Properties

Label 2100.3
Level 2100
Weight 3
Dimension 88622
Nonzero newspaces 48
Sturm bound 691200
Trace bound 18

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 48 \)
Sturm bound: \(691200\)
Trace bound: \(18\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(2100))\).

Total New Old
Modular forms 233760 89446 144314
Cusp forms 227040 88622 138418
Eisenstein series 6720 824 5896

Trace form

\( 88622 q + 4 q^{2} - 5 q^{3} - 30 q^{4} + 24 q^{5} - 4 q^{6} + 62 q^{7} + 46 q^{8} + 63 q^{9} - 96 q^{10} - 10 q^{11} - 156 q^{12} - 62 q^{13} - 240 q^{14} - 28 q^{15} - 542 q^{16} + 192 q^{17} - 202 q^{18}+ \cdots + 1382 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(2100))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2100.3.b \(\chi_{2100}(799, \cdot)\) n/a 216 1
2100.3.e \(\chi_{2100}(449, \cdot)\) 2100.3.e.a 8 1
2100.3.e.b 32
2100.3.e.c 32
2100.3.g \(\chi_{2100}(701, \cdot)\) 2100.3.g.a 4 1
2100.3.g.b 16
2100.3.g.c 16
2100.3.g.d 16
2100.3.g.e 24
2100.3.h \(\chi_{2100}(1051, \cdot)\) n/a 228 1
2100.3.j \(\chi_{2100}(601, \cdot)\) 2100.3.j.a 2 1
2100.3.j.b 2
2100.3.j.c 2
2100.3.j.d 8
2100.3.j.e 8
2100.3.j.f 12
2100.3.j.g 16
2100.3.m \(\chi_{2100}(251, \cdot)\) n/a 596 1
2100.3.o \(\chi_{2100}(2099, \cdot)\) n/a 568 1
2100.3.p \(\chi_{2100}(349, \cdot)\) 2100.3.p.a 4 1
2100.3.p.b 4
2100.3.p.c 16
2100.3.p.d 24
2100.3.r \(\chi_{2100}(307, \cdot)\) n/a 576 2
2100.3.u \(\chi_{2100}(293, \cdot)\) n/a 192 2
2100.3.v \(\chi_{2100}(757, \cdot)\) 2100.3.v.a 16 2
2100.3.v.b 16
2100.3.v.c 16
2100.3.v.d 24
2100.3.y \(\chi_{2100}(407, \cdot)\) n/a 864 2
2100.3.ba \(\chi_{2100}(551, \cdot)\) n/a 1192 2
2100.3.bd \(\chi_{2100}(901, \cdot)\) 2100.3.bd.a 2 2
2100.3.bd.b 2
2100.3.bd.c 2
2100.3.bd.d 2
2100.3.bd.e 2
2100.3.bd.f 4
2100.3.bd.g 8
2100.3.bd.h 8
2100.3.bd.i 8
2100.3.bd.j 10
2100.3.bd.k 10
2100.3.bd.l 12
2100.3.bd.m 16
2100.3.bd.n 16
2100.3.be \(\chi_{2100}(649, \cdot)\) 2100.3.be.a 4 2
2100.3.be.b 4
2100.3.be.c 4
2100.3.be.d 8
2100.3.be.e 16
2100.3.be.f 16
2100.3.be.g 20
2100.3.be.h 24
2100.3.bf \(\chi_{2100}(299, \cdot)\) n/a 1136 2
2100.3.bh \(\chi_{2100}(149, \cdot)\) n/a 192 2
2100.3.bk \(\chi_{2100}(499, \cdot)\) n/a 576 2
2100.3.bm \(\chi_{2100}(151, \cdot)\) n/a 608 2
2100.3.bn \(\chi_{2100}(401, \cdot)\) n/a 202 2
2100.3.bp \(\chi_{2100}(769, \cdot)\) n/a 320 4
2100.3.bq \(\chi_{2100}(419, \cdot)\) n/a 3808 4
2100.3.bs \(\chi_{2100}(671, \cdot)\) n/a 3808 4
2100.3.bv \(\chi_{2100}(181, \cdot)\) n/a 320 4
2100.3.bx \(\chi_{2100}(211, \cdot)\) n/a 1440 4
2100.3.by \(\chi_{2100}(281, \cdot)\) n/a 480 4
2100.3.ca \(\chi_{2100}(29, \cdot)\) n/a 480 4
2100.3.cd \(\chi_{2100}(379, \cdot)\) n/a 1440 4
2100.3.cf \(\chi_{2100}(107, \cdot)\) n/a 2272 4
2100.3.cg \(\chi_{2100}(193, \cdot)\) n/a 192 4
2100.3.cj \(\chi_{2100}(257, \cdot)\) n/a 384 4
2100.3.ck \(\chi_{2100}(607, \cdot)\) n/a 1152 4
2100.3.cn \(\chi_{2100}(323, \cdot)\) n/a 5760 8
2100.3.cq \(\chi_{2100}(253, \cdot)\) n/a 480 8
2100.3.cr \(\chi_{2100}(377, \cdot)\) n/a 1280 8
2100.3.cu \(\chi_{2100}(223, \cdot)\) n/a 3840 8
2100.3.cw \(\chi_{2100}(221, \cdot)\) n/a 1280 8
2100.3.cx \(\chi_{2100}(331, \cdot)\) n/a 3840 8
2100.3.cz \(\chi_{2100}(79, \cdot)\) n/a 3840 8
2100.3.dc \(\chi_{2100}(389, \cdot)\) n/a 1280 8
2100.3.de \(\chi_{2100}(59, \cdot)\) n/a 7616 8
2100.3.df \(\chi_{2100}(229, \cdot)\) n/a 640 8
2100.3.dg \(\chi_{2100}(61, \cdot)\) n/a 640 8
2100.3.dj \(\chi_{2100}(131, \cdot)\) n/a 7616 8
2100.3.dl \(\chi_{2100}(103, \cdot)\) n/a 7680 16
2100.3.dm \(\chi_{2100}(17, \cdot)\) n/a 2560 16
2100.3.dp \(\chi_{2100}(37, \cdot)\) n/a 1280 16
2100.3.dq \(\chi_{2100}(23, \cdot)\) n/a 15232 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(2100))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(2100)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 36}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 24}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(105))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(175))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(210))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(350))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(420))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(525))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(700))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(1050))\)\(^{\oplus 2}\)