Defining parameters
Level: | \( N \) | \(=\) | \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 2100.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(1440\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(2100, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 996 | 72 | 924 |
Cusp forms | 924 | 72 | 852 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
2100.3.e.a | $8$ | $57.221$ | 8.0.\(\cdots\).14 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{1}-2\beta _{6})q^{3}+(-\beta _{1}-\beta _{5}+\beta _{6}+\cdots)q^{7}+\cdots\) |
2100.3.e.b | $32$ | $57.221$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
2100.3.e.c | $32$ | $57.221$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(2100, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1050, [\chi])\)\(^{\oplus 2}\)