Properties

Label 2100.3.e
Level $2100$
Weight $3$
Character orbit 2100.e
Rep. character $\chi_{2100}(449,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $3$
Sturm bound $1440$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(1440\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2100, [\chi])\).

Total New Old
Modular forms 996 72 924
Cusp forms 924 72 852
Eisenstein series 72 0 72

Trace form

\( 72 q + 24 q^{9} - 40 q^{19} - 28 q^{21} + 152 q^{31} + 20 q^{39} - 504 q^{49} - 304 q^{51} + 240 q^{61} - 244 q^{69} - 328 q^{79} - 336 q^{81} + 168 q^{91} + 480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2100.3.e.a 2100.e 15.d $8$ $57.221$ 8.0.\(\cdots\).14 None 84.3.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-2\beta _{6})q^{3}+(-\beta _{1}-\beta _{5}+\beta _{6}+\cdots)q^{7}+\cdots\)
2100.3.e.b 2100.e 15.d $32$ $57.221$ None 2100.3.g.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
2100.3.e.c 2100.e 15.d $32$ $57.221$ None 420.3.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(2100, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1050, [\chi])\)\(^{\oplus 2}\)