Newspace parameters
Level: | \( N \) | \(=\) | \( 174 = 2 \cdot 3 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 174.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(17.9863735766\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
59.1 | − | 2.82843i | −8.99123 | + | 0.397256i | −8.00000 | 27.6771i | 1.12361 | + | 25.4310i | 18.1599 | 22.6274i | 80.6844 | − | 7.14364i | 78.2828 | |||||||||||
59.2 | − | 2.82843i | −8.91167 | + | 1.25783i | −8.00000 | − | 47.2893i | 3.55767 | + | 25.2060i | 64.8652 | 22.6274i | 77.8358 | − | 22.4186i | −133.754 | ||||||||||
59.3 | − | 2.82843i | −8.61787 | − | 2.59467i | −8.00000 | − | 11.6973i | −7.33884 | + | 24.3750i | −38.4486 | 22.6274i | 67.5353 | + | 44.7211i | −33.0849 | ||||||||||
59.4 | − | 2.82843i | −7.19116 | + | 5.41177i | −8.00000 | − | 21.6550i | 15.3068 | + | 20.3397i | −96.6764 | 22.6274i | 22.4254 | − | 77.8338i | −61.2495 | ||||||||||
59.5 | − | 2.82843i | −5.68562 | − | 6.97666i | −8.00000 | − | 9.60105i | −19.7330 | + | 16.0814i | 82.1570 | 22.6274i | −16.3475 | + | 79.3332i | −27.1559 | ||||||||||
59.6 | − | 2.82843i | −4.68873 | − | 7.68217i | −8.00000 | 31.2712i | −21.7285 | + | 13.2617i | −39.9280 | 22.6274i | −37.0315 | + | 72.0393i | 88.4483 | |||||||||||
59.7 | − | 2.82843i | −4.47543 | + | 7.80836i | −8.00000 | 39.9714i | 22.0854 | + | 12.6584i | −82.8769 | 22.6274i | −40.9411 | − | 69.8916i | 113.056 | |||||||||||
59.8 | − | 2.82843i | −1.44324 | − | 8.88353i | −8.00000 | − | 16.8061i | −25.1264 | + | 4.08210i | 24.6279 | 22.6274i | −76.8341 | + | 25.6421i | −47.5347 | ||||||||||
59.9 | − | 2.82843i | 1.26693 | − | 8.91038i | −8.00000 | − | 33.9779i | −25.2024 | − | 3.58342i | −68.2531 | 22.6274i | −77.7898 | − | 22.5776i | −96.1040 | ||||||||||
59.10 | − | 2.82843i | 2.39326 | + | 8.67596i | −8.00000 | − | 4.41077i | 24.5393 | − | 6.76917i | −13.1103 | 22.6274i | −69.5446 | + | 41.5277i | −12.4755 | ||||||||||
59.11 | − | 2.82843i | 2.85378 | + | 8.53557i | −8.00000 | 39.9975i | 24.1422 | − | 8.07172i | 64.5344 | 22.6274i | −64.7118 | + | 48.7173i | 113.130 | |||||||||||
59.12 | − | 2.82843i | 4.64330 | + | 7.70972i | −8.00000 | − | 37.7316i | 21.8064 | − | 13.1332i | −29.4140 | 22.6274i | −37.8795 | + | 71.5971i | −106.721 | ||||||||||
59.13 | − | 2.82843i | 4.88614 | − | 7.55815i | −8.00000 | 18.8279i | −21.3777 | − | 13.8201i | 57.7115 | 22.6274i | −33.2513 | − | 73.8603i | 53.2534 | |||||||||||
59.14 | − | 2.82843i | 5.65245 | − | 7.00356i | −8.00000 | 26.6999i | −19.8090 | − | 15.9875i | −43.5937 | 22.6274i | −17.0996 | − | 79.1745i | 75.5186 | |||||||||||
59.15 | − | 2.82843i | 8.33744 | + | 3.38925i | −8.00000 | 28.5478i | 9.58625 | − | 23.5819i | −63.2135 | 22.6274i | 58.0260 | + | 56.5154i | 80.7453 | |||||||||||
59.16 | − | 2.82843i | 8.46271 | − | 3.06308i | −8.00000 | − | 37.9596i | −8.66371 | − | 23.9362i | 17.2775 | 22.6274i | 62.2350 | − | 51.8440i | −107.366 | ||||||||||
59.17 | − | 2.82843i | 8.57661 | + | 2.72797i | −8.00000 | 0.912561i | 7.71587 | − | 24.2583i | −19.2855 | 22.6274i | 66.1163 | + | 46.7935i | 2.58111 | |||||||||||
59.18 | − | 2.82843i | 8.93232 | + | 1.10166i | −8.00000 | 7.22309i | 3.11596 | − | 25.2644i | 73.4665 | 22.6274i | 78.5727 | + | 19.6807i | 20.4300 | |||||||||||
59.19 | 2.82843i | −8.99123 | − | 0.397256i | −8.00000 | − | 27.6771i | 1.12361 | − | 25.4310i | 18.1599 | − | 22.6274i | 80.6844 | + | 7.14364i | 78.2828 | ||||||||||
59.20 | 2.82843i | −8.91167 | − | 1.25783i | −8.00000 | 47.2893i | 3.55767 | − | 25.2060i | 64.8652 | − | 22.6274i | 77.8358 | + | 22.4186i | −133.754 | |||||||||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 174.5.b.a | ✓ | 36 |
3.b | odd | 2 | 1 | inner | 174.5.b.a | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
174.5.b.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
174.5.b.a | ✓ | 36 | 3.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(174, [\chi])\).