Properties

Label 2-174-3.2-c4-0-14
Degree $2$
Conductor $174$
Sign $-0.940 - 0.340i$
Analytic cond. $17.9863$
Root an. cond. $4.24103$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82i·2-s + (8.46 + 3.06i)3-s − 8.00·4-s + 37.9i·5-s + (−8.66 + 23.9i)6-s + 17.2·7-s − 22.6i·8-s + (62.2 + 51.8i)9-s − 107.·10-s + 113. i·11-s + (−67.7 − 24.5i)12-s + 95.5·13-s + 48.8i·14-s + (−116. + 321. i)15-s + 64.0·16-s − 276. i·17-s + ⋯
L(s)  = 1  + 0.707i·2-s + (0.940 + 0.340i)3-s − 0.500·4-s + 1.51i·5-s + (−0.240 + 0.664i)6-s + 0.352·7-s − 0.353i·8-s + (0.768 + 0.640i)9-s − 1.07·10-s + 0.935i·11-s + (−0.470 − 0.170i)12-s + 0.565·13-s + 0.249i·14-s + (−0.516 + 1.42i)15-s + 0.250·16-s − 0.955i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.940 - 0.340i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.940 - 0.340i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(174\)    =    \(2 \cdot 3 \cdot 29\)
Sign: $-0.940 - 0.340i$
Analytic conductor: \(17.9863\)
Root analytic conductor: \(4.24103\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{174} (59, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 174,\ (\ :2),\ -0.940 - 0.340i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(2.373010522\)
\(L(\frac12)\) \(\approx\) \(2.373010522\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2.82iT \)
3 \( 1 + (-8.46 - 3.06i)T \)
29 \( 1 - 156. iT \)
good5 \( 1 - 37.9iT - 625T^{2} \)
7 \( 1 - 17.2T + 2.40e3T^{2} \)
11 \( 1 - 113. iT - 1.46e4T^{2} \)
13 \( 1 - 95.5T + 2.85e4T^{2} \)
17 \( 1 + 276. iT - 8.35e4T^{2} \)
19 \( 1 + 386.T + 1.30e5T^{2} \)
23 \( 1 - 42.3iT - 2.79e5T^{2} \)
31 \( 1 - 204.T + 9.23e5T^{2} \)
37 \( 1 - 339.T + 1.87e6T^{2} \)
41 \( 1 + 169. iT - 2.82e6T^{2} \)
43 \( 1 + 682.T + 3.41e6T^{2} \)
47 \( 1 + 1.05e3iT - 4.87e6T^{2} \)
53 \( 1 - 3.17e3iT - 7.89e6T^{2} \)
59 \( 1 + 5.89e3iT - 1.21e7T^{2} \)
61 \( 1 + 2.66e3T + 1.38e7T^{2} \)
67 \( 1 - 8.28e3T + 2.01e7T^{2} \)
71 \( 1 - 3.47e3iT - 2.54e7T^{2} \)
73 \( 1 - 1.87e3T + 2.83e7T^{2} \)
79 \( 1 - 9.35e3T + 3.89e7T^{2} \)
83 \( 1 - 9.88e3iT - 4.74e7T^{2} \)
89 \( 1 + 5.81e3iT - 6.27e7T^{2} \)
97 \( 1 - 1.13e4T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78976198893656457194020245136, −11.23227348473356362258662444544, −10.30787141954063704844246761193, −9.431201390769028996926431755498, −8.219850119279884535938705447789, −7.29626706779495994885408941991, −6.50156850264714919941854698577, −4.77796703790819554002717174153, −3.52750287917302128694455108241, −2.22692672953386390406925440388, 0.822539040700188355301660572787, 1.90467886780767714216923098892, 3.60409070065793987150413423083, 4.64738703459551265492454848318, 6.13832912900250440022176437476, 8.122288054578454694192179625692, 8.504572388797337617084639784716, 9.329951313620342606971768093923, 10.60269075701372973407379202412, 11.80093416599074787043535723445

Graph of the $Z$-function along the critical line