Properties

Label 2-174-3.2-c4-0-10
Degree $2$
Conductor $174$
Sign $0.265 - 0.963i$
Analytic cond. $17.9863$
Root an. cond. $4.24103$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82i·2-s + (2.39 − 8.67i)3-s − 8.00·4-s + 4.41i·5-s + (24.5 + 6.76i)6-s − 13.1·7-s − 22.6i·8-s + (−69.5 − 41.5i)9-s − 12.4·10-s + 230. i·11-s + (−19.1 + 69.4i)12-s + 86.7·13-s − 37.0i·14-s + (38.2 + 10.5i)15-s + 64.0·16-s − 170. i·17-s + ⋯
L(s)  = 1  + 0.707i·2-s + (0.265 − 0.963i)3-s − 0.500·4-s + 0.176i·5-s + (0.681 + 0.188i)6-s − 0.267·7-s − 0.353i·8-s + (−0.858 − 0.512i)9-s − 0.124·10-s + 1.90i·11-s + (−0.132 + 0.481i)12-s + 0.513·13-s − 0.189i·14-s + (0.170 + 0.0469i)15-s + 0.250·16-s − 0.589i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 - 0.963i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.265 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(174\)    =    \(2 \cdot 3 \cdot 29\)
Sign: $0.265 - 0.963i$
Analytic conductor: \(17.9863\)
Root analytic conductor: \(4.24103\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{174} (59, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 174,\ (\ :2),\ 0.265 - 0.963i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.641022667\)
\(L(\frac12)\) \(\approx\) \(1.641022667\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2.82iT \)
3 \( 1 + (-2.39 + 8.67i)T \)
29 \( 1 + 156. iT \)
good5 \( 1 - 4.41iT - 625T^{2} \)
7 \( 1 + 13.1T + 2.40e3T^{2} \)
11 \( 1 - 230. iT - 1.46e4T^{2} \)
13 \( 1 - 86.7T + 2.85e4T^{2} \)
17 \( 1 + 170. iT - 8.35e4T^{2} \)
19 \( 1 - 397.T + 1.30e5T^{2} \)
23 \( 1 - 986. iT - 2.79e5T^{2} \)
31 \( 1 - 1.36e3T + 9.23e5T^{2} \)
37 \( 1 + 457.T + 1.87e6T^{2} \)
41 \( 1 - 2.06e3iT - 2.82e6T^{2} \)
43 \( 1 - 466.T + 3.41e6T^{2} \)
47 \( 1 - 664. iT - 4.87e6T^{2} \)
53 \( 1 - 4.12e3iT - 7.89e6T^{2} \)
59 \( 1 - 2.69e3iT - 1.21e7T^{2} \)
61 \( 1 + 3.68e3T + 1.38e7T^{2} \)
67 \( 1 - 3.22e3T + 2.01e7T^{2} \)
71 \( 1 + 8.22e3iT - 2.54e7T^{2} \)
73 \( 1 + 568.T + 2.83e7T^{2} \)
79 \( 1 + 6.58e3T + 3.89e7T^{2} \)
83 \( 1 + 1.17e4iT - 4.74e7T^{2} \)
89 \( 1 - 1.31e4iT - 6.27e7T^{2} \)
97 \( 1 - 2.56e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.41614825957409955505156005406, −11.56943187638362314519118285405, −9.899440023892314138303396175066, −9.130572070627174418131633138871, −7.71014400195229391042511757194, −7.20467064498567102249908388985, −6.15907251714612235472471818016, −4.80502410445723501980743869818, −3.06343919912375602875893018064, −1.35111219970245837046140836778, 0.66627916583983977361419479606, 2.85650912281525679713694312572, 3.72833616369319144661095348186, 5.06875952756731591721406524729, 6.23151309749773151663641611999, 8.397570439448860579901139987258, 8.729556845371263513881366966617, 10.02344097477814753674104097874, 10.80366240269634512005535755588, 11.54711232068267421393015511222

Graph of the $Z$-function along the critical line