Properties

Label 1344.3.d.g.449.2
Level $1344$
Weight $3$
Character 1344.449
Analytic conductor $36.621$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1344,3,Mod(449,1344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1344.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1344, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1344.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6,0,0,0,0,0,-4,0,0,0,-28,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.6213475300\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.116032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 8x^{2} + 14x + 21 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(1.82288 - 2.99477i\) of defining polynomial
Character \(\chi\) \(=\) 1344.449
Dual form 1344.3.d.g.449.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.177124 + 2.99477i) q^{3} -3.86775i q^{5} +2.64575 q^{7} +(-8.93725 + 1.06089i) q^{9} +14.1009i q^{11} -20.2288 q^{13} +(11.5830 - 0.685072i) q^{15} -21.8363i q^{17} +6.93725 q^{19} +(0.468627 + 7.92341i) q^{21} -7.73550i q^{23} +10.0405 q^{25} +(-4.76013 - 26.5771i) q^{27} +37.3073i q^{29} -15.2915 q^{31} +(-42.2288 + 2.49760i) q^{33} -10.2331i q^{35} +12.1255 q^{37} +(-3.58301 - 60.5804i) q^{39} -42.3026i q^{41} +16.1255 q^{43} +(4.10326 + 34.5671i) q^{45} -71.8744i q^{47} +7.00000 q^{49} +(65.3948 - 3.86775i) q^{51} -101.446i q^{53} +54.5385 q^{55} +(1.22876 + 20.7755i) q^{57} -25.7041i q^{59} -78.1033 q^{61} +(-23.6458 + 2.80686i) q^{63} +78.2398i q^{65} -123.166 q^{67} +(23.1660 - 1.37014i) q^{69} +34.5671i q^{71} -100.539 q^{73} +(1.77842 + 30.0690i) q^{75} +37.3073i q^{77} +42.5830 q^{79} +(78.7490 - 18.9629i) q^{81} -82.1075i q^{83} -84.4575 q^{85} +(-111.727 + 6.60804i) q^{87} -42.3026i q^{89} -53.5203 q^{91} +(-2.70850 - 45.7945i) q^{93} -26.8316i q^{95} +48.3320 q^{97} +(-14.9595 - 126.023i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} - 4 q^{9} - 28 q^{13} + 4 q^{15} - 4 q^{19} - 14 q^{21} - 108 q^{25} + 18 q^{27} - 40 q^{31} - 116 q^{33} + 112 q^{37} + 28 q^{39} + 128 q^{43} - 100 q^{45} + 28 q^{49} + 124 q^{51} - 184 q^{55}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.177124 + 2.99477i 0.0590414 + 0.998256i
\(4\) 0 0
\(5\) 3.86775i 0.773550i −0.922174 0.386775i \(-0.873589\pi\)
0.922174 0.386775i \(-0.126411\pi\)
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) 0 0
\(9\) −8.93725 + 1.06089i −0.993028 + 0.117877i
\(10\) 0 0
\(11\) 14.1009i 1.28190i 0.767585 + 0.640948i \(0.221458\pi\)
−0.767585 + 0.640948i \(0.778542\pi\)
\(12\) 0 0
\(13\) −20.2288 −1.55606 −0.778029 0.628228i \(-0.783780\pi\)
−0.778029 + 0.628228i \(0.783780\pi\)
\(14\) 0 0
\(15\) 11.5830 0.685072i 0.772200 0.0456715i
\(16\) 0 0
\(17\) 21.8363i 1.28449i −0.766499 0.642246i \(-0.778003\pi\)
0.766499 0.642246i \(-0.221997\pi\)
\(18\) 0 0
\(19\) 6.93725 0.365119 0.182559 0.983195i \(-0.441562\pi\)
0.182559 + 0.983195i \(0.441562\pi\)
\(20\) 0 0
\(21\) 0.468627 + 7.92341i 0.0223156 + 0.377305i
\(22\) 0 0
\(23\) 7.73550i 0.336326i −0.985759 0.168163i \(-0.946217\pi\)
0.985759 0.168163i \(-0.0537835\pi\)
\(24\) 0 0
\(25\) 10.0405 0.401621
\(26\) 0 0
\(27\) −4.76013 26.5771i −0.176301 0.984336i
\(28\) 0 0
\(29\) 37.3073i 1.28646i 0.765673 + 0.643230i \(0.222406\pi\)
−0.765673 + 0.643230i \(0.777594\pi\)
\(30\) 0 0
\(31\) −15.2915 −0.493274 −0.246637 0.969108i \(-0.579326\pi\)
−0.246637 + 0.969108i \(0.579326\pi\)
\(32\) 0 0
\(33\) −42.2288 + 2.49760i −1.27966 + 0.0756850i
\(34\) 0 0
\(35\) 10.2331i 0.292374i
\(36\) 0 0
\(37\) 12.1255 0.327716 0.163858 0.986484i \(-0.447606\pi\)
0.163858 + 0.986484i \(0.447606\pi\)
\(38\) 0 0
\(39\) −3.58301 60.5804i −0.0918719 1.55334i
\(40\) 0 0
\(41\) 42.3026i 1.03177i −0.856658 0.515885i \(-0.827463\pi\)
0.856658 0.515885i \(-0.172537\pi\)
\(42\) 0 0
\(43\) 16.1255 0.375011 0.187506 0.982264i \(-0.439960\pi\)
0.187506 + 0.982264i \(0.439960\pi\)
\(44\) 0 0
\(45\) 4.10326 + 34.5671i 0.0911837 + 0.768157i
\(46\) 0 0
\(47\) 71.8744i 1.52924i −0.644480 0.764621i \(-0.722926\pi\)
0.644480 0.764621i \(-0.277074\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 65.3948 3.86775i 1.28225 0.0758382i
\(52\) 0 0
\(53\) 101.446i 1.91408i −0.289956 0.957040i \(-0.593641\pi\)
0.289956 0.957040i \(-0.406359\pi\)
\(54\) 0 0
\(55\) 54.5385 0.991610
\(56\) 0 0
\(57\) 1.22876 + 20.7755i 0.0215571 + 0.364482i
\(58\) 0 0
\(59\) 25.7041i 0.435663i −0.975986 0.217831i \(-0.930102\pi\)
0.975986 0.217831i \(-0.0698983\pi\)
\(60\) 0 0
\(61\) −78.1033 −1.28038 −0.640191 0.768216i \(-0.721145\pi\)
−0.640191 + 0.768216i \(0.721145\pi\)
\(62\) 0 0
\(63\) −23.6458 + 2.80686i −0.375329 + 0.0445533i
\(64\) 0 0
\(65\) 78.2398i 1.20369i
\(66\) 0 0
\(67\) −123.166 −1.83830 −0.919149 0.393909i \(-0.871122\pi\)
−0.919149 + 0.393909i \(0.871122\pi\)
\(68\) 0 0
\(69\) 23.1660 1.37014i 0.335739 0.0198572i
\(70\) 0 0
\(71\) 34.5671i 0.486860i 0.969918 + 0.243430i \(0.0782726\pi\)
−0.969918 + 0.243430i \(0.921727\pi\)
\(72\) 0 0
\(73\) −100.539 −1.37724 −0.688620 0.725122i \(-0.741783\pi\)
−0.688620 + 0.725122i \(0.741783\pi\)
\(74\) 0 0
\(75\) 1.77842 + 30.0690i 0.0237123 + 0.400920i
\(76\) 0 0
\(77\) 37.3073i 0.484511i
\(78\) 0 0
\(79\) 42.5830 0.539025 0.269513 0.962997i \(-0.413137\pi\)
0.269513 + 0.962997i \(0.413137\pi\)
\(80\) 0 0
\(81\) 78.7490 18.9629i 0.972210 0.234110i
\(82\) 0 0
\(83\) 82.1075i 0.989247i −0.869107 0.494623i \(-0.835306\pi\)
0.869107 0.494623i \(-0.164694\pi\)
\(84\) 0 0
\(85\) −84.4575 −0.993618
\(86\) 0 0
\(87\) −111.727 + 6.60804i −1.28422 + 0.0759545i
\(88\) 0 0
\(89\) 42.3026i 0.475310i −0.971350 0.237655i \(-0.923621\pi\)
0.971350 0.237655i \(-0.0763787\pi\)
\(90\) 0 0
\(91\) −53.5203 −0.588135
\(92\) 0 0
\(93\) −2.70850 45.7945i −0.0291236 0.492414i
\(94\) 0 0
\(95\) 26.8316i 0.282437i
\(96\) 0 0
\(97\) 48.3320 0.498268 0.249134 0.968469i \(-0.419854\pi\)
0.249134 + 0.968469i \(0.419854\pi\)
\(98\) 0 0
\(99\) −14.9595 126.023i −0.151106 1.27296i
\(100\) 0 0
\(101\) 80.7374i 0.799380i 0.916650 + 0.399690i \(0.130882\pi\)
−0.916650 + 0.399690i \(0.869118\pi\)
\(102\) 0 0
\(103\) −48.2510 −0.468456 −0.234228 0.972182i \(-0.575256\pi\)
−0.234228 + 0.972182i \(0.575256\pi\)
\(104\) 0 0
\(105\) 30.6458 1.81253i 0.291864 0.0172622i
\(106\) 0 0
\(107\) 196.527i 1.83670i −0.395767 0.918351i \(-0.629521\pi\)
0.395767 0.918351i \(-0.370479\pi\)
\(108\) 0 0
\(109\) 53.2915 0.488913 0.244456 0.969660i \(-0.421390\pi\)
0.244456 + 0.969660i \(0.421390\pi\)
\(110\) 0 0
\(111\) 2.14772 + 36.3130i 0.0193488 + 0.327144i
\(112\) 0 0
\(113\) 140.124i 1.24003i 0.784589 + 0.620017i \(0.212874\pi\)
−0.784589 + 0.620017i \(0.787126\pi\)
\(114\) 0 0
\(115\) −29.9190 −0.260165
\(116\) 0 0
\(117\) 180.790 21.4605i 1.54521 0.183423i
\(118\) 0 0
\(119\) 57.7735i 0.485492i
\(120\) 0 0
\(121\) −77.8340 −0.643256
\(122\) 0 0
\(123\) 126.686 7.49281i 1.02997 0.0609172i
\(124\) 0 0
\(125\) 135.528i 1.08422i
\(126\) 0 0
\(127\) 115.579 0.910071 0.455036 0.890473i \(-0.349626\pi\)
0.455036 + 0.890473i \(0.349626\pi\)
\(128\) 0 0
\(129\) 2.85622 + 48.2921i 0.0221412 + 0.374357i
\(130\) 0 0
\(131\) 82.5929i 0.630480i −0.949012 0.315240i \(-0.897915\pi\)
0.949012 0.315240i \(-0.102085\pi\)
\(132\) 0 0
\(133\) 18.3542 0.138002
\(134\) 0 0
\(135\) −102.793 + 18.4110i −0.761433 + 0.136378i
\(136\) 0 0
\(137\) 153.739i 1.12218i −0.827753 0.561092i \(-0.810381\pi\)
0.827753 0.561092i \(-0.189619\pi\)
\(138\) 0 0
\(139\) 220.516 1.58645 0.793224 0.608930i \(-0.208401\pi\)
0.793224 + 0.608930i \(0.208401\pi\)
\(140\) 0 0
\(141\) 215.247 12.7307i 1.52657 0.0902887i
\(142\) 0 0
\(143\) 285.243i 1.99470i
\(144\) 0 0
\(145\) 144.295 0.995141
\(146\) 0 0
\(147\) 1.23987 + 20.9634i 0.00843449 + 0.142608i
\(148\) 0 0
\(149\) 194.272i 1.30384i −0.758288 0.651920i \(-0.773964\pi\)
0.758288 0.651920i \(-0.226036\pi\)
\(150\) 0 0
\(151\) −128.081 −0.848219 −0.424109 0.905611i \(-0.639413\pi\)
−0.424109 + 0.905611i \(0.639413\pi\)
\(152\) 0 0
\(153\) 23.1660 + 195.157i 0.151412 + 1.27554i
\(154\) 0 0
\(155\) 59.1437i 0.381572i
\(156\) 0 0
\(157\) −147.682 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(158\) 0 0
\(159\) 303.808 17.9686i 1.91074 0.113010i
\(160\) 0 0
\(161\) 20.4662i 0.127119i
\(162\) 0 0
\(163\) −210.369 −1.29060 −0.645302 0.763927i \(-0.723269\pi\)
−0.645302 + 0.763927i \(0.723269\pi\)
\(164\) 0 0
\(165\) 9.66010 + 163.330i 0.0585461 + 0.989880i
\(166\) 0 0
\(167\) 85.0905i 0.509524i −0.967004 0.254762i \(-0.918003\pi\)
0.967004 0.254762i \(-0.0819971\pi\)
\(168\) 0 0
\(169\) 240.203 1.42132
\(170\) 0 0
\(171\) −62.0000 + 7.35968i −0.362573 + 0.0430391i
\(172\) 0 0
\(173\) 93.4681i 0.540278i 0.962821 + 0.270139i \(0.0870696\pi\)
−0.962821 + 0.270139i \(0.912930\pi\)
\(174\) 0 0
\(175\) 26.5647 0.151798
\(176\) 0 0
\(177\) 76.9778 4.55282i 0.434903 0.0257222i
\(178\) 0 0
\(179\) 196.527i 1.09792i −0.835850 0.548958i \(-0.815025\pi\)
0.835850 0.548958i \(-0.184975\pi\)
\(180\) 0 0
\(181\) 164.022 0.906200 0.453100 0.891460i \(-0.350318\pi\)
0.453100 + 0.891460i \(0.350318\pi\)
\(182\) 0 0
\(183\) −13.8340 233.901i −0.0755956 1.27815i
\(184\) 0 0
\(185\) 46.8984i 0.253505i
\(186\) 0 0
\(187\) 307.911 1.64658
\(188\) 0 0
\(189\) −12.5941 70.3163i −0.0666356 0.372044i
\(190\) 0 0
\(191\) 230.209i 1.20528i 0.798011 + 0.602642i \(0.205885\pi\)
−0.798011 + 0.602642i \(0.794115\pi\)
\(192\) 0 0
\(193\) −184.620 −0.956578 −0.478289 0.878202i \(-0.658743\pi\)
−0.478289 + 0.878202i \(0.658743\pi\)
\(194\) 0 0
\(195\) −234.310 + 13.8582i −1.20159 + 0.0710675i
\(196\) 0 0
\(197\) 91.4558i 0.464243i 0.972687 + 0.232121i \(0.0745667\pi\)
−0.972687 + 0.232121i \(0.925433\pi\)
\(198\) 0 0
\(199\) 203.749 1.02386 0.511932 0.859026i \(-0.328930\pi\)
0.511932 + 0.859026i \(0.328930\pi\)
\(200\) 0 0
\(201\) −21.8157 368.853i −0.108536 1.83509i
\(202\) 0 0
\(203\) 98.7060i 0.486236i
\(204\) 0 0
\(205\) −163.616 −0.798125
\(206\) 0 0
\(207\) 8.20653 + 69.1341i 0.0396451 + 0.333981i
\(208\) 0 0
\(209\) 97.8212i 0.468044i
\(210\) 0 0
\(211\) 188.243 0.892147 0.446074 0.894996i \(-0.352822\pi\)
0.446074 + 0.894996i \(0.352822\pi\)
\(212\) 0 0
\(213\) −103.520 + 6.12267i −0.486011 + 0.0287449i
\(214\) 0 0
\(215\) 62.3694i 0.290090i
\(216\) 0 0
\(217\) −40.4575 −0.186440
\(218\) 0 0
\(219\) −17.8078 301.089i −0.0813143 1.37484i
\(220\) 0 0
\(221\) 441.722i 1.99874i
\(222\) 0 0
\(223\) −154.125 −0.691146 −0.345573 0.938392i \(-0.612315\pi\)
−0.345573 + 0.938392i \(0.612315\pi\)
\(224\) 0 0
\(225\) −89.7347 + 10.6519i −0.398821 + 0.0473418i
\(226\) 0 0
\(227\) 233.592i 1.02904i 0.857479 + 0.514519i \(0.172030\pi\)
−0.857479 + 0.514519i \(0.827970\pi\)
\(228\) 0 0
\(229\) −275.269 −1.20205 −0.601025 0.799231i \(-0.705241\pi\)
−0.601025 + 0.799231i \(0.705241\pi\)
\(230\) 0 0
\(231\) −111.727 + 6.60804i −0.483666 + 0.0286062i
\(232\) 0 0
\(233\) 35.4518i 0.152154i 0.997102 + 0.0760769i \(0.0242394\pi\)
−0.997102 + 0.0760769i \(0.975761\pi\)
\(234\) 0 0
\(235\) −277.992 −1.18295
\(236\) 0 0
\(237\) 7.54249 + 127.526i 0.0318248 + 0.538085i
\(238\) 0 0
\(239\) 56.8888i 0.238028i 0.992893 + 0.119014i \(0.0379734\pi\)
−0.992893 + 0.119014i \(0.962027\pi\)
\(240\) 0 0
\(241\) −209.749 −0.870328 −0.435164 0.900351i \(-0.643310\pi\)
−0.435164 + 0.900351i \(0.643310\pi\)
\(242\) 0 0
\(243\) 70.7379 + 232.476i 0.291102 + 0.956692i
\(244\) 0 0
\(245\) 27.0742i 0.110507i
\(246\) 0 0
\(247\) −140.332 −0.568146
\(248\) 0 0
\(249\) 245.893 14.5432i 0.987521 0.0584066i
\(250\) 0 0
\(251\) 77.1123i 0.307220i 0.988132 + 0.153610i \(0.0490900\pi\)
−0.988132 + 0.153610i \(0.950910\pi\)
\(252\) 0 0
\(253\) 109.077 0.431135
\(254\) 0 0
\(255\) −14.9595 252.931i −0.0586646 0.991884i
\(256\) 0 0
\(257\) 158.335i 0.616090i −0.951372 0.308045i \(-0.900325\pi\)
0.951372 0.308045i \(-0.0996747\pi\)
\(258\) 0 0
\(259\) 32.0810 0.123865
\(260\) 0 0
\(261\) −39.5791 333.425i −0.151644 1.27749i
\(262\) 0 0
\(263\) 150.114i 0.570776i −0.958412 0.285388i \(-0.907878\pi\)
0.958412 0.285388i \(-0.0921225\pi\)
\(264\) 0 0
\(265\) −392.369 −1.48064
\(266\) 0 0
\(267\) 126.686 7.49281i 0.474480 0.0280630i
\(268\) 0 0
\(269\) 190.804i 0.709308i 0.934998 + 0.354654i \(0.115401\pi\)
−0.934998 + 0.354654i \(0.884599\pi\)
\(270\) 0 0
\(271\) 342.450 1.26365 0.631826 0.775110i \(-0.282306\pi\)
0.631826 + 0.775110i \(0.282306\pi\)
\(272\) 0 0
\(273\) −9.47974 160.281i −0.0347243 0.587109i
\(274\) 0 0
\(275\) 141.580i 0.514836i
\(276\) 0 0
\(277\) 93.2470 0.336632 0.168316 0.985733i \(-0.446167\pi\)
0.168316 + 0.985733i \(0.446167\pi\)
\(278\) 0 0
\(279\) 136.664 16.2226i 0.489835 0.0581456i
\(280\) 0 0
\(281\) 251.075i 0.893505i 0.894657 + 0.446753i \(0.147420\pi\)
−0.894657 + 0.446753i \(0.852580\pi\)
\(282\) 0 0
\(283\) 16.6497 0.0588328 0.0294164 0.999567i \(-0.490635\pi\)
0.0294164 + 0.999567i \(0.490635\pi\)
\(284\) 0 0
\(285\) 80.3542 4.75252i 0.281945 0.0166755i
\(286\) 0 0
\(287\) 111.922i 0.389972i
\(288\) 0 0
\(289\) −187.826 −0.649917
\(290\) 0 0
\(291\) 8.56078 + 144.743i 0.0294185 + 0.497399i
\(292\) 0 0
\(293\) 307.322i 1.04888i −0.851448 0.524440i \(-0.824275\pi\)
0.851448 0.524440i \(-0.175725\pi\)
\(294\) 0 0
\(295\) −99.4170 −0.337007
\(296\) 0 0
\(297\) 374.759 67.1219i 1.26182 0.226000i
\(298\) 0 0
\(299\) 156.480i 0.523343i
\(300\) 0 0
\(301\) 42.6640 0.141741
\(302\) 0 0
\(303\) −241.790 + 14.3006i −0.797985 + 0.0471965i
\(304\) 0 0
\(305\) 302.084i 0.990439i
\(306\) 0 0
\(307\) 126.775 0.412948 0.206474 0.978452i \(-0.433801\pi\)
0.206474 + 0.978452i \(0.433801\pi\)
\(308\) 0 0
\(309\) −8.54642 144.500i −0.0276583 0.467639i
\(310\) 0 0
\(311\) 328.915i 1.05761i 0.848745 + 0.528803i \(0.177359\pi\)
−0.848745 + 0.528803i \(0.822641\pi\)
\(312\) 0 0
\(313\) −259.284 −0.828382 −0.414191 0.910190i \(-0.635935\pi\)
−0.414191 + 0.910190i \(0.635935\pi\)
\(314\) 0 0
\(315\) 10.8562 + 91.4558i 0.0344642 + 0.290336i
\(316\) 0 0
\(317\) 8.62027i 0.0271933i −0.999908 0.0135966i \(-0.995672\pi\)
0.999908 0.0135966i \(-0.00432808\pi\)
\(318\) 0 0
\(319\) −526.065 −1.64911
\(320\) 0 0
\(321\) 588.553 34.8097i 1.83350 0.108442i
\(322\) 0 0
\(323\) 151.484i 0.468992i
\(324\) 0 0
\(325\) −203.107 −0.624945
\(326\) 0 0
\(327\) 9.43922 + 159.596i 0.0288661 + 0.488060i
\(328\) 0 0
\(329\) 190.162i 0.577999i
\(330\) 0 0
\(331\) −474.369 −1.43314 −0.716569 0.697516i \(-0.754288\pi\)
−0.716569 + 0.697516i \(0.754288\pi\)
\(332\) 0 0
\(333\) −108.369 + 12.8638i −0.325431 + 0.0386301i
\(334\) 0 0
\(335\) 476.375i 1.42202i
\(336\) 0 0
\(337\) −609.195 −1.80770 −0.903850 0.427850i \(-0.859271\pi\)
−0.903850 + 0.427850i \(0.859271\pi\)
\(338\) 0 0
\(339\) −419.638 + 24.8193i −1.23787 + 0.0732133i
\(340\) 0 0
\(341\) 215.623i 0.632326i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 0 0
\(345\) −5.29938 89.6003i −0.0153605 0.259711i
\(346\) 0 0
\(347\) 427.136i 1.23094i 0.788161 + 0.615470i \(0.211034\pi\)
−0.788161 + 0.615470i \(0.788966\pi\)
\(348\) 0 0
\(349\) −316.759 −0.907620 −0.453810 0.891098i \(-0.649936\pi\)
−0.453810 + 0.891098i \(0.649936\pi\)
\(350\) 0 0
\(351\) 96.2915 + 537.621i 0.274335 + 1.53168i
\(352\) 0 0
\(353\) 86.4606i 0.244931i 0.992473 + 0.122465i \(0.0390801\pi\)
−0.992473 + 0.122465i \(0.960920\pi\)
\(354\) 0 0
\(355\) 133.697 0.376610
\(356\) 0 0
\(357\) 173.018 10.2331i 0.484645 0.0286642i
\(358\) 0 0
\(359\) 286.213i 0.797252i 0.917114 + 0.398626i \(0.130513\pi\)
−0.917114 + 0.398626i \(0.869487\pi\)
\(360\) 0 0
\(361\) −312.875 −0.866688
\(362\) 0 0
\(363\) −13.7863 233.095i −0.0379788 0.642134i
\(364\) 0 0
\(365\) 388.858i 1.06536i
\(366\) 0 0
\(367\) −111.616 −0.304130 −0.152065 0.988371i \(-0.548592\pi\)
−0.152065 + 0.988371i \(0.548592\pi\)
\(368\) 0 0
\(369\) 44.8784 + 378.069i 0.121622 + 1.02458i
\(370\) 0 0
\(371\) 268.402i 0.723454i
\(372\) 0 0
\(373\) −85.0850 −0.228110 −0.114055 0.993474i \(-0.536384\pi\)
−0.114055 + 0.993474i \(0.536384\pi\)
\(374\) 0 0
\(375\) 405.875 24.0053i 1.08233 0.0640141i
\(376\) 0 0
\(377\) 754.681i 2.00181i
\(378\) 0 0
\(379\) −26.5464 −0.0700433 −0.0350217 0.999387i \(-0.511150\pi\)
−0.0350217 + 0.999387i \(0.511150\pi\)
\(380\) 0 0
\(381\) 20.4719 + 346.132i 0.0537319 + 0.908484i
\(382\) 0 0
\(383\) 115.547i 0.301690i −0.988557 0.150845i \(-0.951801\pi\)
0.988557 0.150845i \(-0.0481994\pi\)
\(384\) 0 0
\(385\) 144.295 0.374793
\(386\) 0 0
\(387\) −144.118 + 17.1074i −0.372397 + 0.0442052i
\(388\) 0 0
\(389\) 385.718i 0.991563i −0.868447 0.495782i \(-0.834882\pi\)
0.868447 0.495782i \(-0.165118\pi\)
\(390\) 0 0
\(391\) −168.915 −0.432008
\(392\) 0 0
\(393\) 247.346 14.6292i 0.629380 0.0372244i
\(394\) 0 0
\(395\) 164.700i 0.416963i
\(396\) 0 0
\(397\) −47.5934 −0.119883 −0.0599413 0.998202i \(-0.519091\pi\)
−0.0599413 + 0.998202i \(0.519091\pi\)
\(398\) 0 0
\(399\) 3.25098 + 54.9667i 0.00814783 + 0.137761i
\(400\) 0 0
\(401\) 458.563i 1.14355i 0.820411 + 0.571775i \(0.193745\pi\)
−0.820411 + 0.571775i \(0.806255\pi\)
\(402\) 0 0
\(403\) 309.328 0.767563
\(404\) 0 0
\(405\) −73.3438 304.581i −0.181096 0.752053i
\(406\) 0 0
\(407\) 170.980i 0.420098i
\(408\) 0 0
\(409\) −57.8666 −0.141483 −0.0707416 0.997495i \(-0.522537\pi\)
−0.0707416 + 0.997495i \(0.522537\pi\)
\(410\) 0 0
\(411\) 460.413 27.2310i 1.12023 0.0662554i
\(412\) 0 0
\(413\) 68.0066i 0.164665i
\(414\) 0 0
\(415\) −317.571 −0.765232
\(416\) 0 0
\(417\) 39.0588 + 660.395i 0.0936662 + 1.58368i
\(418\) 0 0
\(419\) 115.304i 0.275190i −0.990489 0.137595i \(-0.956063\pi\)
0.990489 0.137595i \(-0.0439372\pi\)
\(420\) 0 0
\(421\) −622.664 −1.47901 −0.739506 0.673150i \(-0.764941\pi\)
−0.739506 + 0.673150i \(0.764941\pi\)
\(422\) 0 0
\(423\) 76.2510 + 642.360i 0.180262 + 1.51858i
\(424\) 0 0
\(425\) 219.248i 0.515878i
\(426\) 0 0
\(427\) −206.642 −0.483939
\(428\) 0 0
\(429\) 854.235 50.5234i 1.99122 0.117770i
\(430\) 0 0
\(431\) 170.666i 0.395978i −0.980204 0.197989i \(-0.936559\pi\)
0.980204 0.197989i \(-0.0634410\pi\)
\(432\) 0 0
\(433\) −251.992 −0.581968 −0.290984 0.956728i \(-0.593983\pi\)
−0.290984 + 0.956728i \(0.593983\pi\)
\(434\) 0 0
\(435\) 25.5582 + 432.131i 0.0587546 + 0.993405i
\(436\) 0 0
\(437\) 53.6631i 0.122799i
\(438\) 0 0
\(439\) 452.089 1.02982 0.514908 0.857246i \(-0.327826\pi\)
0.514908 + 0.857246i \(0.327826\pi\)
\(440\) 0 0
\(441\) −62.5608 + 7.42624i −0.141861 + 0.0168396i
\(442\) 0 0
\(443\) 109.182i 0.246460i 0.992378 + 0.123230i \(0.0393253\pi\)
−0.992378 + 0.123230i \(0.960675\pi\)
\(444\) 0 0
\(445\) −163.616 −0.367676
\(446\) 0 0
\(447\) 581.800 34.4103i 1.30157 0.0769806i
\(448\) 0 0
\(449\) 565.005i 1.25836i 0.777259 + 0.629181i \(0.216610\pi\)
−0.777259 + 0.629181i \(0.783390\pi\)
\(450\) 0 0
\(451\) 596.502 1.32262
\(452\) 0 0
\(453\) −22.6863 383.573i −0.0500801 0.846739i
\(454\) 0 0
\(455\) 207.003i 0.454951i
\(456\) 0 0
\(457\) 595.705 1.30351 0.651756 0.758429i \(-0.274033\pi\)
0.651756 + 0.758429i \(0.274033\pi\)
\(458\) 0 0
\(459\) −580.346 + 103.944i −1.26437 + 0.226457i
\(460\) 0 0
\(461\) 445.590i 0.966573i −0.875462 0.483286i \(-0.839443\pi\)
0.875462 0.483286i \(-0.160557\pi\)
\(462\) 0 0
\(463\) 333.919 0.721207 0.360604 0.932719i \(-0.382571\pi\)
0.360604 + 0.932719i \(0.382571\pi\)
\(464\) 0 0
\(465\) −177.122 + 10.4758i −0.380907 + 0.0225286i
\(466\) 0 0
\(467\) 448.244i 0.959838i 0.877313 + 0.479919i \(0.159334\pi\)
−0.877313 + 0.479919i \(0.840666\pi\)
\(468\) 0 0
\(469\) −325.867 −0.694812
\(470\) 0 0
\(471\) −26.1581 442.274i −0.0555374 0.939011i
\(472\) 0 0
\(473\) 227.383i 0.480725i
\(474\) 0 0
\(475\) 69.6536 0.146639
\(476\) 0 0
\(477\) 107.624 + 906.651i 0.225626 + 1.90074i
\(478\) 0 0
\(479\) 13.7014i 0.0286043i −0.999898 0.0143021i \(-0.995447\pi\)
0.999898 0.0143021i \(-0.00455267\pi\)
\(480\) 0 0
\(481\) −245.284 −0.509945
\(482\) 0 0
\(483\) 61.2915 3.62506i 0.126898 0.00750531i
\(484\) 0 0
\(485\) 186.936i 0.385435i
\(486\) 0 0
\(487\) −11.2549 −0.0231107 −0.0115554 0.999933i \(-0.503678\pi\)
−0.0115554 + 0.999933i \(0.503678\pi\)
\(488\) 0 0
\(489\) −37.2614 630.005i −0.0761992 1.28835i
\(490\) 0 0
\(491\) 285.642i 0.581756i 0.956760 + 0.290878i \(0.0939473\pi\)
−0.956760 + 0.290878i \(0.906053\pi\)
\(492\) 0 0
\(493\) 814.656 1.65245
\(494\) 0 0
\(495\) −487.425 + 57.8595i −0.984697 + 0.116888i
\(496\) 0 0
\(497\) 91.4558i 0.184016i
\(498\) 0 0
\(499\) 780.818 1.56477 0.782383 0.622798i \(-0.214004\pi\)
0.782383 + 0.622798i \(0.214004\pi\)
\(500\) 0 0
\(501\) 254.826 15.0716i 0.508635 0.0300830i
\(502\) 0 0
\(503\) 420.771i 0.836522i 0.908327 + 0.418261i \(0.137360\pi\)
−0.908327 + 0.418261i \(0.862640\pi\)
\(504\) 0 0
\(505\) 312.272 0.618360
\(506\) 0 0
\(507\) 42.5457 + 719.351i 0.0839166 + 1.41884i
\(508\) 0 0
\(509\) 102.973i 0.202305i −0.994871 0.101152i \(-0.967747\pi\)
0.994871 0.101152i \(-0.0322530\pi\)
\(510\) 0 0
\(511\) −266.000 −0.520548
\(512\) 0 0
\(513\) −33.0222 184.372i −0.0643708 0.359400i
\(514\) 0 0
\(515\) 186.623i 0.362374i
\(516\) 0 0
\(517\) 1013.49 1.96033
\(518\) 0 0
\(519\) −279.915 + 16.5555i −0.539335 + 0.0318988i
\(520\) 0 0
\(521\) 76.7836i 0.147377i −0.997281 0.0736887i \(-0.976523\pi\)
0.997281 0.0736887i \(-0.0234771\pi\)
\(522\) 0 0
\(523\) −404.561 −0.773539 −0.386769 0.922176i \(-0.626409\pi\)
−0.386769 + 0.922176i \(0.626409\pi\)
\(524\) 0 0
\(525\) 4.70526 + 79.5551i 0.00896240 + 0.151534i
\(526\) 0 0
\(527\) 333.911i 0.633606i
\(528\) 0 0
\(529\) 469.162 0.886885
\(530\) 0 0
\(531\) 27.2693 + 229.724i 0.0513546 + 0.432625i
\(532\) 0 0
\(533\) 855.728i 1.60549i
\(534\) 0 0
\(535\) −760.118 −1.42078
\(536\) 0 0
\(537\) 588.553 34.8097i 1.09600 0.0648226i
\(538\) 0 0
\(539\) 98.7060i 0.183128i
\(540\) 0 0
\(541\) −592.907 −1.09595 −0.547973 0.836496i \(-0.684600\pi\)
−0.547973 + 0.836496i \(0.684600\pi\)
\(542\) 0 0
\(543\) 29.0523 + 491.208i 0.0535034 + 0.904619i
\(544\) 0 0
\(545\) 206.118i 0.378198i
\(546\) 0 0
\(547\) −793.689 −1.45099 −0.725493 0.688230i \(-0.758388\pi\)
−0.725493 + 0.688230i \(0.758388\pi\)
\(548\) 0 0
\(549\) 698.029 82.8591i 1.27145 0.150927i
\(550\) 0 0
\(551\) 258.811i 0.469711i
\(552\) 0 0
\(553\) 112.664 0.203732
\(554\) 0 0
\(555\) 140.450 8.30684i 0.253062 0.0149673i
\(556\) 0 0
\(557\) 368.963i 0.662411i 0.943559 + 0.331206i \(0.107455\pi\)
−0.943559 + 0.331206i \(0.892545\pi\)
\(558\) 0 0
\(559\) −326.199 −0.583540
\(560\) 0 0
\(561\) 54.5385 + 922.122i 0.0972167 + 1.64371i
\(562\) 0 0
\(563\) 529.796i 0.941022i −0.882394 0.470511i \(-0.844070\pi\)
0.882394 0.470511i \(-0.155930\pi\)
\(564\) 0 0
\(565\) 541.963 0.959227
\(566\) 0 0
\(567\) 208.350 50.1712i 0.367461 0.0884853i
\(568\) 0 0
\(569\) 1068.04i 1.87705i −0.345216 0.938523i \(-0.612194\pi\)
0.345216 0.938523i \(-0.387806\pi\)
\(570\) 0 0
\(571\) −118.191 −0.206989 −0.103495 0.994630i \(-0.533002\pi\)
−0.103495 + 0.994630i \(0.533002\pi\)
\(572\) 0 0
\(573\) −689.423 + 40.7757i −1.20318 + 0.0711618i
\(574\) 0 0
\(575\) 77.6684i 0.135075i
\(576\) 0 0
\(577\) 586.559 1.01657 0.508284 0.861190i \(-0.330280\pi\)
0.508284 + 0.861190i \(0.330280\pi\)
\(578\) 0 0
\(579\) −32.7006 552.893i −0.0564778 0.954909i
\(580\) 0 0
\(581\) 217.236i 0.373900i
\(582\) 0 0
\(583\) 1430.48 2.45365
\(584\) 0 0
\(585\) −83.0039 699.249i −0.141887 1.19530i
\(586\) 0 0
\(587\) 809.558i 1.37914i 0.724217 + 0.689572i \(0.242201\pi\)
−0.724217 + 0.689572i \(0.757799\pi\)
\(588\) 0 0
\(589\) −106.081 −0.180104
\(590\) 0 0
\(591\) −273.889 + 16.1991i −0.463433 + 0.0274096i
\(592\) 0 0
\(593\) 480.314i 0.809973i −0.914323 0.404986i \(-0.867276\pi\)
0.914323 0.404986i \(-0.132724\pi\)
\(594\) 0 0
\(595\) −223.454 −0.375552
\(596\) 0 0
\(597\) 36.0889 + 610.181i 0.0604504 + 1.02208i
\(598\) 0 0
\(599\) 386.689i 0.645557i 0.946474 + 0.322779i \(0.104617\pi\)
−0.946474 + 0.322779i \(0.895383\pi\)
\(600\) 0 0
\(601\) −474.369 −0.789299 −0.394649 0.918832i \(-0.629134\pi\)
−0.394649 + 0.918832i \(0.629134\pi\)
\(602\) 0 0
\(603\) 1100.77 130.666i 1.82548 0.216693i
\(604\) 0 0
\(605\) 301.042i 0.497591i
\(606\) 0 0
\(607\) 434.199 0.715319 0.357660 0.933852i \(-0.383575\pi\)
0.357660 + 0.933852i \(0.383575\pi\)
\(608\) 0 0
\(609\) −295.601 + 17.4832i −0.485388 + 0.0287081i
\(610\) 0 0
\(611\) 1453.93i 2.37959i
\(612\) 0 0
\(613\) −614.782 −1.00291 −0.501453 0.865185i \(-0.667201\pi\)
−0.501453 + 0.865185i \(0.667201\pi\)
\(614\) 0 0
\(615\) −28.9803 489.991i −0.0471225 0.796733i
\(616\) 0 0
\(617\) 527.697i 0.855263i 0.903953 + 0.427632i \(0.140652\pi\)
−0.903953 + 0.427632i \(0.859348\pi\)
\(618\) 0 0
\(619\) −679.970 −1.09850 −0.549249 0.835659i \(-0.685086\pi\)
−0.549249 + 0.835659i \(0.685086\pi\)
\(620\) 0 0
\(621\) −205.587 + 36.8220i −0.331058 + 0.0592946i
\(622\) 0 0
\(623\) 111.922i 0.179650i
\(624\) 0 0
\(625\) −273.175 −0.437080
\(626\) 0 0
\(627\) −292.952 + 17.3265i −0.467227 + 0.0276340i
\(628\) 0 0
\(629\) 264.776i 0.420948i
\(630\) 0 0
\(631\) 929.239 1.47265 0.736323 0.676631i \(-0.236561\pi\)
0.736323 + 0.676631i \(0.236561\pi\)
\(632\) 0 0
\(633\) 33.3424 + 563.744i 0.0526737 + 0.890591i
\(634\) 0 0
\(635\) 447.031i 0.703986i
\(636\) 0 0
\(637\) −141.601 −0.222294
\(638\) 0 0
\(639\) −36.6719 308.935i −0.0573895 0.483466i
\(640\) 0 0
\(641\) 798.925i 1.24637i −0.782073 0.623187i \(-0.785838\pi\)
0.782073 0.623187i \(-0.214162\pi\)
\(642\) 0 0
\(643\) 306.051 0.475973 0.237987 0.971268i \(-0.423513\pi\)
0.237987 + 0.971268i \(0.423513\pi\)
\(644\) 0 0
\(645\) 186.782 11.0471i 0.289584 0.0171273i
\(646\) 0 0
\(647\) 856.527i 1.32384i −0.749573 0.661922i \(-0.769741\pi\)
0.749573 0.661922i \(-0.230259\pi\)
\(648\) 0 0
\(649\) 362.450 0.558474
\(650\) 0 0
\(651\) −7.16601 121.161i −0.0110077 0.186115i
\(652\) 0 0
\(653\) 610.533i 0.934966i 0.884002 + 0.467483i \(0.154839\pi\)
−0.884002 + 0.467483i \(0.845161\pi\)
\(654\) 0 0
\(655\) −319.448 −0.487708
\(656\) 0 0
\(657\) 898.539 106.661i 1.36764 0.162345i
\(658\) 0 0
\(659\) 41.3318i 0.0627190i −0.999508 0.0313595i \(-0.990016\pi\)
0.999508 0.0313595i \(-0.00998367\pi\)
\(660\) 0 0
\(661\) −259.285 −0.392262 −0.196131 0.980578i \(-0.562838\pi\)
−0.196131 + 0.980578i \(0.562838\pi\)
\(662\) 0 0
\(663\) −1322.85 + 78.2398i −1.99526 + 0.118009i
\(664\) 0 0
\(665\) 70.9896i 0.106751i
\(666\) 0 0
\(667\) 288.591 0.432670
\(668\) 0 0
\(669\) −27.2994 461.570i −0.0408062 0.689940i
\(670\) 0 0
\(671\) 1101.32i 1.64132i
\(672\) 0 0
\(673\) 113.498 0.168645 0.0843225 0.996439i \(-0.473127\pi\)
0.0843225 + 0.996439i \(0.473127\pi\)
\(674\) 0 0
\(675\) −47.7942 266.848i −0.0708062 0.395330i
\(676\) 0 0
\(677\) 1239.43i 1.83077i −0.402575 0.915387i \(-0.631885\pi\)
0.402575 0.915387i \(-0.368115\pi\)
\(678\) 0 0
\(679\) 127.875 0.188328
\(680\) 0 0
\(681\) −699.553 + 41.3748i −1.02724 + 0.0607559i
\(682\) 0 0
\(683\) 1286.58i 1.88371i −0.336017 0.941856i \(-0.609080\pi\)
0.336017 0.941856i \(-0.390920\pi\)
\(684\) 0 0
\(685\) −594.625 −0.868065
\(686\) 0 0
\(687\) −48.7569 824.367i −0.0709707 1.19995i
\(688\) 0 0
\(689\) 2052.13i 2.97842i
\(690\) 0 0
\(691\) −888.278 −1.28550 −0.642748 0.766077i \(-0.722206\pi\)
−0.642748 + 0.766077i \(0.722206\pi\)
\(692\) 0 0
\(693\) −39.5791 333.425i −0.0571127 0.481133i
\(694\) 0 0
\(695\) 852.902i 1.22720i
\(696\) 0 0
\(697\) −923.733 −1.32530
\(698\) 0 0
\(699\) −106.170 + 6.27938i −0.151888 + 0.00898338i
\(700\) 0 0
\(701\) 270.171i 0.385408i 0.981257 + 0.192704i \(0.0617257\pi\)
−0.981257 + 0.192704i \(0.938274\pi\)
\(702\) 0 0
\(703\) 84.1176 0.119655
\(704\) 0 0
\(705\) −49.2392 832.522i −0.0698428 1.18088i
\(706\) 0 0
\(707\) 213.611i 0.302137i
\(708\) 0 0
\(709\) −81.8824 −0.115490 −0.0577450 0.998331i \(-0.518391\pi\)
−0.0577450 + 0.998331i \(0.518391\pi\)
\(710\) 0 0
\(711\) −380.575 + 45.1760i −0.535267 + 0.0635386i
\(712\) 0 0
\(713\) 118.287i 0.165901i
\(714\) 0 0
\(715\) −1103.25 −1.54300
\(716\) 0 0
\(717\) −170.369 + 10.0764i −0.237613 + 0.0140535i
\(718\) 0 0
\(719\) 680.552i 0.946526i 0.880921 + 0.473263i \(0.156924\pi\)
−0.880921 + 0.473263i \(0.843076\pi\)
\(720\) 0 0
\(721\) −127.660 −0.177060
\(722\) 0 0
\(723\) −37.1517 628.149i −0.0513854 0.868810i
\(724\) 0 0
\(725\) 374.585i 0.516669i
\(726\) 0 0
\(727\) −333.344 −0.458520 −0.229260 0.973365i \(-0.573631\pi\)
−0.229260 + 0.973365i \(0.573631\pi\)
\(728\) 0 0
\(729\) −683.682 + 253.021i −0.937836 + 0.347079i
\(730\) 0 0
\(731\) 352.122i 0.481699i
\(732\) 0 0
\(733\) 825.261 1.12587 0.562934 0.826502i \(-0.309672\pi\)
0.562934 + 0.826502i \(0.309672\pi\)
\(734\) 0 0
\(735\) 81.0810 4.79551i 0.110314 0.00652450i
\(736\) 0 0
\(737\) 1736.75i 2.35651i
\(738\) 0 0
\(739\) 1074.77 1.45435 0.727176 0.686451i \(-0.240832\pi\)
0.727176 + 0.686451i \(0.240832\pi\)
\(740\) 0 0
\(741\) −24.8562 420.262i −0.0335442 0.567155i
\(742\) 0 0
\(743\) 171.465i 0.230774i −0.993321 0.115387i \(-0.963189\pi\)
0.993321 0.115387i \(-0.0368108\pi\)
\(744\) 0 0
\(745\) −751.396 −1.00859
\(746\) 0 0
\(747\) 87.1072 + 733.816i 0.116609 + 0.982350i
\(748\) 0 0
\(749\) 519.962i 0.694208i
\(750\) 0 0
\(751\) −352.640 −0.469561 −0.234781 0.972048i \(-0.575437\pi\)
−0.234781 + 0.972048i \(0.575437\pi\)
\(752\) 0 0
\(753\) −230.933 + 13.6585i −0.306684 + 0.0181387i
\(754\) 0 0
\(755\) 495.385i 0.656139i
\(756\) 0 0
\(757\) −624.790 −0.825349 −0.412675 0.910878i \(-0.635405\pi\)
−0.412675 + 0.910878i \(0.635405\pi\)
\(758\) 0 0
\(759\) 19.3202 + 326.660i 0.0254548 + 0.430383i
\(760\) 0 0
\(761\) 539.144i 0.708468i −0.935157 0.354234i \(-0.884742\pi\)
0.935157 0.354234i \(-0.115258\pi\)
\(762\) 0 0
\(763\) 140.996 0.184792
\(764\) 0 0
\(765\) 754.818 89.6003i 0.986691 0.117125i
\(766\) 0 0
\(767\) 519.962i 0.677916i
\(768\) 0 0
\(769\) −357.409 −0.464771 −0.232386 0.972624i \(-0.574653\pi\)
−0.232386 + 0.972624i \(0.574653\pi\)
\(770\) 0 0
\(771\) 474.176 28.0450i 0.615015 0.0363748i
\(772\) 0 0
\(773\) 232.707i 0.301044i 0.988607 + 0.150522i \(0.0480954\pi\)
−0.988607 + 0.150522i \(0.951905\pi\)
\(774\) 0 0
\(775\) −153.535 −0.198109
\(776\) 0 0
\(777\) 5.68233 + 96.0752i 0.00731317 + 0.123649i
\(778\) 0 0
\(779\) 293.464i 0.376718i
\(780\) 0 0
\(781\) −487.425 −0.624104
\(782\) 0 0
\(783\) 991.520 177.588i 1.26631 0.226804i
\(784\) 0 0
\(785\) 571.198i 0.727641i
\(786\) 0 0
\(787\) 1202.71 1.52823 0.764114 0.645082i \(-0.223177\pi\)
0.764114 + 0.645082i \(0.223177\pi\)
\(788\) 0 0
\(789\) 449.557 26.5889i 0.569781 0.0336995i
\(790\) 0 0
\(791\) 370.733i 0.468688i
\(792\) 0 0
\(793\) 1579.93 1.99235
\(794\) 0 0
\(795\) −69.4980 1175.05i −0.0874189 1.47805i
\(796\) 0 0
\(797\) 1108.42i 1.39074i 0.718654 + 0.695368i \(0.244758\pi\)
−0.718654 + 0.695368i \(0.755242\pi\)
\(798\) 0 0
\(799\) −1569.47 −1.96430
\(800\) 0 0
\(801\) 44.8784 + 378.069i 0.0560280 + 0.471996i
\(802\) 0 0
\(803\) 1417.68i 1.76548i
\(804\) 0 0
\(805\) −79.1581 −0.0983331
\(806\) 0 0
\(807\) −571.413 + 33.7960i −0.708071 + 0.0418786i
\(808\) 0 0
\(809\) 867.089i 1.07180i 0.844281 + 0.535901i \(0.180028\pi\)
−0.844281 + 0.535901i \(0.819972\pi\)
\(810\) 0 0
\(811\) −1008.35 −1.24335 −0.621673 0.783277i \(-0.713547\pi\)
−0.621673 + 0.783277i \(0.713547\pi\)
\(812\) 0 0
\(813\) 60.6562 + 1025.56i 0.0746078 + 1.26145i
\(814\) 0 0
\(815\) 813.653i 0.998347i
\(816\) 0 0
\(817\) 111.867 0.136924
\(818\) 0 0
\(819\) 478.324 56.7792i 0.584034 0.0693275i
\(820\) 0 0
\(821\) 1316.06i 1.60300i −0.597996 0.801499i \(-0.704036\pi\)
0.597996 0.801499i \(-0.295964\pi\)
\(822\) 0 0
\(823\) 992.146 1.20552 0.602762 0.797921i \(-0.294067\pi\)
0.602762 + 0.797921i \(0.294067\pi\)
\(824\) 0 0
\(825\) −423.999 + 25.0772i −0.513938 + 0.0303967i
\(826\) 0 0
\(827\) 39.2488i 0.0474593i 0.999718 + 0.0237296i \(0.00755409\pi\)
−0.999718 + 0.0237296i \(0.992446\pi\)
\(828\) 0 0
\(829\) −1083.74 −1.30729 −0.653643 0.756803i \(-0.726760\pi\)
−0.653643 + 0.756803i \(0.726760\pi\)
\(830\) 0 0
\(831\) 16.5163 + 279.253i 0.0198752 + 0.336045i
\(832\) 0 0
\(833\) 152.854i 0.183499i
\(834\) 0 0
\(835\) −329.109 −0.394142
\(836\) 0 0
\(837\) 72.7895 + 406.403i 0.0869648 + 0.485548i
\(838\) 0 0
\(839\) 570.971i 0.680537i 0.940328 + 0.340269i \(0.110518\pi\)
−0.940328 + 0.340269i \(0.889482\pi\)
\(840\) 0 0
\(841\) −550.838 −0.654980
\(842\) 0 0
\(843\) −751.911 + 44.4715i −0.891947 + 0.0527539i
\(844\) 0 0
\(845\) 929.043i 1.09946i
\(846\) 0 0
\(847\) −205.929 −0.243128
\(848\) 0 0
\(849\) 2.94907 + 49.8619i 0.00347357 + 0.0587302i
\(850\) 0 0
\(851\) 93.7967i 0.110219i
\(852\) 0 0
\(853\) 381.290 0.446999 0.223499 0.974704i \(-0.428252\pi\)
0.223499 + 0.974704i \(0.428252\pi\)
\(854\) 0 0
\(855\) 28.4654 + 239.800i 0.0332929 + 0.280468i
\(856\) 0 0
\(857\) 342.531i 0.399686i 0.979828 + 0.199843i \(0.0640432\pi\)
−0.979828 + 0.199843i \(0.935957\pi\)
\(858\) 0 0
\(859\) 522.051 0.607743 0.303871 0.952713i \(-0.401721\pi\)
0.303871 + 0.952713i \(0.401721\pi\)
\(860\) 0 0
\(861\) 335.180 19.8241i 0.389292 0.0230245i
\(862\) 0 0
\(863\) 118.373i 0.137165i −0.997645 0.0685825i \(-0.978152\pi\)
0.997645 0.0685825i \(-0.0218476\pi\)
\(864\) 0 0
\(865\) 361.511 0.417932
\(866\) 0 0
\(867\) −33.2686 562.495i −0.0383721 0.648784i
\(868\) 0 0
\(869\) 600.457i 0.690974i
\(870\) 0 0
\(871\) 2491.50 2.86050
\(872\) 0 0
\(873\) −431.956 + 51.2751i −0.494794 + 0.0587343i
\(874\) 0 0
\(875\) 358.573i 0.409798i
\(876\) 0 0
\(877\) −60.7321 −0.0692499 −0.0346249 0.999400i \(-0.511024\pi\)
−0.0346249 + 0.999400i \(0.511024\pi\)
\(878\) 0 0
\(879\) 920.357 54.4342i 1.04705 0.0619274i
\(880\) 0 0
\(881\) 817.935i 0.928417i 0.885726 + 0.464208i \(0.153661\pi\)
−0.885726 + 0.464208i \(0.846339\pi\)
\(882\) 0 0
\(883\) 19.9764 0.0226233 0.0113117 0.999936i \(-0.496399\pi\)
0.0113117 + 0.999936i \(0.496399\pi\)
\(884\) 0 0
\(885\) −17.6092 297.731i −0.0198974 0.336419i
\(886\) 0 0
\(887\) 682.008i 0.768893i −0.923147 0.384446i \(-0.874392\pi\)
0.923147 0.384446i \(-0.125608\pi\)
\(888\) 0 0
\(889\) 305.793 0.343975
\(890\) 0 0
\(891\) 267.393 + 1110.43i 0.300105 + 1.24627i
\(892\) 0 0
\(893\) 498.611i 0.558355i
\(894\) 0 0
\(895\) −760.118 −0.849293
\(896\) 0 0
\(897\) −468.620 + 27.7163i −0.522430 + 0.0308989i
\(898\) 0 0
\(899\) 570.485i 0.634578i
\(900\) 0 0
\(901\) −2215.22 −2.45862
\(902\) 0 0
\(903\) 7.55684 + 127.769i 0.00836859 + 0.141494i
\(904\) 0 0
\(905\) 634.397i 0.700991i
\(906\) 0 0
\(907\) 649.895 0.716533 0.358266 0.933619i \(-0.383368\pi\)
0.358266 + 0.933619i \(0.383368\pi\)
\(908\) 0 0
\(909\) −85.6536 721.570i −0.0942284 0.793807i
\(910\) 0 0
\(911\) 1522.75i 1.67152i −0.549099 0.835758i \(-0.685029\pi\)
0.549099 0.835758i \(-0.314971\pi\)
\(912\) 0 0
\(913\) 1157.79 1.26811
\(914\) 0 0
\(915\) −904.671 + 53.5064i −0.988711 + 0.0584769i
\(916\) 0 0
\(917\) 218.520i 0.238299i
\(918\) 0 0
\(919\) 753.652 0.820079 0.410039 0.912068i \(-0.365515\pi\)
0.410039 + 0.912068i \(0.365515\pi\)
\(920\) 0 0
\(921\) 22.4550 + 379.662i 0.0243811 + 0.412228i
\(922\) 0 0
\(923\) 699.249i 0.757582i
\(924\) 0 0
\(925\) 121.746 0.131618
\(926\) 0 0
\(927\) 431.231 51.1891i 0.465190 0.0552202i
\(928\) 0 0
\(929\) 555.100i 0.597525i 0.954328 + 0.298762i \(0.0965738\pi\)
−0.954328 + 0.298762i \(0.903426\pi\)
\(930\) 0 0
\(931\) 48.5608 0.0521598
\(932\) 0 0
\(933\) −985.025 + 58.2589i −1.05576 + 0.0624426i
\(934\) 0 0
\(935\) 1190.92i 1.27371i
\(936\) 0 0
\(937\) −231.357 −0.246912 −0.123456 0.992350i \(-0.539398\pi\)
−0.123456 + 0.992350i \(0.539398\pi\)
\(938\) 0 0
\(939\) −45.9254 776.494i −0.0489089 0.826937i
\(940\) 0 0
\(941\) 525.513i 0.558463i 0.960224 + 0.279231i \(0.0900796\pi\)
−0.960224 + 0.279231i \(0.909920\pi\)
\(942\) 0 0
\(943\) −327.231 −0.347011
\(944\) 0 0
\(945\) −271.966 + 48.7109i −0.287795 + 0.0515459i
\(946\) 0 0
\(947\) 571.855i 0.603860i −0.953330 0.301930i \(-0.902369\pi\)
0.953330 0.301930i \(-0.0976309\pi\)
\(948\) 0 0
\(949\) 2033.77 2.14307
\(950\) 0 0
\(951\) 25.8157 1.52686i 0.0271458 0.00160553i
\(952\) 0 0
\(953\) 596.119i 0.625518i 0.949833 + 0.312759i \(0.101253\pi\)
−0.949833 + 0.312759i \(0.898747\pi\)
\(954\) 0 0
\(955\) 890.392 0.932348
\(956\) 0 0
\(957\) −93.1790 1575.44i −0.0973657 1.64623i
\(958\) 0 0
\(959\) 406.756i 0.424146i
\(960\) 0 0
\(961\) −727.170 −0.756680
\(962\) 0 0
\(963\) 208.494 + 1756.41i 0.216505 + 1.82390i
\(964\) 0 0
\(965\) 714.062i 0.739961i
\(966\) 0 0
\(967\) −1519.98 −1.57185 −0.785924 0.618324i \(-0.787812\pi\)
−0.785924 + 0.618324i \(0.787812\pi\)
\(968\) 0 0
\(969\) 453.660 26.8316i 0.468173 0.0276899i
\(970\) 0 0
\(971\) 1077.39i 1.10957i −0.831995 0.554783i \(-0.812801\pi\)
0.831995 0.554783i \(-0.187199\pi\)
\(972\) 0 0
\(973\) 583.431 0.599621
\(974\) 0 0
\(975\) −35.9752 608.259i −0.0368977 0.623855i
\(976\) 0 0
\(977\) 1800.57i 1.84296i 0.388427 + 0.921480i \(0.373019\pi\)
−0.388427 + 0.921480i \(0.626981\pi\)
\(978\) 0 0
\(979\) 596.502 0.609297
\(980\) 0 0
\(981\) −476.280 + 56.5365i −0.485504 + 0.0576315i
\(982\) 0 0
\(983\) 512.798i 0.521666i −0.965384 0.260833i \(-0.916003\pi\)
0.965384 0.260833i \(-0.0839972\pi\)
\(984\) 0 0
\(985\) 353.728 0.359115
\(986\) 0 0
\(987\) 569.490 33.6823i 0.576991 0.0341259i
\(988\) 0 0
\(989\) 124.739i 0.126126i
\(990\) 0 0
\(991\) 191.749 0.193490 0.0967452 0.995309i \(-0.469157\pi\)
0.0967452 + 0.995309i \(0.469157\pi\)
\(992\) 0 0
\(993\) −84.0222 1420.62i −0.0846145 1.43064i
\(994\) 0 0
\(995\) 788.050i 0.792010i
\(996\) 0 0
\(997\) 1677.56 1.68260 0.841302 0.540565i \(-0.181789\pi\)
0.841302 + 0.540565i \(0.181789\pi\)
\(998\) 0 0
\(999\) −57.7189 322.260i −0.0577767 0.322583i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1344.3.d.g.449.2 4
3.2 odd 2 inner 1344.3.d.g.449.1 4
4.3 odd 2 1344.3.d.a.449.3 4
8.3 odd 2 84.3.c.a.29.2 yes 4
8.5 even 2 336.3.d.a.113.3 4
12.11 even 2 1344.3.d.a.449.4 4
24.5 odd 2 336.3.d.a.113.4 4
24.11 even 2 84.3.c.a.29.1 4
40.3 even 4 2100.3.e.a.449.2 8
40.19 odd 2 2100.3.g.a.701.3 4
40.27 even 4 2100.3.e.a.449.7 8
56.3 even 6 588.3.p.h.569.1 8
56.11 odd 6 588.3.p.f.569.4 8
56.19 even 6 588.3.p.h.557.4 8
56.27 even 2 588.3.c.h.197.3 4
56.51 odd 6 588.3.p.f.557.1 8
72.11 even 6 2268.3.bg.a.701.3 8
72.43 odd 6 2268.3.bg.a.701.2 8
72.59 even 6 2268.3.bg.a.2213.2 8
72.67 odd 6 2268.3.bg.a.2213.3 8
120.59 even 2 2100.3.g.a.701.4 4
120.83 odd 4 2100.3.e.a.449.8 8
120.107 odd 4 2100.3.e.a.449.1 8
168.11 even 6 588.3.p.f.569.1 8
168.59 odd 6 588.3.p.h.569.4 8
168.83 odd 2 588.3.c.h.197.4 4
168.107 even 6 588.3.p.f.557.4 8
168.131 odd 6 588.3.p.h.557.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.c.a.29.1 4 24.11 even 2
84.3.c.a.29.2 yes 4 8.3 odd 2
336.3.d.a.113.3 4 8.5 even 2
336.3.d.a.113.4 4 24.5 odd 2
588.3.c.h.197.3 4 56.27 even 2
588.3.c.h.197.4 4 168.83 odd 2
588.3.p.f.557.1 8 56.51 odd 6
588.3.p.f.557.4 8 168.107 even 6
588.3.p.f.569.1 8 168.11 even 6
588.3.p.f.569.4 8 56.11 odd 6
588.3.p.h.557.1 8 168.131 odd 6
588.3.p.h.557.4 8 56.19 even 6
588.3.p.h.569.1 8 56.3 even 6
588.3.p.h.569.4 8 168.59 odd 6
1344.3.d.a.449.3 4 4.3 odd 2
1344.3.d.a.449.4 4 12.11 even 2
1344.3.d.g.449.1 4 3.2 odd 2 inner
1344.3.d.g.449.2 4 1.1 even 1 trivial
2100.3.e.a.449.1 8 120.107 odd 4
2100.3.e.a.449.2 8 40.3 even 4
2100.3.e.a.449.7 8 40.27 even 4
2100.3.e.a.449.8 8 120.83 odd 4
2100.3.g.a.701.3 4 40.19 odd 2
2100.3.g.a.701.4 4 120.59 even 2
2268.3.bg.a.701.2 8 72.43 odd 6
2268.3.bg.a.701.3 8 72.11 even 6
2268.3.bg.a.2213.2 8 72.59 even 6
2268.3.bg.a.2213.3 8 72.67 odd 6