Properties

Label 2-174-3.2-c4-0-23
Degree $2$
Conductor $174$
Sign $0.952 - 0.303i$
Analytic cond. $17.9863$
Root an. cond. $4.24103$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82i·2-s + (8.57 − 2.72i)3-s − 8.00·4-s − 0.912i·5-s + (7.71 + 24.2i)6-s − 19.2·7-s − 22.6i·8-s + (66.1 − 46.7i)9-s + 2.58·10-s − 60.8i·11-s + (−68.6 + 21.8i)12-s + 277.·13-s − 54.5i·14-s + (−2.48 − 7.82i)15-s + 64.0·16-s + 343. i·17-s + ⋯
L(s)  = 1  + 0.707i·2-s + (0.952 − 0.303i)3-s − 0.500·4-s − 0.0365i·5-s + (0.214 + 0.673i)6-s − 0.393·7-s − 0.353i·8-s + (0.816 − 0.577i)9-s + 0.0258·10-s − 0.503i·11-s + (−0.476 + 0.151i)12-s + 1.64·13-s − 0.278i·14-s + (−0.0110 − 0.0347i)15-s + 0.250·16-s + 1.18i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.952 - 0.303i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.952 - 0.303i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(174\)    =    \(2 \cdot 3 \cdot 29\)
Sign: $0.952 - 0.303i$
Analytic conductor: \(17.9863\)
Root analytic conductor: \(4.24103\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{174} (59, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 174,\ (\ :2),\ 0.952 - 0.303i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(2.585728847\)
\(L(\frac12)\) \(\approx\) \(2.585728847\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2.82iT \)
3 \( 1 + (-8.57 + 2.72i)T \)
29 \( 1 + 156. iT \)
good5 \( 1 + 0.912iT - 625T^{2} \)
7 \( 1 + 19.2T + 2.40e3T^{2} \)
11 \( 1 + 60.8iT - 1.46e4T^{2} \)
13 \( 1 - 277.T + 2.85e4T^{2} \)
17 \( 1 - 343. iT - 8.35e4T^{2} \)
19 \( 1 - 240.T + 1.30e5T^{2} \)
23 \( 1 + 790. iT - 2.79e5T^{2} \)
31 \( 1 - 695.T + 9.23e5T^{2} \)
37 \( 1 - 446.T + 1.87e6T^{2} \)
41 \( 1 - 206. iT - 2.82e6T^{2} \)
43 \( 1 + 850.T + 3.41e6T^{2} \)
47 \( 1 - 1.68e3iT - 4.87e6T^{2} \)
53 \( 1 - 2.57e3iT - 7.89e6T^{2} \)
59 \( 1 + 3.67e3iT - 1.21e7T^{2} \)
61 \( 1 - 5.27e3T + 1.38e7T^{2} \)
67 \( 1 + 2.04e3T + 2.01e7T^{2} \)
71 \( 1 - 7.09e3iT - 2.54e7T^{2} \)
73 \( 1 - 2.37e3T + 2.83e7T^{2} \)
79 \( 1 + 8.14e3T + 3.89e7T^{2} \)
83 \( 1 + 1.19e3iT - 4.74e7T^{2} \)
89 \( 1 + 7.12e3iT - 6.27e7T^{2} \)
97 \( 1 + 1.31e4T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.55606769442444497602036703732, −10.96192842581100399737117588917, −9.819643672180677026913976830835, −8.577813569731570995769251088189, −8.279947143395356587864785697354, −6.79500034440510790297168047810, −6.02883212511090372201944717628, −4.21713397289348765186647019813, −3.08790043706665695858207919658, −1.11063379987957901466150283762, 1.31481579518331799074535440769, 2.89590122240287278432854474710, 3.80474965122014776948633242281, 5.17962671284454113310163108023, 6.92472674871924424251154435054, 8.162043561478312421532540834179, 9.183717691883473957499935257523, 9.848016105411449897672829836536, 10.93941855565900132471582746644, 11.93273623081589957055439257412

Graph of the $Z$-function along the critical line