Properties

Label 2-174-3.2-c4-0-13
Degree $2$
Conductor $174$
Sign $0.520 - 0.853i$
Analytic cond. $17.9863$
Root an. cond. $4.24103$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82i·2-s + (−4.68 + 7.68i)3-s − 8.00·4-s − 31.2i·5-s + (−21.7 − 13.2i)6-s − 39.9·7-s − 22.6i·8-s + (−37.0 − 72.0i)9-s + 88.4·10-s + 110. i·11-s + (37.5 − 61.4i)12-s + 152.·13-s − 112. i·14-s + (240. + 146. i)15-s + 64.0·16-s − 99.8i·17-s + ⋯
L(s)  = 1  + 0.707i·2-s + (−0.520 + 0.853i)3-s − 0.500·4-s − 1.25i·5-s + (−0.603 − 0.368i)6-s − 0.814·7-s − 0.353i·8-s + (−0.457 − 0.889i)9-s + 0.884·10-s + 0.915i·11-s + (0.260 − 0.426i)12-s + 0.903·13-s − 0.576i·14-s + (1.06 + 0.651i)15-s + 0.250·16-s − 0.345i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.520 - 0.853i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.520 - 0.853i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(174\)    =    \(2 \cdot 3 \cdot 29\)
Sign: $0.520 - 0.853i$
Analytic conductor: \(17.9863\)
Root analytic conductor: \(4.24103\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{174} (59, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 174,\ (\ :2),\ 0.520 - 0.853i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.246027572\)
\(L(\frac12)\) \(\approx\) \(1.246027572\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2.82iT \)
3 \( 1 + (4.68 - 7.68i)T \)
29 \( 1 - 156. iT \)
good5 \( 1 + 31.2iT - 625T^{2} \)
7 \( 1 + 39.9T + 2.40e3T^{2} \)
11 \( 1 - 110. iT - 1.46e4T^{2} \)
13 \( 1 - 152.T + 2.85e4T^{2} \)
17 \( 1 + 99.8iT - 8.35e4T^{2} \)
19 \( 1 - 426.T + 1.30e5T^{2} \)
23 \( 1 - 238. iT - 2.79e5T^{2} \)
31 \( 1 + 60.5T + 9.23e5T^{2} \)
37 \( 1 - 176.T + 1.87e6T^{2} \)
41 \( 1 - 1.44e3iT - 2.82e6T^{2} \)
43 \( 1 - 3.00e3T + 3.41e6T^{2} \)
47 \( 1 - 1.25e3iT - 4.87e6T^{2} \)
53 \( 1 + 4.45e3iT - 7.89e6T^{2} \)
59 \( 1 + 4.67e3iT - 1.21e7T^{2} \)
61 \( 1 - 7.05e3T + 1.38e7T^{2} \)
67 \( 1 - 1.09e3T + 2.01e7T^{2} \)
71 \( 1 + 554. iT - 2.54e7T^{2} \)
73 \( 1 - 5.07e3T + 2.83e7T^{2} \)
79 \( 1 - 8.09e3T + 3.89e7T^{2} \)
83 \( 1 - 1.28e4iT - 4.74e7T^{2} \)
89 \( 1 + 3.29e3iT - 6.27e7T^{2} \)
97 \( 1 + 7.71e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.37467152345784469134606295119, −11.23127777207711056055997300449, −9.686730793638133519494600506355, −9.427450644784566507361969883100, −8.229834835932077464278909999921, −6.77883332734274668107161819266, −5.60415438304168677213309581201, −4.78412812740981834185295992199, −3.61862153731053047417984352422, −0.805266362487852077853896041347, 0.816885803912991189805134409193, 2.58349203174739086920628319464, 3.58726440367464546541172530891, 5.70132650000075722585536506077, 6.49763810560790125810254402725, 7.60072803407060836071797027873, 8.900045125341604747569147520009, 10.31516467961719659517771543776, 10.96916997237671121321673177546, 11.74322295475263440517537861588

Graph of the $Z$-function along the critical line