Properties

Label 1728.2.z.a.719.1
Level $1728$
Weight $2$
Character 1728.719
Analytic conductor $13.798$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,2,Mod(143,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 719.1
Character \(\chi\) \(=\) 1728.719
Dual form 1728.2.z.a.1007.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00059 - 3.73424i) q^{5} +(1.68236 + 2.91393i) q^{7} +(0.0566521 - 0.211428i) q^{11} +(0.727551 + 2.71526i) q^{13} +4.23937i q^{17} +(1.12365 + 1.12365i) q^{19} +(3.33369 + 1.92471i) q^{23} +(-8.61325 + 4.97286i) q^{25} +(-0.545635 + 2.03634i) q^{29} +(7.21206 + 4.16388i) q^{31} +(9.19798 - 9.19798i) q^{35} +(-2.66564 - 2.66564i) q^{37} +(1.70386 - 2.95117i) q^{41} +(-4.68985 - 1.25664i) q^{43} +(2.34998 + 4.07028i) q^{47} +(-2.16067 + 3.74239i) q^{49} +(7.58271 - 7.58271i) q^{53} -0.846209 q^{55} +(-5.34305 + 1.43167i) q^{59} +(8.69958 + 2.33105i) q^{61} +(9.41144 - 5.43370i) q^{65} +(5.17504 - 1.38665i) q^{67} +7.53614i q^{71} +3.22646i q^{73} +(0.711397 - 0.190618i) q^{77} +(4.98587 - 2.87859i) q^{79} +(4.50604 + 1.20739i) q^{83} +(15.8308 - 4.24186i) q^{85} +2.96157 q^{89} +(-6.68807 + 6.68807i) q^{91} +(3.07166 - 5.32027i) q^{95} +(-7.63883 - 13.2308i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{5} + 4 q^{7} - 6 q^{11} - 2 q^{13} + 8 q^{19} - 12 q^{23} + 6 q^{29} - 8 q^{37} + 2 q^{43} - 24 q^{49} + 16 q^{55} - 42 q^{59} - 2 q^{61} + 12 q^{65} + 2 q^{67} + 6 q^{77} + 54 q^{83} + 8 q^{85}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00059 3.73424i −0.447476 1.67000i −0.709315 0.704891i \(-0.750996\pi\)
0.261839 0.965111i \(-0.415671\pi\)
\(6\) 0 0
\(7\) 1.68236 + 2.91393i 0.635872 + 1.10136i 0.986330 + 0.164785i \(0.0526929\pi\)
−0.350457 + 0.936579i \(0.613974\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.0566521 0.211428i 0.0170812 0.0637480i −0.956859 0.290552i \(-0.906161\pi\)
0.973940 + 0.226804i \(0.0728277\pi\)
\(12\) 0 0
\(13\) 0.727551 + 2.71526i 0.201786 + 0.753076i 0.990405 + 0.138194i \(0.0441298\pi\)
−0.788619 + 0.614882i \(0.789204\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.23937i 1.02820i 0.857731 + 0.514100i \(0.171874\pi\)
−0.857731 + 0.514100i \(0.828126\pi\)
\(18\) 0 0
\(19\) 1.12365 + 1.12365i 0.257782 + 0.257782i 0.824152 0.566369i \(-0.191652\pi\)
−0.566369 + 0.824152i \(0.691652\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.33369 + 1.92471i 0.695123 + 0.401329i 0.805528 0.592557i \(-0.201882\pi\)
−0.110405 + 0.993887i \(0.535215\pi\)
\(24\) 0 0
\(25\) −8.61325 + 4.97286i −1.72265 + 0.994572i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.545635 + 2.03634i −0.101322 + 0.378138i −0.997902 0.0647434i \(-0.979377\pi\)
0.896580 + 0.442882i \(0.146044\pi\)
\(30\) 0 0
\(31\) 7.21206 + 4.16388i 1.29532 + 0.747856i 0.979593 0.200993i \(-0.0644169\pi\)
0.315731 + 0.948849i \(0.397750\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.19798 9.19798i 1.55474 1.55474i
\(36\) 0 0
\(37\) −2.66564 2.66564i −0.438229 0.438229i 0.453187 0.891416i \(-0.350287\pi\)
−0.891416 + 0.453187i \(0.850287\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.70386 2.95117i 0.266098 0.460895i −0.701753 0.712420i \(-0.747599\pi\)
0.967851 + 0.251526i \(0.0809323\pi\)
\(42\) 0 0
\(43\) −4.68985 1.25664i −0.715195 0.191636i −0.117168 0.993112i \(-0.537382\pi\)
−0.598027 + 0.801476i \(0.704048\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.34998 + 4.07028i 0.342779 + 0.593711i 0.984948 0.172852i \(-0.0552984\pi\)
−0.642168 + 0.766564i \(0.721965\pi\)
\(48\) 0 0
\(49\) −2.16067 + 3.74239i −0.308667 + 0.534628i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.58271 7.58271i 1.04157 1.04157i 0.0424680 0.999098i \(-0.486478\pi\)
0.999098 0.0424680i \(-0.0135220\pi\)
\(54\) 0 0
\(55\) −0.846209 −0.114103
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.34305 + 1.43167i −0.695605 + 0.186387i −0.589261 0.807942i \(-0.700581\pi\)
−0.106344 + 0.994329i \(0.533915\pi\)
\(60\) 0 0
\(61\) 8.69958 + 2.33105i 1.11387 + 0.298460i 0.768399 0.639971i \(-0.221054\pi\)
0.345468 + 0.938431i \(0.387720\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.41144 5.43370i 1.16735 0.673967i
\(66\) 0 0
\(67\) 5.17504 1.38665i 0.632231 0.169406i 0.0715493 0.997437i \(-0.477206\pi\)
0.560682 + 0.828031i \(0.310539\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.53614i 0.894375i 0.894440 + 0.447187i \(0.147574\pi\)
−0.894440 + 0.447187i \(0.852426\pi\)
\(72\) 0 0
\(73\) 3.22646i 0.377629i 0.982013 + 0.188814i \(0.0604644\pi\)
−0.982013 + 0.188814i \(0.939536\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.711397 0.190618i 0.0810712 0.0217230i
\(78\) 0 0
\(79\) 4.98587 2.87859i 0.560954 0.323867i −0.192574 0.981282i \(-0.561684\pi\)
0.753528 + 0.657415i \(0.228350\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.50604 + 1.20739i 0.494602 + 0.132528i 0.497494 0.867468i \(-0.334254\pi\)
−0.00289160 + 0.999996i \(0.500920\pi\)
\(84\) 0 0
\(85\) 15.8308 4.24186i 1.71710 0.460094i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.96157 0.313926 0.156963 0.987605i \(-0.449830\pi\)
0.156963 + 0.987605i \(0.449830\pi\)
\(90\) 0 0
\(91\) −6.68807 + 6.68807i −0.701100 + 0.701100i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.07166 5.32027i 0.315146 0.545849i
\(96\) 0 0
\(97\) −7.63883 13.2308i −0.775606 1.34339i −0.934453 0.356085i \(-0.884111\pi\)
0.158848 0.987303i \(-0.449222\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.129684 0.0347486i −0.0129040 0.00345762i 0.252361 0.967633i \(-0.418793\pi\)
−0.265265 + 0.964175i \(0.585460\pi\)
\(102\) 0 0
\(103\) 4.09117 7.08611i 0.403115 0.698215i −0.590985 0.806682i \(-0.701261\pi\)
0.994100 + 0.108467i \(0.0345942\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.28837 + 8.28837i 0.801267 + 0.801267i 0.983294 0.182027i \(-0.0582658\pi\)
−0.182027 + 0.983294i \(0.558266\pi\)
\(108\) 0 0
\(109\) 6.31291 6.31291i 0.604667 0.604667i −0.336881 0.941547i \(-0.609372\pi\)
0.941547 + 0.336881i \(0.109372\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.6562 8.46178i −1.37874 0.796017i −0.386735 0.922191i \(-0.626397\pi\)
−0.992008 + 0.126174i \(0.959730\pi\)
\(114\) 0 0
\(115\) 3.85167 14.3746i 0.359171 1.34044i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.3533 + 7.13215i −1.13242 + 0.653803i
\(120\) 0 0
\(121\) 9.48479 + 5.47604i 0.862253 + 0.497822i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 13.5199 + 13.5199i 1.20926 + 1.20926i
\(126\) 0 0
\(127\) 13.4028i 1.18931i 0.803981 + 0.594654i \(0.202711\pi\)
−0.803981 + 0.594654i \(0.797289\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.169534 + 0.632708i 0.0148122 + 0.0552800i 0.972936 0.231073i \(-0.0742236\pi\)
−0.958124 + 0.286353i \(0.907557\pi\)
\(132\) 0 0
\(133\) −1.38385 + 5.16461i −0.119995 + 0.447829i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.5230 18.2263i −0.899037 1.55718i −0.828727 0.559652i \(-0.810935\pi\)
−0.0703095 0.997525i \(-0.522399\pi\)
\(138\) 0 0
\(139\) 1.72666 + 6.44400i 0.146454 + 0.546573i 0.999686 + 0.0250423i \(0.00797204\pi\)
−0.853233 + 0.521530i \(0.825361\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.615299 0.0514539
\(144\) 0 0
\(145\) 8.15012 0.676831
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.78161 + 21.5773i 0.473648 + 1.76768i 0.626492 + 0.779428i \(0.284490\pi\)
−0.152844 + 0.988250i \(0.548843\pi\)
\(150\) 0 0
\(151\) 9.97506 + 17.2773i 0.811759 + 1.40601i 0.911632 + 0.411007i \(0.134823\pi\)
−0.0998734 + 0.995000i \(0.531844\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.33265 31.0979i 0.669295 2.49784i
\(156\) 0 0
\(157\) 3.85693 + 14.3943i 0.307817 + 1.14879i 0.930494 + 0.366308i \(0.119378\pi\)
−0.622677 + 0.782479i \(0.713955\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.9522i 1.02078i
\(162\) 0 0
\(163\) 4.35766 + 4.35766i 0.341318 + 0.341318i 0.856863 0.515545i \(-0.172410\pi\)
−0.515545 + 0.856863i \(0.672410\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.8952 6.86770i −0.920479 0.531439i −0.0366910 0.999327i \(-0.511682\pi\)
−0.883788 + 0.467888i \(0.845015\pi\)
\(168\) 0 0
\(169\) 4.41505 2.54903i 0.339619 0.196079i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.40497 + 5.24342i −0.106818 + 0.398650i −0.998545 0.0539235i \(-0.982827\pi\)
0.891727 + 0.452573i \(0.149494\pi\)
\(174\) 0 0
\(175\) −28.9812 16.7323i −2.19077 1.26484i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.380130 0.380130i 0.0284123 0.0284123i −0.692758 0.721170i \(-0.743605\pi\)
0.721170 + 0.692758i \(0.243605\pi\)
\(180\) 0 0
\(181\) −4.98992 4.98992i −0.370898 0.370898i 0.496906 0.867804i \(-0.334469\pi\)
−0.867804 + 0.496906i \(0.834469\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −7.28695 + 12.6214i −0.535747 + 0.927941i
\(186\) 0 0
\(187\) 0.896324 + 0.240169i 0.0655457 + 0.0175629i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.40555 9.36269i −0.391132 0.677461i 0.601467 0.798898i \(-0.294583\pi\)
−0.992599 + 0.121437i \(0.961250\pi\)
\(192\) 0 0
\(193\) 2.60044 4.50410i 0.187184 0.324212i −0.757126 0.653268i \(-0.773397\pi\)
0.944310 + 0.329056i \(0.106731\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.94550 2.94550i 0.209858 0.209858i −0.594349 0.804207i \(-0.702590\pi\)
0.804207 + 0.594349i \(0.202590\pi\)
\(198\) 0 0
\(199\) −2.57285 −0.182384 −0.0911921 0.995833i \(-0.529068\pi\)
−0.0911921 + 0.995833i \(0.529068\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.85170 + 1.83591i −0.480895 + 0.128856i
\(204\) 0 0
\(205\) −12.7252 3.40971i −0.888768 0.238145i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.301228 0.173914i 0.0208364 0.0120299i
\(210\) 0 0
\(211\) −17.5700 + 4.70786i −1.20957 + 0.324103i −0.806592 0.591108i \(-0.798691\pi\)
−0.402975 + 0.915211i \(0.632024\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.7704i 1.28013i
\(216\) 0 0
\(217\) 28.0206i 1.90216i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −11.5110 + 3.08436i −0.774312 + 0.207476i
\(222\) 0 0
\(223\) −2.82059 + 1.62847i −0.188881 + 0.109050i −0.591458 0.806336i \(-0.701448\pi\)
0.402578 + 0.915386i \(0.368114\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.83238 2.36663i −0.586226 0.157079i −0.0464979 0.998918i \(-0.514806\pi\)
−0.539728 + 0.841840i \(0.681473\pi\)
\(228\) 0 0
\(229\) −5.07755 + 1.36053i −0.335534 + 0.0899061i −0.422652 0.906292i \(-0.638901\pi\)
0.0871183 + 0.996198i \(0.472234\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.1506 −0.927034 −0.463517 0.886088i \(-0.653413\pi\)
−0.463517 + 0.886088i \(0.653413\pi\)
\(234\) 0 0
\(235\) 12.8480 12.8480i 0.838114 0.838114i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.51536 + 13.0170i −0.486128 + 0.841999i −0.999873 0.0159444i \(-0.994925\pi\)
0.513745 + 0.857943i \(0.328258\pi\)
\(240\) 0 0
\(241\) 7.18920 + 12.4521i 0.463097 + 0.802108i 0.999113 0.0420996i \(-0.0134047\pi\)
−0.536016 + 0.844208i \(0.680071\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 16.1369 + 4.32388i 1.03095 + 0.276242i
\(246\) 0 0
\(247\) −2.23348 + 3.86850i −0.142113 + 0.246147i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.59758 3.59758i −0.227077 0.227077i 0.584393 0.811471i \(-0.301333\pi\)
−0.811471 + 0.584393i \(0.801333\pi\)
\(252\) 0 0
\(253\) 0.595798 0.595798i 0.0374575 0.0374575i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.92640 + 2.84426i 0.307300 + 0.177420i 0.645718 0.763576i \(-0.276558\pi\)
−0.338418 + 0.940996i \(0.609892\pi\)
\(258\) 0 0
\(259\) 3.28294 12.2521i 0.203992 0.761307i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.8392 10.8768i 1.16167 0.670693i 0.209970 0.977708i \(-0.432663\pi\)
0.951705 + 0.307015i \(0.0993300\pi\)
\(264\) 0 0
\(265\) −35.9028 20.7285i −2.20549 1.27334i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.43467 + 7.43467i 0.453300 + 0.453300i 0.896448 0.443148i \(-0.146139\pi\)
−0.443148 + 0.896448i \(0.646139\pi\)
\(270\) 0 0
\(271\) 11.8875i 0.722111i 0.932544 + 0.361056i \(0.117584\pi\)
−0.932544 + 0.361056i \(0.882416\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.563445 + 2.10281i 0.0339770 + 0.126804i
\(276\) 0 0
\(277\) 2.68166 10.0081i 0.161126 0.601329i −0.837377 0.546626i \(-0.815912\pi\)
0.998503 0.0547032i \(-0.0174213\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.05630 + 12.2219i 0.420944 + 0.729096i 0.996032 0.0889955i \(-0.0283657\pi\)
−0.575088 + 0.818091i \(0.695032\pi\)
\(282\) 0 0
\(283\) −3.42843 12.7951i −0.203799 0.760588i −0.989812 0.142378i \(-0.954525\pi\)
0.786013 0.618209i \(-0.212142\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.4660 0.676817
\(288\) 0 0
\(289\) −0.972286 −0.0571933
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.96005 29.7073i −0.465031 1.73552i −0.656787 0.754077i \(-0.728085\pi\)
0.191756 0.981443i \(-0.438582\pi\)
\(294\) 0 0
\(295\) 10.6924 + 18.5197i 0.622533 + 1.07826i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.80065 + 10.4522i −0.161965 + 0.604463i
\(300\) 0 0
\(301\) −4.22825 15.7800i −0.243712 0.909546i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 34.8187i 1.99371i
\(306\) 0 0
\(307\) −23.8109 23.8109i −1.35896 1.35896i −0.875202 0.483758i \(-0.839272\pi\)
−0.483758 0.875202i \(-0.660728\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.20941 5.31706i −0.522218 0.301503i 0.215624 0.976477i \(-0.430822\pi\)
−0.737842 + 0.674974i \(0.764155\pi\)
\(312\) 0 0
\(313\) 16.4634 9.50514i 0.930565 0.537262i 0.0435750 0.999050i \(-0.486125\pi\)
0.886990 + 0.461788i \(0.152792\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.18193 11.8751i 0.178715 0.666972i −0.817174 0.576391i \(-0.804461\pi\)
0.995889 0.0905818i \(-0.0288727\pi\)
\(318\) 0 0
\(319\) 0.399628 + 0.230725i 0.0223749 + 0.0129181i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.76356 + 4.76356i −0.265052 + 0.265052i
\(324\) 0 0
\(325\) −19.7692 19.7692i −1.09660 1.09660i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.90701 + 13.6953i −0.435928 + 0.755049i
\(330\) 0 0
\(331\) −33.3960 8.94844i −1.83561 0.491851i −0.837134 0.546998i \(-0.815771\pi\)
−0.998478 + 0.0551468i \(0.982437\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.3561 17.9374i −0.565817 0.980023i
\(336\) 0 0
\(337\) −14.3693 + 24.8884i −0.782746 + 1.35576i 0.147591 + 0.989049i \(0.452848\pi\)
−0.930336 + 0.366707i \(0.880485\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.28894 1.28894i 0.0698001 0.0698001i
\(342\) 0 0
\(343\) 9.01293 0.486653
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.9346 + 2.92992i −0.587002 + 0.157287i −0.540082 0.841612i \(-0.681607\pi\)
−0.0469191 + 0.998899i \(0.514940\pi\)
\(348\) 0 0
\(349\) 10.8496 + 2.90715i 0.580767 + 0.155616i 0.537230 0.843436i \(-0.319471\pi\)
0.0435372 + 0.999052i \(0.486137\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.85946 + 1.07356i −0.0989689 + 0.0571397i −0.548668 0.836041i \(-0.684865\pi\)
0.449699 + 0.893180i \(0.351531\pi\)
\(354\) 0 0
\(355\) 28.1417 7.54056i 1.49361 0.400211i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.0166i 0.581435i −0.956809 0.290718i \(-0.906106\pi\)
0.956809 0.290718i \(-0.0938941\pi\)
\(360\) 0 0
\(361\) 16.4748i 0.867097i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.0484 3.22835i 0.630641 0.168980i
\(366\) 0 0
\(367\) 20.1365 11.6258i 1.05112 0.606863i 0.128156 0.991754i \(-0.459094\pi\)
0.922962 + 0.384891i \(0.125761\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 34.8524 + 9.33867i 1.80945 + 0.484839i
\(372\) 0 0
\(373\) 9.93021 2.66079i 0.514167 0.137771i 0.00759967 0.999971i \(-0.497581\pi\)
0.506567 + 0.862201i \(0.330914\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.92615 −0.305212
\(378\) 0 0
\(379\) 6.14819 6.14819i 0.315811 0.315811i −0.531345 0.847156i \(-0.678313\pi\)
0.847156 + 0.531345i \(0.178313\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.40170 + 2.42782i −0.0716238 + 0.124056i −0.899613 0.436688i \(-0.856151\pi\)
0.827989 + 0.560744i \(0.189485\pi\)
\(384\) 0 0
\(385\) −1.42363 2.46580i −0.0725548 0.125669i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −29.1977 7.82350i −1.48038 0.396667i −0.573905 0.818922i \(-0.694572\pi\)
−0.906477 + 0.422255i \(0.861239\pi\)
\(390\) 0 0
\(391\) −8.15956 + 14.1328i −0.412647 + 0.714725i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −15.7382 15.7382i −0.791873 0.791873i
\(396\) 0 0
\(397\) 1.95789 1.95789i 0.0982636 0.0982636i −0.656266 0.754530i \(-0.727865\pi\)
0.754530 + 0.656266i \(0.227865\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.7356 + 16.5905i 1.43499 + 0.828489i 0.997495 0.0707337i \(-0.0225340\pi\)
0.437490 + 0.899223i \(0.355867\pi\)
\(402\) 0 0
\(403\) −6.05887 + 22.6120i −0.301814 + 1.12638i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.714607 + 0.412578i −0.0354217 + 0.0204508i
\(408\) 0 0
\(409\) −22.8959 13.2190i −1.13213 0.653636i −0.187660 0.982234i \(-0.560090\pi\)
−0.944470 + 0.328598i \(0.893424\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −13.1607 13.1607i −0.647596 0.647596i
\(414\) 0 0
\(415\) 18.0347i 0.885290i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.133835 0.499479i −0.00653827 0.0244012i 0.962580 0.270999i \(-0.0873540\pi\)
−0.969118 + 0.246598i \(0.920687\pi\)
\(420\) 0 0
\(421\) −3.44352 + 12.8514i −0.167827 + 0.626339i 0.829836 + 0.558008i \(0.188434\pi\)
−0.997663 + 0.0683313i \(0.978233\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −21.0818 36.5148i −1.02262 1.77123i
\(426\) 0 0
\(427\) 7.84332 + 29.2717i 0.379565 + 1.41655i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.61129 0.414791 0.207396 0.978257i \(-0.433501\pi\)
0.207396 + 0.978257i \(0.433501\pi\)
\(432\) 0 0
\(433\) 6.43973 0.309474 0.154737 0.987956i \(-0.450547\pi\)
0.154737 + 0.987956i \(0.450547\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.58320 + 5.90859i 0.0757348 + 0.282646i
\(438\) 0 0
\(439\) −14.4510 25.0298i −0.689707 1.19461i −0.971933 0.235260i \(-0.924406\pi\)
0.282225 0.959348i \(-0.408927\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.35627 + 31.1860i −0.397018 + 1.48169i 0.421297 + 0.906923i \(0.361575\pi\)
−0.818315 + 0.574770i \(0.805092\pi\)
\(444\) 0 0
\(445\) −2.96330 11.0592i −0.140474 0.524257i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.7097i 0.505423i 0.967542 + 0.252711i \(0.0813223\pi\)
−0.967542 + 0.252711i \(0.918678\pi\)
\(450\) 0 0
\(451\) −0.527433 0.527433i −0.0248359 0.0248359i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 31.6669 + 18.2829i 1.48457 + 0.857114i
\(456\) 0 0
\(457\) −13.1358 + 7.58393i −0.614465 + 0.354761i −0.774711 0.632316i \(-0.782105\pi\)
0.160246 + 0.987077i \(0.448771\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.10006 11.5696i 0.144384 0.538849i −0.855398 0.517971i \(-0.826687\pi\)
0.999782 0.0208774i \(-0.00664596\pi\)
\(462\) 0 0
\(463\) −2.03363 1.17412i −0.0945107 0.0545658i 0.452000 0.892018i \(-0.350711\pi\)
−0.546510 + 0.837452i \(0.684044\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −24.1509 + 24.1509i −1.11757 + 1.11757i −0.125473 + 0.992097i \(0.540045\pi\)
−0.992097 + 0.125473i \(0.959955\pi\)
\(468\) 0 0
\(469\) 12.7469 + 12.7469i 0.588596 + 0.588596i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.531379 + 0.920376i −0.0244328 + 0.0423189i
\(474\) 0 0
\(475\) −15.2660 4.09051i −0.700452 0.187685i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.40917 + 4.17281i 0.110078 + 0.190660i 0.915801 0.401631i \(-0.131557\pi\)
−0.805724 + 0.592292i \(0.798223\pi\)
\(480\) 0 0
\(481\) 5.29851 9.17730i 0.241591 0.418449i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −41.7638 + 41.7638i −1.89640 + 1.89640i
\(486\) 0 0
\(487\) −37.5042 −1.69948 −0.849739 0.527204i \(-0.823240\pi\)
−0.849739 + 0.527204i \(0.823240\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.88310 + 0.504576i −0.0849832 + 0.0227712i −0.301060 0.953605i \(-0.597340\pi\)
0.216077 + 0.976376i \(0.430674\pi\)
\(492\) 0 0
\(493\) −8.63279 2.31315i −0.388801 0.104179i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −21.9598 + 12.6785i −0.985032 + 0.568708i
\(498\) 0 0
\(499\) −10.8793 + 2.91509i −0.487023 + 0.130497i −0.493971 0.869478i \(-0.664455\pi\)
0.00694794 + 0.999976i \(0.497788\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.3339i 0.683706i 0.939753 + 0.341853i \(0.111055\pi\)
−0.939753 + 0.341853i \(0.888945\pi\)
\(504\) 0 0
\(505\) 0.519039i 0.0230969i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −32.0866 + 8.59758i −1.42221 + 0.381081i −0.886269 0.463172i \(-0.846711\pi\)
−0.535945 + 0.844253i \(0.680045\pi\)
\(510\) 0 0
\(511\) −9.40169 + 5.42807i −0.415906 + 0.240124i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −30.5548 8.18713i −1.34641 0.360768i
\(516\) 0 0
\(517\) 0.993703 0.266262i 0.0437030 0.0117102i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20.5032 0.898262 0.449131 0.893466i \(-0.351734\pi\)
0.449131 + 0.893466i \(0.351734\pi\)
\(522\) 0 0
\(523\) 29.2406 29.2406i 1.27860 1.27860i 0.337151 0.941451i \(-0.390537\pi\)
0.941451 0.337151i \(-0.109463\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17.6523 + 30.5746i −0.768944 + 1.33185i
\(528\) 0 0
\(529\) −4.09099 7.08581i −0.177869 0.308079i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.25281 + 2.47928i 0.400784 + 0.107390i
\(534\) 0 0
\(535\) 22.6575 39.2440i 0.979570 1.69667i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.668841 + 0.668841i 0.0288090 + 0.0288090i
\(540\) 0 0
\(541\) 20.5836 20.5836i 0.884956 0.884956i −0.109077 0.994033i \(-0.534790\pi\)
0.994033 + 0.109077i \(0.0347895\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −29.8905 17.2573i −1.28037 0.739221i
\(546\) 0 0
\(547\) −10.2029 + 38.0779i −0.436246 + 1.62809i 0.301821 + 0.953365i \(0.402406\pi\)
−0.738067 + 0.674728i \(0.764261\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.90122 + 1.67502i −0.123596 + 0.0713584i
\(552\) 0 0
\(553\) 16.7761 + 9.68566i 0.713391 + 0.411876i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.52288 + 1.52288i 0.0645265 + 0.0645265i 0.738634 0.674107i \(-0.235471\pi\)
−0.674107 + 0.738634i \(0.735471\pi\)
\(558\) 0 0
\(559\) 13.6484i 0.577266i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.30147 4.85715i −0.0548504 0.204705i 0.933063 0.359714i \(-0.117126\pi\)
−0.987913 + 0.155010i \(0.950459\pi\)
\(564\) 0 0
\(565\) −16.9335 + 63.1966i −0.712397 + 2.65870i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.4710 + 30.2606i 0.732421 + 1.26859i 0.955846 + 0.293869i \(0.0949430\pi\)
−0.223425 + 0.974721i \(0.571724\pi\)
\(570\) 0 0
\(571\) 9.16034 + 34.1869i 0.383348 + 1.43068i 0.840754 + 0.541417i \(0.182112\pi\)
−0.457406 + 0.889258i \(0.651221\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −38.2852 −1.59660
\(576\) 0 0
\(577\) −17.4865 −0.727972 −0.363986 0.931404i \(-0.618584\pi\)
−0.363986 + 0.931404i \(0.618584\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.06253 + 15.1616i 0.168542 + 0.629008i
\(582\) 0 0
\(583\) −1.17362 2.03278i −0.0486065 0.0841890i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.31081 12.3561i 0.136652 0.509991i −0.863334 0.504633i \(-0.831628\pi\)
0.999986 0.00535825i \(-0.00170559\pi\)
\(588\) 0 0
\(589\) 3.42507 + 12.7825i 0.141128 + 0.526696i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.7816i 1.05872i 0.848397 + 0.529361i \(0.177568\pi\)
−0.848397 + 0.529361i \(0.822432\pi\)
\(594\) 0 0
\(595\) 38.9937 + 38.9937i 1.59858 + 1.59858i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.3647 15.7990i −1.11809 0.645531i −0.177180 0.984179i \(-0.556697\pi\)
−0.940913 + 0.338647i \(0.890031\pi\)
\(600\) 0 0
\(601\) 23.3729 13.4944i 0.953401 0.550447i 0.0592656 0.998242i \(-0.481124\pi\)
0.894136 + 0.447796i \(0.147791\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.9585 40.8977i 0.445527 1.66273i
\(606\) 0 0
\(607\) 21.2314 + 12.2579i 0.861755 + 0.497534i 0.864600 0.502462i \(-0.167572\pi\)
−0.00284471 + 0.999996i \(0.500905\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.34212 + 9.34212i −0.377942 + 0.377942i
\(612\) 0 0
\(613\) −30.3894 30.3894i −1.22742 1.22742i −0.964937 0.262481i \(-0.915459\pi\)
−0.262481 0.964937i \(-0.584541\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.8393 27.4345i 0.637668 1.10447i −0.348275 0.937392i \(-0.613233\pi\)
0.985943 0.167081i \(-0.0534341\pi\)
\(618\) 0 0
\(619\) 20.1312 + 5.39413i 0.809141 + 0.216809i 0.639593 0.768713i \(-0.279103\pi\)
0.169547 + 0.985522i \(0.445769\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.98242 + 8.62981i 0.199617 + 0.345746i
\(624\) 0 0
\(625\) 12.0944 20.9481i 0.483775 0.837923i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.3007 11.3007i 0.450587 0.450587i
\(630\) 0 0
\(631\) 19.9953 0.796002 0.398001 0.917385i \(-0.369704\pi\)
0.398001 + 0.917385i \(0.369704\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 50.0494 13.4107i 1.98615 0.532187i
\(636\) 0 0
\(637\) −11.7335 3.14400i −0.464900 0.124570i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.6976 + 7.33098i −0.501526 + 0.289556i −0.729344 0.684148i \(-0.760174\pi\)
0.227818 + 0.973704i \(0.426841\pi\)
\(642\) 0 0
\(643\) −12.8777 + 3.45056i −0.507846 + 0.136077i −0.503639 0.863914i \(-0.668006\pi\)
−0.00420705 + 0.999991i \(0.501339\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30.5078i 1.19939i −0.800231 0.599693i \(-0.795290\pi\)
0.800231 0.599693i \(-0.204710\pi\)
\(648\) 0 0
\(649\) 1.21078i 0.0475272i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −20.1465 + 5.39824i −0.788394 + 0.211249i −0.630482 0.776204i \(-0.717143\pi\)
−0.157912 + 0.987453i \(0.550476\pi\)
\(654\) 0 0
\(655\) 2.19305 1.26616i 0.0856896 0.0494729i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.5728 3.90477i −0.567676 0.152108i −0.0364452 0.999336i \(-0.511603\pi\)
−0.531230 + 0.847227i \(0.678270\pi\)
\(660\) 0 0
\(661\) −9.11835 + 2.44325i −0.354663 + 0.0950316i −0.431751 0.901993i \(-0.642104\pi\)
0.0770887 + 0.997024i \(0.475438\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 20.6706 0.801570
\(666\) 0 0
\(667\) −5.73833 + 5.73833i −0.222189 + 0.222189i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.985698 1.70728i 0.0380525 0.0659088i
\(672\) 0 0
\(673\) −16.1140 27.9103i −0.621149 1.07586i −0.989272 0.146085i \(-0.953333\pi\)
0.368123 0.929777i \(-0.380001\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15.5364 + 4.16296i 0.597111 + 0.159996i 0.544701 0.838630i \(-0.316643\pi\)
0.0524101 + 0.998626i \(0.483310\pi\)
\(678\) 0 0
\(679\) 25.7025 44.5181i 0.986372 1.70845i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 28.6734 + 28.6734i 1.09716 + 1.09716i 0.994742 + 0.102416i \(0.0326571\pi\)
0.102416 + 0.994742i \(0.467343\pi\)
\(684\) 0 0
\(685\) −57.5322 + 57.5322i −2.19819 + 2.19819i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 26.1058 + 15.0722i 0.994552 + 0.574205i
\(690\) 0 0
\(691\) 11.8033 44.0504i 0.449017 1.67575i −0.256089 0.966653i \(-0.582434\pi\)
0.705106 0.709102i \(-0.250899\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.3358 12.8956i 0.847243 0.489156i
\(696\) 0 0
\(697\) 12.5111 + 7.22328i 0.473892 + 0.273601i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −13.0178 13.0178i −0.491676 0.491676i 0.417158 0.908834i \(-0.363026\pi\)
−0.908834 + 0.417158i \(0.863026\pi\)
\(702\) 0 0
\(703\) 5.99049i 0.225935i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.116919 0.436349i −0.00439721 0.0164106i
\(708\) 0 0
\(709\) 4.39011 16.3841i 0.164874 0.615319i −0.833182 0.552999i \(-0.813483\pi\)
0.998056 0.0623199i \(-0.0198499\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.0285 + 27.7622i 0.600273 + 1.03970i
\(714\) 0 0
\(715\) −0.615660 2.29767i −0.0230244 0.0859282i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 43.0731 1.60635 0.803177 0.595740i \(-0.203141\pi\)
0.803177 + 0.595740i \(0.203141\pi\)
\(720\) 0 0
\(721\) 27.5313 1.02532
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.42673 20.2528i −0.201544 0.752171i
\(726\) 0 0
\(727\) −15.3101 26.5179i −0.567821 0.983495i −0.996781 0.0801716i \(-0.974453\pi\)
0.428960 0.903324i \(-0.358880\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.32737 19.8820i 0.197040 0.735363i
\(732\) 0 0
\(733\) 0.679676 + 2.53658i 0.0251044 + 0.0936909i 0.977341 0.211669i \(-0.0678899\pi\)
−0.952237 + 0.305360i \(0.901223\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.17271i 0.0431972i
\(738\) 0 0
\(739\) −13.1402 13.1402i −0.483370 0.483370i 0.422836 0.906206i \(-0.361035\pi\)
−0.906206 + 0.422836i \(0.861035\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.79055 1.03378i −0.0656890 0.0379255i 0.466796 0.884365i \(-0.345408\pi\)
−0.532485 + 0.846440i \(0.678742\pi\)
\(744\) 0 0
\(745\) 74.7897 43.1798i 2.74008 1.58199i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −10.2077 + 38.0958i −0.372982 + 1.39199i
\(750\) 0 0
\(751\) 7.86676 + 4.54188i 0.287062 + 0.165735i 0.636616 0.771181i \(-0.280334\pi\)
−0.349554 + 0.936916i \(0.613667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 54.5367 54.5367i 1.98479 1.98479i
\(756\) 0 0
\(757\) 18.3910 + 18.3910i 0.668433 + 0.668433i 0.957353 0.288920i \(-0.0932961\pi\)
−0.288920 + 0.957353i \(0.593296\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.1080 24.4358i 0.511415 0.885797i −0.488497 0.872565i \(-0.662455\pi\)
0.999912 0.0132318i \(-0.00421194\pi\)
\(762\) 0 0
\(763\) 29.0160 + 7.77481i 1.05045 + 0.281467i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.77467 13.4661i −0.280727 0.486234i
\(768\) 0 0
\(769\) −14.6064 + 25.2991i −0.526722 + 0.912309i 0.472794 + 0.881173i \(0.343246\pi\)
−0.999515 + 0.0311354i \(0.990088\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.5491 10.5491i 0.379425 0.379425i −0.491470 0.870895i \(-0.663540\pi\)
0.870895 + 0.491470i \(0.163540\pi\)
\(774\) 0 0
\(775\) −82.8256 −2.97518
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.23060 1.40154i 0.187406 0.0502152i
\(780\) 0 0
\(781\) 1.59335 + 0.426938i 0.0570146 + 0.0152770i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 49.8924 28.8054i 1.78074 1.02811i
\(786\) 0 0
\(787\) −33.8023 + 9.05729i −1.20492 + 0.322857i −0.804767 0.593591i \(-0.797710\pi\)
−0.400153 + 0.916448i \(0.631043\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 56.9431i 2.02466i
\(792\) 0 0
\(793\) 25.3175i 0.899052i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.6668 7.41329i 0.980007 0.262592i 0.266959 0.963708i \(-0.413981\pi\)
0.713048 + 0.701116i \(0.247314\pi\)
\(798\) 0 0
\(799\) −17.2554 + 9.96243i −0.610453 + 0.352445i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.682165 + 0.182786i 0.0240731 + 0.00645036i
\(804\) 0 0
\(805\) 48.3667 12.9598i 1.70470 0.456773i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 39.9831 1.40573 0.702865 0.711323i \(-0.251904\pi\)
0.702865 + 0.711323i \(0.251904\pi\)
\(810\) 0 0
\(811\) 33.5121 33.5121i 1.17677 1.17677i 0.196204 0.980563i \(-0.437138\pi\)
0.980563 0.196204i \(-0.0628616\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11.9123 20.6328i 0.417271 0.722734i
\(816\) 0 0
\(817\) −3.85771 6.68176i −0.134964 0.233765i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.8942 + 2.91908i 0.380209 + 0.101877i 0.443861 0.896096i \(-0.353608\pi\)
−0.0636527 + 0.997972i \(0.520275\pi\)
\(822\) 0 0
\(823\) −27.4702 + 47.5798i −0.957551 + 1.65853i −0.229131 + 0.973396i \(0.573588\pi\)
−0.728420 + 0.685131i \(0.759745\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.2104 + 14.2104i 0.494144 + 0.494144i 0.909609 0.415465i \(-0.136381\pi\)
−0.415465 + 0.909609i \(0.636381\pi\)
\(828\) 0 0
\(829\) 6.15512 6.15512i 0.213776 0.213776i −0.592093 0.805869i \(-0.701698\pi\)
0.805869 + 0.592093i \(0.201698\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −15.8654 9.15989i −0.549704 0.317371i
\(834\) 0 0
\(835\) −13.7435 + 51.2913i −0.475612 + 1.77501i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21.5384 + 12.4352i −0.743590 + 0.429312i −0.823373 0.567500i \(-0.807911\pi\)
0.0797833 + 0.996812i \(0.474577\pi\)
\(840\) 0 0
\(841\) 21.2658 + 12.2778i 0.733303 + 0.423373i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −13.9363 13.9363i −0.479424 0.479424i
\(846\) 0 0
\(847\) 36.8507i 1.26621i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.75585 14.0170i −0.128749 0.480497i
\(852\) 0 0
\(853\) −5.05023 + 18.8477i −0.172917 + 0.645334i 0.823980 + 0.566618i \(0.191749\pi\)
−0.996897 + 0.0787157i \(0.974918\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.6982 + 32.3862i 0.638717 + 1.10629i 0.985715 + 0.168424i \(0.0538679\pi\)
−0.346998 + 0.937866i \(0.612799\pi\)
\(858\) 0 0
\(859\) 7.10549 + 26.5180i 0.242436 + 0.904784i 0.974655 + 0.223714i \(0.0718182\pi\)
−0.732219 + 0.681070i \(0.761515\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.1797 −0.346520 −0.173260 0.984876i \(-0.555430\pi\)
−0.173260 + 0.984876i \(0.555430\pi\)
\(864\) 0 0
\(865\) 20.9860 0.713545
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.326156 1.21723i −0.0110641 0.0412918i
\(870\) 0 0
\(871\) 7.53020 + 13.0427i 0.255151 + 0.441935i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −16.6507 + 62.1414i −0.562897 + 2.10076i
\(876\) 0 0
\(877\) −6.90717 25.7779i −0.233239 0.870458i −0.978935 0.204172i \(-0.934550\pi\)
0.745696 0.666286i \(-0.232117\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.7798i 1.03700i −0.855078 0.518499i \(-0.826491\pi\)
0.855078 0.518499i \(-0.173509\pi\)
\(882\) 0 0
\(883\) 19.8089 + 19.8089i 0.666622 + 0.666622i 0.956933 0.290310i \(-0.0937586\pi\)
−0.290310 + 0.956933i \(0.593759\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21.0940 + 12.1786i 0.708266 + 0.408918i 0.810419 0.585851i \(-0.199240\pi\)
−0.102153 + 0.994769i \(0.532573\pi\)
\(888\) 0 0
\(889\) −39.0550 + 22.5484i −1.30986 + 0.756249i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.93301 + 7.21410i −0.0646858 + 0.241411i
\(894\) 0 0
\(895\) −1.79985 1.03914i −0.0601624 0.0347348i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.4142 + 12.4142i −0.414037 + 0.414037i
\(900\) 0 0
\(901\) 32.1460 + 32.1460i 1.07094 + 1.07094i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.6407 + 23.6264i −0.453433 + 0.785369i
\(906\) 0 0
\(907\) −56.0698 15.0239i −1.86177 0.498859i −0.861802 0.507245i \(-0.830664\pi\)
−0.999965 + 0.00838605i \(0.997331\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.9347 + 20.6715i 0.395414 + 0.684877i 0.993154 0.116813i \(-0.0372678\pi\)
−0.597740 + 0.801690i \(0.703934\pi\)
\(912\) 0 0
\(913\) 0.510553 0.884303i 0.0168968 0.0292662i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.55845 + 1.55845i −0.0514646 + 0.0514646i
\(918\) 0 0
\(919\) 15.7779 0.520466 0.260233 0.965546i \(-0.416201\pi\)
0.260233 + 0.965546i \(0.416201\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −20.4625 + 5.48292i −0.673533 + 0.180473i
\(924\) 0 0
\(925\) 36.2157 + 9.70397i 1.19077 + 0.319065i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −14.3132 + 8.26371i −0.469600 + 0.271123i −0.716072 0.698026i \(-0.754062\pi\)
0.246472 + 0.969150i \(0.420729\pi\)
\(930\) 0 0
\(931\) −6.63296 + 1.77730i −0.217387 + 0.0582485i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.58740i 0.117320i
\(936\) 0 0
\(937\) 5.92940i 0.193705i −0.995299 0.0968526i \(-0.969122\pi\)
0.995299 0.0968526i \(-0.0308775\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.6096 5.52232i 0.671853 0.180022i 0.0932635 0.995641i \(-0.470270\pi\)
0.578589 + 0.815619i \(0.303603\pi\)
\(942\) 0 0
\(943\) 11.3603 6.55886i 0.369941 0.213586i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31.9863 8.57071i −1.03942 0.278511i −0.301545 0.953452i \(-0.597502\pi\)
−0.737871 + 0.674941i \(0.764169\pi\)
\(948\) 0 0
\(949\) −8.76066 + 2.34741i −0.284383 + 0.0762002i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.546564 0.0177049 0.00885247 0.999961i \(-0.497182\pi\)
0.00885247 + 0.999961i \(0.497182\pi\)
\(954\) 0 0
\(955\) −29.5538 + 29.5538i −0.956339 + 0.956339i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 35.4068 61.3264i 1.14335 1.98033i
\(960\) 0 0
\(961\) 19.1758 + 33.2135i 0.618576 + 1.07140i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −19.4213 5.20393i −0.625195 0.167521i
\(966\) 0 0
\(967\) 7.49046 12.9739i 0.240877 0.417211i −0.720087 0.693883i \(-0.755898\pi\)
0.960964 + 0.276672i \(0.0892316\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −29.4725 29.4725i −0.945816 0.945816i 0.0527896 0.998606i \(-0.483189\pi\)
−0.998606 + 0.0527896i \(0.983189\pi\)
\(972\) 0 0
\(973\) −15.8725 + 15.8725i −0.508849 + 0.508849i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.02199 1.16740i −0.0646892 0.0373483i 0.467307 0.884095i \(-0.345224\pi\)
−0.531996 + 0.846747i \(0.678558\pi\)
\(978\) 0 0
\(979\) 0.167779 0.626159i 0.00536224 0.0200121i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 21.5089 12.4182i 0.686029 0.396079i −0.116094 0.993238i \(-0.537037\pi\)
0.802123 + 0.597159i \(0.203704\pi\)
\(984\) 0 0
\(985\) −13.9464 8.05197i −0.444370 0.256557i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13.2158 13.2158i −0.420240 0.420240i
\(990\) 0 0
\(991\) 7.12527i 0.226342i 0.993576 + 0.113171i \(0.0361008\pi\)
−0.993576 + 0.113171i \(0.963899\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.57436 + 9.60763i 0.0816126 + 0.304582i
\(996\) 0 0
\(997\) 12.7516 47.5897i 0.403848 1.50718i −0.402322 0.915498i \(-0.631797\pi\)
0.806170 0.591684i \(-0.201537\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.z.a.719.1 88
3.2 odd 2 576.2.y.a.527.3 88
4.3 odd 2 432.2.v.a.395.9 88
9.2 odd 6 inner 1728.2.z.a.143.1 88
9.7 even 3 576.2.y.a.335.15 88
12.11 even 2 144.2.u.a.59.14 yes 88
16.3 odd 4 inner 1728.2.z.a.1583.1 88
16.13 even 4 432.2.v.a.179.16 88
36.7 odd 6 144.2.u.a.11.7 88
36.11 even 6 432.2.v.a.251.16 88
48.29 odd 4 144.2.u.a.131.7 yes 88
48.35 even 4 576.2.y.a.239.15 88
144.29 odd 12 432.2.v.a.35.9 88
144.61 even 12 144.2.u.a.83.14 yes 88
144.83 even 12 inner 1728.2.z.a.1007.1 88
144.115 odd 12 576.2.y.a.47.3 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.7 88 36.7 odd 6
144.2.u.a.59.14 yes 88 12.11 even 2
144.2.u.a.83.14 yes 88 144.61 even 12
144.2.u.a.131.7 yes 88 48.29 odd 4
432.2.v.a.35.9 88 144.29 odd 12
432.2.v.a.179.16 88 16.13 even 4
432.2.v.a.251.16 88 36.11 even 6
432.2.v.a.395.9 88 4.3 odd 2
576.2.y.a.47.3 88 144.115 odd 12
576.2.y.a.239.15 88 48.35 even 4
576.2.y.a.335.15 88 9.7 even 3
576.2.y.a.527.3 88 3.2 odd 2
1728.2.z.a.143.1 88 9.2 odd 6 inner
1728.2.z.a.719.1 88 1.1 even 1 trivial
1728.2.z.a.1007.1 88 144.83 even 12 inner
1728.2.z.a.1583.1 88 16.3 odd 4 inner