Properties

Label 2-174-3.2-c4-0-4
Degree $2$
Conductor $174$
Sign $0.140 + 0.990i$
Analytic cond. $17.9863$
Root an. cond. $4.24103$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82i·2-s + (1.26 + 8.91i)3-s − 8.00·4-s + 33.9i·5-s + (−25.2 + 3.58i)6-s − 68.2·7-s − 22.6i·8-s + (−77.7 + 22.5i)9-s − 96.1·10-s − 130. i·11-s + (−10.1 − 71.2i)12-s + 135.·13-s − 193. i·14-s + (−302. + 43.0i)15-s + 64.0·16-s + 82.7i·17-s + ⋯
L(s)  = 1  + 0.707i·2-s + (0.140 + 0.990i)3-s − 0.500·4-s + 1.35i·5-s + (−0.700 + 0.0995i)6-s − 1.39·7-s − 0.353i·8-s + (−0.960 + 0.278i)9-s − 0.961·10-s − 1.07i·11-s + (−0.0703 − 0.495i)12-s + 0.803·13-s − 0.984i·14-s + (−1.34 + 0.191i)15-s + 0.250·16-s + 0.286i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.140 + 0.990i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.140 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(174\)    =    \(2 \cdot 3 \cdot 29\)
Sign: $0.140 + 0.990i$
Analytic conductor: \(17.9863\)
Root analytic conductor: \(4.24103\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{174} (59, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 174,\ (\ :2),\ 0.140 + 0.990i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.5335523031\)
\(L(\frac12)\) \(\approx\) \(0.5335523031\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2.82iT \)
3 \( 1 + (-1.26 - 8.91i)T \)
29 \( 1 + 156. iT \)
good5 \( 1 - 33.9iT - 625T^{2} \)
7 \( 1 + 68.2T + 2.40e3T^{2} \)
11 \( 1 + 130. iT - 1.46e4T^{2} \)
13 \( 1 - 135.T + 2.85e4T^{2} \)
17 \( 1 - 82.7iT - 8.35e4T^{2} \)
19 \( 1 - 162.T + 1.30e5T^{2} \)
23 \( 1 - 973. iT - 2.79e5T^{2} \)
31 \( 1 + 840.T + 9.23e5T^{2} \)
37 \( 1 - 827.T + 1.87e6T^{2} \)
41 \( 1 + 2.58e3iT - 2.82e6T^{2} \)
43 \( 1 + 1.60e3T + 3.41e6T^{2} \)
47 \( 1 - 3.18e3iT - 4.87e6T^{2} \)
53 \( 1 + 2.71e3iT - 7.89e6T^{2} \)
59 \( 1 + 3.58e3iT - 1.21e7T^{2} \)
61 \( 1 + 964.T + 1.38e7T^{2} \)
67 \( 1 + 7.73e3T + 2.01e7T^{2} \)
71 \( 1 + 3.85e3iT - 2.54e7T^{2} \)
73 \( 1 + 4.86e3T + 2.83e7T^{2} \)
79 \( 1 + 9.42e3T + 3.89e7T^{2} \)
83 \( 1 + 2.19e3iT - 4.74e7T^{2} \)
89 \( 1 - 7.68e3iT - 6.27e7T^{2} \)
97 \( 1 + 8.20e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.24042838343757133077540086545, −11.48233246213672293778712884530, −10.66266865349990605636832991258, −9.745948605130950232762180042582, −8.915009025203280813771567351042, −7.55418067046201319561797821562, −6.32744016278274563738479719826, −5.67567452066750373439145635304, −3.63144021144816653364209485330, −3.19805751870641316890939175938, 0.20183522399009206186194368842, 1.41335832398750991660979232924, 2.91608916625861045905129341951, 4.45132533267305993361501644919, 5.88176989730106945190707286161, 7.06740243260789632619534985818, 8.466083962521044349485416328684, 9.164825609687866772557404926150, 10.15189572138121254626884623917, 11.67053917528102595453632097127

Graph of the $Z$-function along the critical line