\) 101.875 + 176.452i 0.511932 + 0.886693i 0.999904 + 0.0138334i \(0.00440344\pi\)
−0.487972 + 0.872859i \(0.662263\pi\)
\(200\) 0 0
\(201\) −308.529 203.320i −1.53497 1.01154i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −81.8078 + 141.695i −0.399063 + 0.691197i
\(206\) 0 0
\(207\) 63.9752 27.4600i 0.309059 0.132657i
\(208\) 0 0
\(209\) 97.8212i 0.468044i
\(210\) 0 0
\(211\) 188.243 0.892147 0.446074 0.894996i \(-0.352822\pi\)
0.446074 + 0.894996i \(0.352822\pi\)
\(212\) 0 0
\(213\) −46.4577 92.7125i −0.218111 0.435270i
\(214\) 0 0
\(215\) 54.0134 + 31.1847i 0.251225 + 0.145045i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −251.847 165.967i −1.14999 0.757839i
\(220\) 0 0
\(221\) 382.543 220.861i 1.73096 0.999371i
\(222\) 0 0
\(223\) 154.125 0.691146 0.345573 0.938392i \(-0.387685\pi\)
0.345573 + 0.938392i \(0.387685\pi\)
\(224\) 0 0
\(225\) −89.7347 10.6519i −0.398821 0.0473418i
\(226\) 0 0
\(227\) −202.296 + 116.796i −0.891174 + 0.514519i −0.874326 0.485339i \(-0.838696\pi\)
−0.0168475 + 0.999858i \(0.505363\pi\)
\(228\) 0 0
\(229\) −137.635 + 238.390i −0.601025 + 1.04101i 0.391642 + 0.920118i \(0.371907\pi\)
−0.992666 + 0.120887i \(0.961426\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.7022 + 17.7259i 0.131769 + 0.0760769i 0.564435 0.825477i \(-0.309094\pi\)
−0.432666 + 0.901554i \(0.642427\pi\)
\(234\) 0 0
\(235\) 138.996 + 240.748i 0.591473 + 1.02446i
\(236\) 0 0
\(237\) −7.54249 + 127.526i −0.0318248 + 0.538085i
\(238\) 0 0
\(239\) 56.8888i 0.238028i 0.992893 + 0.119014i \(0.0379734\pi\)
−0.992893 + 0.119014i \(0.962027\pi\)
\(240\) 0 0
\(241\) 104.875 + 181.648i 0.435164 + 0.753726i 0.997309 0.0733126i \(-0.0233571\pi\)
−0.562145 + 0.827039i \(0.690024\pi\)
\(242\) 0 0
\(243\) 165.961 + 177.499i 0.682968 + 0.730448i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −70.1660 + 121.531i −0.284073 + 0.492029i
\(248\) 0 0
\(249\) −110.352 220.221i −0.443179 0.884422i
\(250\) 0 0
\(251\) 77.1123i 0.307220i −0.988132 0.153610i \(-0.950910\pi\)
0.988132 0.153610i \(-0.0490900\pi\)
\(252\) 0 0
\(253\) −109.077 −0.431135
\(254\) 0 0
\(255\) −226.524 + 113.510i −0.888329 + 0.445137i
\(256\) 0 0
\(257\) −137.122 79.1675i −0.533549 0.308045i 0.208911 0.977935i \(-0.433008\pi\)
−0.742461 + 0.669890i \(0.766341\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 268.965 + 200.989i 1.03052 + 0.770073i
\(262\) 0 0
\(263\) −130.003 + 75.0571i −0.494307 + 0.285388i −0.726359 0.687315i \(-0.758789\pi\)
0.232053 + 0.972703i \(0.425456\pi\)
\(264\) 0 0
\(265\) −392.369 −1.48064
\(266\) 0 0
\(267\) 126.686 + 7.49281i 0.474480 + 0.0280630i
\(268\) 0 0
\(269\) 165.241 95.4019i 0.614279 0.354654i −0.160359 0.987059i \(-0.551265\pi\)
0.774638 + 0.632405i \(0.217932\pi\)
\(270\) 0 0
\(271\) 171.225 296.570i 0.631826 1.09435i −0.355352 0.934732i \(-0.615639\pi\)
0.987178 0.159622i \(-0.0510276\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 122.612 + 70.7899i 0.445861 + 0.257418i
\(276\) 0 0
\(277\) 46.6235 + 80.7543i 0.168316 + 0.291532i 0.937828 0.347101i \(-0.112834\pi\)
−0.769512 + 0.638632i \(0.779500\pi\)
\(278\) 0 0
\(279\) −136.664 16.2226i −0.489835 0.0581456i
\(280\) 0 0
\(281\) 251.075i 0.893505i −0.894657 0.446753i \(-0.852580\pi\)
0.894657 0.446753i \(-0.147420\pi\)
\(282\) 0 0
\(283\) −8.32484 14.4191i −0.0294164 0.0509507i 0.850942 0.525259i \(-0.176032\pi\)
−0.880359 + 0.474308i \(0.842698\pi\)
\(284\) 0 0
\(285\) 44.2929 67.2126i 0.155414 0.235834i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 93.9131 162.662i 0.324959 0.562845i
\(290\) 0 0
\(291\) −129.632 + 64.9577i −0.445469 + 0.223222i
\(292\) 0 0
\(293\) 307.322i 1.04888i −0.851448 0.524440i \(-0.824275\pi\)
0.851448 0.524440i \(-0.175725\pi\)
\(294\) 0 0
\(295\) 99.4170 0.337007
\(296\) 0 0
\(297\) −129.250 358.112i −0.435187 1.20576i
\(298\) 0 0
\(299\) 135.515 + 78.2398i 0.453228 + 0.261671i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −133.279 + 202.246i −0.439866 + 0.667477i
\(304\) 0 0
\(305\) −261.612 + 151.042i −0.857745 + 0.495219i
\(306\) 0 0
\(307\) 126.775 0.412948 0.206474 0.978452i \(-0.433801\pi\)
0.206474 + 0.978452i \(0.433801\pi\)
\(308\) 0 0
\(309\) 8.54642 144.500i 0.0276583 0.467639i
\(310\) 0 0
\(311\) 284.849 164.458i 0.915913 0.528803i 0.0335844 0.999436i \(-0.489308\pi\)
0.882329 + 0.470633i \(0.155974\pi\)
\(312\) 0 0
\(313\) 129.642 224.546i 0.414191 0.717400i −0.581152 0.813795i \(-0.697398\pi\)
0.995343 + 0.0963950i \(0.0307312\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.46537 + 4.31014i 0.0235501 + 0.0135966i 0.511729 0.859147i \(-0.329005\pi\)
−0.488179 + 0.872744i \(0.662339\pi\)
\(318\) 0 0
\(319\) −263.033 455.586i −0.824554 1.42817i
\(320\) 0 0
\(321\) 588.553 + 34.8097i 1.83350 + 0.108442i
\(322\) 0 0
\(323\) 151.484i 0.468992i
\(324\) 0 0
\(325\) −101.554 175.896i −0.312473 0.541218i
\(326\) 0 0
\(327\) −133.494 87.9724i −0.408239 0.269029i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 237.184 410.815i 0.716569 1.24113i −0.245782 0.969325i \(-0.579045\pi\)
0.962351 0.271809i \(-0.0876218\pi\)
\(332\) 0 0
\(333\) −43.0439 100.282i −0.129261 0.301147i
\(334\) 0 0
\(335\) 476.375i 1.42202i
\(336\) 0 0
\(337\) −609.195 −1.80770 −0.903850 0.427850i \(-0.859271\pi\)
−0.903850 + 0.427850i \(0.859271\pi\)
\(338\) 0 0
\(339\) 188.325 + 375.827i 0.555530 + 1.10863i
\(340\) 0 0
\(341\) 186.735 + 107.812i 0.547610 + 0.316163i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −74.9465 49.3896i −0.217236 0.143158i
\(346\) 0 0
\(347\) −369.911 + 213.568i −1.06602 + 0.615470i −0.927093 0.374832i \(-0.877700\pi\)
−0.138932 + 0.990302i \(0.544367\pi\)
\(348\) 0 0
\(349\) 316.759 0.907620 0.453810 0.891098i \(-0.350064\pi\)
0.453810 + 0.891098i \(0.350064\pi\)
\(350\) 0 0
\(351\) −96.2915 + 537.621i −0.274335 + 1.53168i
\(352\) 0 0
\(353\) −74.8771 + 43.2303i −0.212116 + 0.122465i −0.602295 0.798274i \(-0.705747\pi\)
0.390178 + 0.920739i \(0.372413\pi\)
\(354\) 0 0
\(355\) −66.8483 + 115.785i −0.188305 + 0.326154i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −247.868 143.107i −0.690440 0.398626i 0.113337 0.993557i \(-0.463846\pi\)
−0.803777 + 0.594931i \(0.797179\pi\)
\(360\) 0 0
\(361\) 156.437 + 270.957i 0.433344 + 0.750574i
\(362\) 0 0
\(363\) −13.7863 + 233.095i −0.0379788 + 0.642134i
\(364\) 0 0
\(365\) 388.858i 1.06536i
\(366\) 0 0
\(367\) −55.8078 96.6620i −0.152065 0.263384i 0.779922 0.625877i \(-0.215259\pi\)
−0.931986 + 0.362493i \(0.881926\pi\)
\(368\) 0 0
\(369\) 304.978 + 227.900i 0.826498 + 0.617616i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −42.5425 + 73.6857i −0.114055 + 0.197549i −0.917402 0.397963i \(-0.869717\pi\)
0.803347 + 0.595512i \(0.203051\pi\)
\(374\) 0 0
\(375\) 182.148 + 363.500i 0.485728 + 0.969334i
\(376\) 0 0
\(377\) 754.681i 2.00181i
\(378\) 0 0
\(379\) −26.5464 −0.0700433 −0.0350217 0.999387i \(-0.511150\pi\)
−0.0350217 + 0.999387i \(0.511150\pi\)
\(380\) 0 0
\(381\) 309.995 155.337i 0.813636 0.407709i
\(382\) 0 0
\(383\) 100.067 + 57.7735i 0.261271 + 0.150845i 0.624914 0.780693i \(-0.285134\pi\)
−0.363643 + 0.931538i \(0.618467\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 86.8743 116.256i 0.224481 0.300403i
\(388\) 0 0
\(389\) −334.042 + 192.859i −0.858719 + 0.495782i −0.863583 0.504206i \(-0.831785\pi\)
0.00486402 + 0.999988i \(0.498452\pi\)
\(390\) 0 0
\(391\) 168.915 0.432008
\(392\) 0 0
\(393\) 247.346 + 14.6292i 0.629380 + 0.0372244i
\(394\) 0 0
\(395\) 142.635 82.3502i 0.361101 0.208481i
\(396\) 0 0
\(397\) −23.7967 + 41.2171i −0.0599413 + 0.103821i −0.894439 0.447190i \(-0.852425\pi\)
0.834498 + 0.551012i \(0.185758\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 397.127 + 229.282i 0.990343 + 0.571775i 0.905377 0.424609i \(-0.139588\pi\)
0.0849661 + 0.996384i \(0.472922\pi\)
\(402\) 0 0
\(403\) −154.664 267.886i −0.383782 0.664729i
\(404\) 0 0
\(405\) 73.3438 304.581i 0.181096 0.752053i
\(406\) 0 0
\(407\) 170.980i 0.420098i
\(408\) 0 0
\(409\) 28.9333 + 50.1140i 0.0707416 + 0.122528i 0.899227 0.437483i \(-0.144130\pi\)
−0.828485 + 0.560011i \(0.810797\pi\)
\(410\) 0 0
\(411\) −253.789 + 385.114i −0.617492 + 0.937017i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −158.786 + 275.025i −0.382616 + 0.662710i
\(416\) 0 0
\(417\) −591.448 + 296.372i −1.41834 + 0.710723i
\(418\) 0 0
\(419\) 115.304i 0.275190i 0.990489 + 0.137595i \(0.0439372\pi\)
−0.990489 + 0.137595i \(0.956063\pi\)
\(420\) 0 0
\(421\) 622.664 1.47901 0.739506 0.673150i \(-0.235059\pi\)
0.739506 + 0.673150i \(0.235059\pi\)
\(422\) 0 0
\(423\) 594.425 255.145i 1.40526 0.603179i
\(424\) 0 0
\(425\) −189.875 109.624i −0.446764 0.257939i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 470.872 714.528i 1.09760 1.66557i
\(430\) 0 0
\(431\) −147.801 + 85.3332i −0.342927 + 0.197989i −0.661565 0.749887i \(-0.730108\pi\)
0.318639 + 0.947876i \(0.396774\pi\)
\(432\) 0 0
\(433\) −251.992 −0.581968 −0.290984 0.956728i \(-0.593983\pi\)
−0.290984 + 0.956728i \(0.593983\pi\)
\(434\) 0 0
\(435\) 25.5582 432.131i 0.0587546 0.993405i
\(436\) 0 0
\(437\) −46.4736 + 26.8316i −0.106347 + 0.0613994i
\(438\) 0 0
\(439\) 226.044 391.520i 0.514908 0.891846i −0.484943 0.874546i \(-0.661160\pi\)
0.999850 0.0173003i \(-0.00550712\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 94.5542 + 54.5909i 0.213441 + 0.123230i 0.602909 0.797810i \(-0.294008\pi\)
−0.389469 + 0.921040i \(0.627341\pi\)
\(444\) 0 0
\(445\) −81.8078 141.695i −0.183838 0.318416i
\(446\) 0 0
\(447\) −581.800 34.4103i −1.30157 0.0769806i
\(448\) 0 0
\(449\) 565.005i 1.25836i −0.777259 0.629181i \(-0.783390\pi\)
0.777259 0.629181i \(-0.216610\pi\)
\(450\) 0 0
\(451\) −298.251 516.586i −0.661310 1.14542i
\(452\) 0 0
\(453\) 320.841 + 211.433i 0.708258 + 0.466740i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −297.852 + 515.895i −0.651756 + 1.12887i 0.330941 + 0.943651i \(0.392634\pi\)
−0.982697 + 0.185222i \(0.940699\pi\)
\(458\) 0 0
\(459\) 200.155 + 554.567i 0.436068 + 1.20821i
\(460\) 0 0
\(461\) 445.590i 0.966573i −0.875462 0.483286i \(-0.839443\pi\)
0.875462 0.483286i \(-0.160557\pi\)
\(462\) 0 0
\(463\) −333.919 −0.721207 −0.360604 0.932719i \(-0.617429\pi\)
−0.360604 + 0.932719i \(0.617429\pi\)
\(464\) 0 0
\(465\) 79.4885 + 158.630i 0.170943 + 0.341139i
\(466\) 0 0
\(467\) 388.191 + 224.122i 0.831244 + 0.479919i 0.854278 0.519816i \(-0.173999\pi\)
−0.0230345 + 0.999735i \(0.507333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 369.942 + 243.791i 0.785439 + 0.517602i
\(472\) 0 0
\(473\) −196.920 + 113.692i −0.416320 + 0.240363i
\(474\) 0 0
\(475\) 69.6536 0.146639
\(476\) 0 0
\(477\) −107.624 + 906.651i −0.225626 + 1.90074i
\(478\) 0 0
\(479\) −11.8658 + 6.85072i −0.0247720 + 0.0143021i −0.512335 0.858786i \(-0.671219\pi\)
0.487563 + 0.873088i \(0.337886\pi\)
\(480\) 0 0
\(481\) 122.642 212.422i 0.254973 0.441625i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 161.891 + 93.4681i 0.333797 + 0.192718i
\(486\) 0 0
\(487\) −5.62746 9.74705i −0.0115554 0.0200145i 0.860190 0.509974i \(-0.170345\pi\)
−0.871745 + 0.489959i \(0.837012\pi\)
\(488\) 0 0
\(489\) −37.2614 + 630.005i −0.0761992 + 1.28835i
\(490\) 0 0
\(491\) 285.642i 0.581756i −0.956760 0.290878i \(-0.906053\pi\)
0.956760 0.290878i \(-0.0939473\pi\)
\(492\) 0 0
\(493\) 407.328 + 705.513i 0.826223 + 1.43106i
\(494\) 0 0
\(495\) −293.820 + 393.193i −0.593576 + 0.794328i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −390.409 + 676.208i −0.782383 + 1.35513i 0.148167 + 0.988962i \(0.452663\pi\)
−0.930550 + 0.366165i \(0.880671\pi\)
\(500\) 0 0
\(501\) 114.361 + 228.222i 0.228265 + 0.455532i
\(502\) 0 0
\(503\) 420.771i 0.836522i 0.908327 + 0.418261i \(0.137360\pi\)
−0.908327 + 0.418261i \(0.862640\pi\)
\(504\) 0 0
\(505\) 312.272 0.618360
\(506\) 0 0
\(507\) −644.249 + 322.830i −1.27071 + 0.636745i
\(508\) 0 0
\(509\) 89.1773 + 51.4866i 0.175201 + 0.101152i 0.585036 0.811007i \(-0.301080\pi\)
−0.409835 + 0.912160i \(0.634414\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −143.160 120.784i −0.279064 0.235447i
\(514\) 0 0
\(515\) −161.620 + 93.3113i −0.313825 + 0.181187i
\(516\) 0 0
\(517\) −1013.49 −1.96033
\(518\) 0 0
\(519\) 279.915 + 16.5555i 0.539335 + 0.0318988i
\(520\) 0 0
\(521\) 66.4966 38.3918i 0.127633 0.0736887i −0.434824 0.900515i \(-0.643190\pi\)
0.562457 + 0.826827i \(0.309856\pi\)
\(522\) 0 0
\(523\) 202.280 350.360i 0.386769 0.669904i −0.605244 0.796040i \(-0.706924\pi\)
0.992013 + 0.126136i \(0.0402576\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −289.175 166.955i −0.548719 0.316803i
\(528\) 0 0
\(529\) −234.581 406.306i −0.443442 0.768065i
\(530\) 0 0
\(531\) 27.2693 229.724i 0.0513546 0.432625i
\(532\) 0 0
\(533\) 855.728i 1.60549i
\(534\) 0 0
\(535\) −380.059 658.281i −0.710390 1.23043i
\(536\) 0 0
\(537\) −324.423 + 492.297i −0.604139 + 0.916754i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −296.454 + 513.473i −0.547973 + 0.949118i 0.450440 + 0.892807i \(0.351267\pi\)
−0.998413 + 0.0563109i \(0.982066\pi\)
\(542\) 0 0
\(543\) 439.925 220.444i 0.810175 0.405974i
\(544\) 0 0
\(545\) 206.118i 0.378198i
\(546\) 0 0
\(547\) −793.689 −1.45099 −0.725493 0.688230i \(-0.758388\pi\)
−0.725493 + 0.688230i \(0.758388\pi\)
\(548\) 0 0
\(549\) 277.256 + 645.940i 0.505020 + 1.17658i
\(550\) 0 0
\(551\) −224.136 129.405i −0.406781 0.234855i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −77.4188 + 117.480i −0.139493 + 0.211675i
\(556\) 0 0
\(557\) 319.531 184.482i 0.573665 0.331206i −0.184947 0.982749i \(-0.559211\pi\)
0.758612 + 0.651543i \(0.225878\pi\)
\(558\) 0 0
\(559\) 326.199 0.583540
\(560\) 0 0
\(561\) 54.5385 922.122i 0.0972167 1.64371i
\(562\) 0 0
\(563\) 458.816 264.898i 0.814949 0.470511i −0.0337223 0.999431i \(-0.510736\pi\)
0.848672 + 0.528920i \(0.177403\pi\)
\(564\) 0 0
\(565\) 270.982 469.354i 0.479614 0.830715i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −924.949 534.020i −1.62557 0.938523i −0.985393 0.170296i \(-0.945528\pi\)
−0.640177 0.768227i \(-0.721139\pi\)
\(570\) 0 0
\(571\) 59.0954 + 102.356i 0.103495 + 0.179258i 0.913122 0.407686i \(-0.133664\pi\)
−0.809628 + 0.586944i \(0.800331\pi\)
\(572\) 0 0
\(573\) 689.423 + 40.7757i 1.20318 + 0.0711618i
\(574\) 0 0
\(575\) 77.6684i 0.135075i
\(576\) 0 0
\(577\) −293.280 507.975i −0.508284 0.880373i −0.999954 0.00959175i \(-0.996947\pi\)
0.491670 0.870781i \(-0.336387\pi\)
\(578\) 0 0
\(579\) −462.469 304.766i −0.798737 0.526366i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 715.239 1238.83i 1.22683 2.12492i
\(584\) 0 0
\(585\) 647.069 277.741i 1.10610 0.474771i
\(586\) 0 0
\(587\) 809.558i 1.37914i −0.724217 0.689572i \(-0.757799\pi\)
0.724217 0.689572i \(-0.242201\pi\)
\(588\) 0 0
\(589\) 106.081 0.180104
\(590\) 0 0
\(591\) −122.916 245.294i −0.207979 0.415049i
\(592\) 0 0
\(593\) −415.964 240.157i −0.701457 0.404986i 0.106433 0.994320i \(-0.466057\pi\)
−0.807890 + 0.589334i \(0.799390\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −510.388 336.344i −0.854921 0.563391i
\(598\) 0 0
\(599\) 334.882 193.344i 0.559069 0.322779i −0.193703 0.981060i \(-0.562050\pi\)
0.752772 + 0.658282i \(0.228716\pi\)
\(600\) 0 0
\(601\) −474.369 −0.789299 −0.394649 0.918832i \(-0.629134\pi\)
−0.394649 + 0.918832i \(0.629134\pi\)
\(602\) 0 0
\(603\) 1100.77 + 130.666i 1.82548 + 0.216693i
\(604\) 0 0
\(605\) 260.710 150.521i 0.430926 0.248795i
\(606\) 0 0
\(607\) 217.099 376.027i 0.357660 0.619484i −0.629910 0.776668i \(-0.716908\pi\)
0.987569 + 0.157184i \(0.0502415\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1259.14 + 726.965i 2.06079 + 1.18980i
\(612\) 0 0
\(613\) −307.391 532.417i −0.501453 0.868542i −0.999999 0.00167886i \(-0.999466\pi\)
0.498545 0.866864i \(-0.333868\pi\)
\(614\) 0 0
\(615\) 28.9803 489.991i 0.0471225 0.796733i
\(616\) 0 0
\(617\) 527.697i 0.855263i −0.903953 0.427632i \(-0.859348\pi\)
0.903953 0.427632i \(-0.140652\pi\)
\(618\) 0 0
\(619\) 339.985 + 588.871i 0.549249 + 0.951327i 0.998326 + 0.0578339i \(0.0184194\pi\)
−0.449078 + 0.893493i \(0.648247\pi\)
\(620\) 0 0
\(621\) −134.682 + 159.633i −0.216880 + 0.257057i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 136.588 236.577i 0.218540 0.378522i
\(626\) 0 0
\(627\) 131.471 + 262.367i 0.209682 + 0.418448i
\(628\) 0 0
\(629\) 264.776i 0.420948i
\(630\) 0 0
\(631\) −929.239 −1.47265 −0.736323 0.676631i \(-0.763439\pi\)
−0.736323 + 0.676631i \(0.763439\pi\)
\(632\) 0 0
\(633\) −504.888 + 252.997i −0.797611 + 0.399679i
\(634\) 0 0
\(635\) −387.140 223.515i −0.609669 0.351993i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 249.209 + 186.226i 0.389999 + 0.291434i
\(640\) 0 0
\(641\) 691.890 399.463i 1.07939 0.623187i 0.148659 0.988889i \(-0.452504\pi\)
0.930732 + 0.365702i \(0.119171\pi\)
\(642\) 0 0
\(643\) 306.051 0.475973 0.237987 0.971268i \(-0.423513\pi\)
0.237987 + 0.971268i \(0.423513\pi\)
\(644\) 0 0
\(645\) −186.782 11.0471i −0.289584 0.0171273i
\(646\) 0 0
\(647\) −741.774 + 428.263i −1.14648 + 0.661922i −0.948028 0.318188i \(-0.896926\pi\)
−0.198455 + 0.980110i \(0.563592\pi\)
\(648\) 0 0
\(649\) −181.225 + 313.891i −0.279237 + 0.483653i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −528.737 305.266i −0.809705 0.467483i 0.0371487 0.999310i \(-0.488172\pi\)
−0.846853 + 0.531827i \(0.821506\pi\)
\(654\) 0 0
\(655\) −159.724 276.651i −0.243854 0.422367i
\(656\) 0 0
\(657\) 898.539 + 106.661i 1.36764 + 0.162345i
\(658\) 0 0
\(659\) 41.3318i 0.0627190i 0.999508 + 0.0313595i \(0.00998367\pi\)
−0.999508 + 0.0313595i \(0.990016\pi\)
\(660\) 0 0
\(661\) −129.643 224.547i −0.196131 0.339709i 0.751140 0.660143i \(-0.229504\pi\)
−0.947271 + 0.320435i \(0.896171\pi\)
\(662\) 0 0
\(663\) −729.185 + 1106.51i −1.09983 + 1.66894i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −144.295 + 249.927i −0.216335 + 0.374703i
\(668\) 0 0
\(669\) −413.381 + 207.143i −0.617909 + 0.309631i
\(670\) 0 0
\(671\) 1101.32i 1.64132i
\(672\) 0 0
\(673\) 113.498 0.168645 0.0843225 0.996439i \(-0.473127\pi\)
0.0843225 + 0.996439i \(0.473127\pi\)
\(674\) 0 0
\(675\) 254.994 92.0329i 0.377769 0.136345i
\(676\) 0 0
\(677\) 1073.38 + 619.717i 1.58550 + 0.915387i 0.994036 + 0.109053i \(0.0347819\pi\)
0.591461 + 0.806334i \(0.298551\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 385.608 585.143i 0.566238 0.859241i
\(682\) 0 0
\(683\) 1114.21 643.288i 1.63134 0.941856i 0.647662 0.761927i \(-0.275747\pi\)
0.983680 0.179928i \(-0.0575866\pi\)
\(684\) 0 0
\(685\) 594.625 0.868065
\(686\) 0 0
\(687\) 48.7569 824.367i 0.0709707 1.19995i
\(688\) 0 0
\(689\) −1777.20 + 1026.07i −2.57939 + 1.48921i
\(690\) 0 0
\(691\) 444.139 769.272i 0.642748 1.11327i −0.342068 0.939675i \(-0.611127\pi\)
0.984817 0.173598i \(-0.0555393\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 738.635 + 426.451i 1.06278 + 0.613598i
\(696\) 0 0
\(697\) 461.867 + 799.976i 0.662649 + 1.14774i
\(698\) 0 0
\(699\) −106.170 6.27938i −0.151888 0.00898338i
\(700\) 0 0
\(701\) 270.171i 0.385408i 0.981257 + 0.192704i \(0.0617257\pi\)
−0.981257 + 0.192704i \(0.938274\pi\)
\(702\) 0 0
\(703\) 42.0588 + 72.8480i 0.0598276 + 0.103624i
\(704\) 0 0
\(705\) −696.365 458.903i −0.987752 0.650926i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −40.9412 + 70.9122i −0.0577450 + 0.100017i −0.893453 0.449157i \(-0.851724\pi\)
0.835708 + 0.549174i \(0.185058\pi\)
\(710\) 0 0
\(711\) −151.164 352.176i −0.212608 0.495324i
\(712\) 0 0
\(713\) 118.287i 0.165901i
\(714\) 0 0
\(715\) −1103.25 −1.54300
\(716\) 0 0
\(717\) −76.4579 152.582i −0.106636 0.212806i
\(718\) 0 0
\(719\) −589.375 340.276i −0.819715 0.473263i 0.0306031 0.999532i \(-0.490257\pi\)
−0.850318 + 0.526269i \(0.823591\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −525.417 346.249i −0.726718 0.478906i
\(724\) 0 0
\(725\) 324.400 187.293i 0.447449 0.258335i
\(726\) 0 0
\(727\) 333.344 0.458520 0.229260 0.973365i \(-0.426369\pi\)
0.229260 + 0.973365i \(0.426369\pi\)
\(728\) 0 0
\(729\) −683.682 253.021i −0.937836 0.347079i
\(730\) 0 0
\(731\) 304.946 176.061i 0.417163 0.240849i
\(732\) 0 0
\(733\) 412.631 714.697i 0.562934 0.975030i −0.434304 0.900766i \(-0.643006\pi\)
0.997239 0.0742643i \(-0.0236609\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1504.07 868.373i −2.04079 1.17825i
\(738\) 0 0
\(739\) −537.383 930.775i −0.727176 1.25951i −0.958072 0.286527i \(-0.907499\pi\)
0.230896 0.972978i \(-0.425834\pi\)
\(740\) 0 0
\(741\) 24.8562 420.262i 0.0335442 0.567155i
\(742\) 0 0
\(743\) 171.465i 0.230774i −0.993321 0.115387i \(-0.963189\pi\)
0.993321 0.115387i \(-0.0368108\pi\)
\(744\) 0 0
\(745\) 375.698 + 650.728i 0.504293 + 0.873461i
\(746\) 0 0
\(747\) 591.949 + 442.345i 0.792436 + 0.592162i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −176.320 + 305.396i −0.234781 + 0.406652i −0.959209 0.282698i \(-0.908770\pi\)
0.724428 + 0.689350i \(0.242104\pi\)
\(752\) 0 0
\(753\) 103.638 + 206.823i 0.137634 + 0.274666i
\(754\) 0 0
\(755\) 495.385i 0.656139i
\(756\) 0 0
\(757\) 624.790 0.825349 0.412675 0.910878i \(-0.364595\pi\)
0.412675 + 0.910878i \(0.364595\pi\)
\(758\) 0 0
\(759\) 292.556 146.598i 0.385450 0.193147i
\(760\) 0 0
\(761\) −466.912 269.572i −0.613551 0.354234i 0.160803 0.986987i \(-0.448592\pi\)
−0.774354 + 0.632753i \(0.781925\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 455.005 608.892i 0.594778 0.795937i
\(766\) 0 0
\(767\) 450.300 259.981i 0.587093 0.338958i
\(768\) 0 0
\(769\) −357.409 −0.464771 −0.232386 0.972624i \(-0.574653\pi\)
−0.232386 + 0.972624i \(0.574653\pi\)
\(770\) 0 0
\(771\) 474.176 + 28.0450i 0.615015 + 0.0363748i
\(772\) 0 0
\(773\) 201.530 116.354i 0.260712 0.150522i −0.363947 0.931419i \(-0.618571\pi\)
0.624659 + 0.780897i \(0.285238\pi\)
\(774\) 0 0
\(775\) −76.7673 + 132.965i −0.0990546 + 0.171568i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −254.147 146.732i −0.326248 0.188359i
\(780\) 0 0
\(781\) −243.712 422.122i −0.312052 0.540490i
\(782\) 0 0
\(783\) −991.520 177.588i −1.26631 0.226804i
\(784\) 0 0
\(785\) 571.198i 0.727641i
\(786\) 0 0
\(787\) −601.357 1041.58i −0.764114 1.32348i −0.940714 0.339201i \(-0.889843\pi\)
0.176600 0.984283i \(-0.443490\pi\)
\(788\) 0 0
\(789\) 247.805 376.033i 0.314075 0.476595i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −789.966 + 1368.26i −0.996174 + 1.72542i
\(794\) 0 0
\(795\) 1052.37 527.339i 1.32374 0.663320i
\(796\) 0 0
\(797\) 1108.42i 1.39074i 0.718654 + 0.695368i \(0.244758\pi\)
−0.718654 + 0.695368i \(0.755242\pi\)
\(798\) 0 0
\(799\) 1569.47 1.96430
\(800\) 0 0
\(801\) −349.856 + 150.168i −0.436774 + 0.187476i
\(802\) 0 0
\(803\) −1227.75 708.840i −1.52895 0.882739i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −314.975 + 477.960i −0.390303 + 0.592268i
\(808\) 0 0
\(809\) −750.921 + 433.544i −0.928209 + 0.535901i −0.886245 0.463218i \(-0.846695\pi\)
−0.0419640 + 0.999119i \(0.513361\pi\)
\(810\) 0 0
\(811\) −1008.35 −1.24335 −0.621673 0.783277i \(-0.713547\pi\)
−0.621673 + 0.783277i \(0.713547\pi\)
\(812\) 0 0
\(813\) −60.6562 + 1025.56i −0.0746078 + 1.26145i
\(814\) 0 0
\(815\) 704.644 406.826i 0.864594 0.499174i
\(816\) 0 0
\(817\) −55.9333 + 96.8793i −0.0684618 + 0.118579i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1139.74 + 658.030i 1.38824 + 0.801499i 0.993116 0.117131i \(-0.0373697\pi\)
0.395120 + 0.918630i \(0.370703\pi\)
\(822\) 0 0
\(823\) 496.073 + 859.224i 0.602762 + 1.04401i 0.992401 + 0.123047i \(0.0392665\pi\)
−0.389639 + 0.920968i \(0.627400\pi\)
\(824\) 0 0
\(825\) −423.999 25.0772i −0.513938 0.0303967i
\(826\) 0 0
\(827\) 39.2488i 0.0474593i −0.999718 0.0237296i \(-0.992446\pi\)
0.999718 0.0237296i \(-0.00755409\pi\)
\(828\) 0 0
\(829\) −541.870 938.546i −0.653643 1.13214i −0.982232 0.187670i \(-0.939907\pi\)
0.328589 0.944473i \(-0.393427\pi\)
\(830\) 0 0
\(831\) −233.582 153.930i −0.281086 0.185235i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 164.554 285.016i 0.197071 0.341337i
\(836\) 0 0
\(837\) 388.351 140.164i 0.463979 0.167460i
\(838\) 0 0
\(839\) 570.971i 0.680537i 0.940328 + 0.340269i \(0.110518\pi\)
−0.940328 + 0.340269i \(0.889482\pi\)
\(840\) 0 0
\(841\) −550.838 −0.654980
\(842\) 0 0
\(843\) 337.442 + 673.410i 0.400287 + 0.798825i
\(844\) 0 0
\(845\) 804.575 + 464.522i 0.952160 + 0.549730i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 41.7072 + 27.4849i 0.0491250 + 0.0323733i
\(850\) 0 0
\(851\) 81.2303 46.8984i 0.0954528 0.0551097i
\(852\) 0 0
\(853\) −381.290 −0.446999 −0.223499 0.974704i \(-0.571748\pi\)
−0.223499 + 0.974704i \(0.571748\pi\)
\(854\) 0 0
\(855\) −28.4654 + 239.800i −0.0332929 + 0.280468i
\(856\) 0 0
\(857\) −296.640 + 171.265i −0.346138 + 0.199843i −0.662983 0.748634i \(-0.730710\pi\)
0.316845 + 0.948477i \(0.397377\pi\)
\(858\) 0 0
\(859\) −261.025 + 452.109i −0.303871 + 0.526321i −0.977009 0.213196i \(-0.931613\pi\)
0.673138 + 0.739517i \(0.264946\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 102.514 + 59.1867i 0.118788 + 0.0685825i 0.558217 0.829695i \(-0.311486\pi\)
−0.439429 + 0.898278i \(0.644819\pi\)
\(864\) 0 0
\(865\) −180.755 313.078i −0.208966 0.361940i
\(866\) 0 0
\(867\) −33.2686 + 562.495i −0.0383721 + 0.648784i
\(868\) 0 0
\(869\) 600.457i 0.690974i
\(870\) 0 0
\(871\) 1245.75 + 2157.70i 1.43025 + 2.47727i
\(872\) 0 0
\(873\) 260.383 348.447i 0.298263 0.399137i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −30.3661 + 52.5956i −0.0346249 + 0.0599721i −0.882819 0.469714i \(-0.844357\pi\)
0.848194 + 0.529686i \(0.177690\pi\)
\(878\) 0 0
\(879\) 413.037 + 824.269i 0.469894 + 0.937735i
\(880\) 0 0
\(881\) 817.935i 0.928417i −0.885726 0.464208i \(-0.846339\pi\)
0.885726 0.464208i \(-0.153661\pi\)
\(882\) 0 0
\(883\) 19.9764 0.0226233 0.0113117 0.999936i \(-0.496399\pi\)
0.0113117 + 0.999936i \(0.496399\pi\)
\(884\) 0 0
\(885\) −266.647 + 133.615i −0.301296 + 0.150978i
\(886\) 0 0
\(887\) 590.636 + 341.004i 0.665881 + 0.384446i 0.794514 0.607246i \(-0.207726\pi\)
−0.128633 + 0.991692i \(0.541059\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 827.962 + 786.784i 0.929251 + 0.883034i
\(892\) 0 0
\(893\) −431.810 + 249.305i −0.483550 + 0.279177i
\(894\) 0 0
\(895\) 760.118 0.849293
\(896\) 0 0
\(897\) −468.620 27.7163i −0.522430 0.0308989i
\(898\) 0 0
\(899\) 494.055 285.243i 0.549560 0.317289i
\(900\) 0 0
\(901\) −1107.61 + 1918.43i −1.22931 + 2.12923i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −549.404 317.198i −0.607076 0.350495i
\(906\) 0 0
\(907\) −324.948 562.826i −0.358266 0.620536i 0.629405 0.777078i \(-0.283299\pi\)
−0.987671 + 0.156542i \(0.949965\pi\)
\(908\) 0 0
\(909\) 85.6536 721.570i 0.0942284 0.793807i
\(910\) 0 0
\(911\) 1522.75i 1.67152i −0.549099 0.835758i \(-0.685029\pi\)
0.549099 0.835758i \(-0.314971\pi\)
\(912\) 0 0
\(913\) −578.893 1002.67i −0.634056 1.09822i
\(914\) 0 0
\(915\) 498.673 756.714i 0.544998 0.827010i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 376.826 652.682i 0.410039 0.710209i −0.584854 0.811138i \(-0.698848\pi\)
0.994894 + 0.100929i \(0.0321816\pi\)
\(920\) 0 0
\(921\) −340.024 + 170.384i −0.369191 + 0.184999i
\(922\) 0 0
\(923\) 699.249i 0.757582i
\(924\) 0 0
\(925\) −121.746 −0.131618
\(926\) 0 0
\(927\) 171.285 + 399.052i 0.184773 + 0.430477i
\(928\) 0 0
\(929\) 480.731 + 277.550i 0.517471 + 0.298762i 0.735900 0.677091i \(-0.236760\pi\)
−0.218428 + 0.975853i \(0.570093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −542.966 + 823.927i −0.581957 + 0.883094i
\(934\) 0 0
\(935\) −1031.37 + 595.461i −1.10307 + 0.636857i
\(936\) 0 0
\(937\) −231.357 −0.246912 −0.123456 0.992350i \(-0.539398\pi\)
−0.123456 + 0.992350i \(0.539398\pi\)
\(938\) 0 0
\(939\) −45.9254 + 776.494i −0.0489089 + 0.826937i
\(940\) 0 0
\(941\) 455.108 262.757i 0.483643 0.279231i −0.238291 0.971194i \(-0.576587\pi\)
0.721933 + 0.691963i \(0.243254\pi\)
\(942\) 0 0
\(943\) −163.616 + 283.391i −0.173505 + 0.300520i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −495.241 285.928i −0.522958 0.301930i 0.215186 0.976573i \(-0.430964\pi\)
−0.738144 + 0.674643i \(0.764298\pi\)
\(948\) 0 0
\(949\) 1016.88 + 1761.30i 1.07153 + 1.85595i
\(950\) 0 0
\(951\) −25.8157 1.52686i −0.0271458 0.00160553i
\(952\) 0 0
\(953\) 596.119i 0.625518i −0.949833 0.312759i \(-0.898747\pi\)
0.949833 0.312759i \(-0.101253\pi\)
\(954\) 0 0
\(955\) −445.196 771.102i −0.466174 0.807437i
\(956\) 0 0
\(957\) 1317.78 + 868.417i 1.37699 + 0.907437i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 363.585 629.748i 0.378340 0.655305i
\(962\) 0 0
\(963\) −1625.35 + 697.645i −1.68779 + 0.724450i
\(964\) 0 0
\(965\) 714.062i 0.739961i
\(966\) 0 0
\(967\) 1519.98 1.57185 0.785924 0.618324i \(-0.212188\pi\)
0.785924 + 0.618324i \(0.212188\pi\)
\(968\) 0 0
\(969\) −203.593 406.297i −0.210107 0.419295i
\(970\) 0 0
\(971\) −933.045 538.694i −0.960912 0.554783i −0.0644582 0.997920i \(-0.520532\pi\)
−0.896454 + 0.443138i \(0.853865\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 508.780 + 335.285i 0.521825 + 0.343882i
\(976\) 0 0
\(977\) −1559.34 + 900.285i −1.59605 + 0.921480i −0.603811 + 0.797127i \(0.706352\pi\)
−0.992238 + 0.124352i \(0.960315\pi\)
\(978\) 0 0
\(979\) 596.502 0.609297
\(980\) 0 0
\(981\) 476.280 + 56.5365i 0.485504 + 0.0576315i
\(982\) 0 0
\(983\) −444.096 + 256.399i −0.451776 + 0.260833i −0.708580 0.705630i \(-0.750664\pi\)
0.256804 + 0.966464i \(0.417331\pi\)
\(984\) 0 0
\(985\) −176.864 + 306.338i −0.179557 + 0.311003i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 108.027 + 62.3694i 0.109228 + 0.0630630i
\(990\) 0 0
\(991\) 95.8745 + 166.060i 0.0967452 + 0.167568i 0.910336 0.413871i \(-0.135823\pi\)
−0.813590 + 0.581438i \(0.802490\pi\)
\(992\) 0 0
\(993\) −84.0222 + 1420.62i −0.0846145 + 1.43064i
\(994\) 0 0
\(995\) 788.050i 0.792010i
\(996\) 0 0
\(997\) 838.778 + 1452.81i 0.841302 + 1.45718i 0.888794 + 0.458307i \(0.151544\pi\)
−0.0474918 + 0.998872i \(0.515123\pi\)
\(998\) 0 0
\(999\) 250.226 + 211.116i 0.250477 + 0.211327i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.p.f.569.1 8
3.2 odd 2 inner 588.3.p.f.569.4 8
7.2 even 3 84.3.c.a.29.1 4
7.3 odd 6 588.3.p.h.557.1 8
7.4 even 3 inner 588.3.p.f.557.4 8
7.5 odd 6 588.3.c.h.197.4 4
7.6 odd 2 588.3.p.h.569.4 8
21.2 odd 6 84.3.c.a.29.2 yes 4
21.5 even 6 588.3.c.h.197.3 4
21.11 odd 6 inner 588.3.p.f.557.1 8
21.17 even 6 588.3.p.h.557.4 8
21.20 even 2 588.3.p.h.569.1 8
28.23 odd 6 336.3.d.a.113.4 4
35.2 odd 12 2100.3.e.a.449.1 8
35.9 even 6 2100.3.g.a.701.4 4
35.23 odd 12 2100.3.e.a.449.8 8
56.37 even 6 1344.3.d.a.449.4 4
56.51 odd 6 1344.3.d.g.449.1 4
63.2 odd 6 2268.3.bg.a.701.2 8
63.16 even 3 2268.3.bg.a.701.3 8
63.23 odd 6 2268.3.bg.a.2213.3 8
63.58 even 3 2268.3.bg.a.2213.2 8
84.23 even 6 336.3.d.a.113.3 4
105.2 even 12 2100.3.e.a.449.7 8
105.23 even 12 2100.3.e.a.449.2 8
105.44 odd 6 2100.3.g.a.701.3 4
168.107 even 6 1344.3.d.g.449.2 4
168.149 odd 6 1344.3.d.a.449.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.c.a.29.1 4 7.2 even 3
84.3.c.a.29.2 yes 4 21.2 odd 6
336.3.d.a.113.3 4 84.23 even 6
336.3.d.a.113.4 4 28.23 odd 6
588.3.c.h.197.3 4 21.5 even 6
588.3.c.h.197.4 4 7.5 odd 6
588.3.p.f.557.1 8 21.11 odd 6 inner
588.3.p.f.557.4 8 7.4 even 3 inner
588.3.p.f.569.1 8 1.1 even 1 trivial
588.3.p.f.569.4 8 3.2 odd 2 inner
588.3.p.h.557.1 8 7.3 odd 6
588.3.p.h.557.4 8 21.17 even 6
588.3.p.h.569.1 8 21.20 even 2
588.3.p.h.569.4 8 7.6 odd 2
1344.3.d.a.449.3 4 168.149 odd 6
1344.3.d.a.449.4 4 56.37 even 6
1344.3.d.g.449.1 4 56.51 odd 6
1344.3.d.g.449.2 4 168.107 even 6
2100.3.e.a.449.1 8 35.2 odd 12
2100.3.e.a.449.2 8 105.23 even 12
2100.3.e.a.449.7 8 105.2 even 12
2100.3.e.a.449.8 8 35.23 odd 12
2100.3.g.a.701.3 4 105.44 odd 6
2100.3.g.a.701.4 4 35.9 even 6
2268.3.bg.a.701.2 8 63.2 odd 6
2268.3.bg.a.701.3 8 63.16 even 3
2268.3.bg.a.2213.2 8 63.58 even 3
2268.3.bg.a.2213.3 8 63.23 odd 6