Properties

Label 432.2.v.a.179.16
Level $432$
Weight $2$
Character 432.179
Analytic conductor $3.450$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,2,Mod(35,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.v (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 179.16
Character \(\chi\) \(=\) 432.179
Dual form 432.2.v.a.251.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.990880 + 1.00904i) q^{2} +(-0.0363133 + 1.99967i) q^{4} +(-3.73424 + 1.00059i) q^{5} +(-1.68236 - 2.91393i) q^{7} +(-2.05372 + 1.94479i) q^{8} +(-4.70981 - 2.77653i) q^{10} +(-0.211428 - 0.0566521i) q^{11} +(-2.71526 + 0.727551i) q^{13} +(1.27325 - 4.58492i) q^{14} +(-3.99736 - 0.145229i) q^{16} +4.23937i q^{17} +(-1.12365 + 1.12365i) q^{19} +(-1.86524 - 7.50358i) q^{20} +(-0.152336 - 0.269474i) q^{22} +(-3.33369 - 1.92471i) q^{23} +(8.61325 - 4.97286i) q^{25} +(-3.42462 - 2.01888i) q^{26} +(5.88800 - 3.25835i) q^{28} +(-2.03634 - 0.545635i) q^{29} +(7.21206 + 4.16388i) q^{31} +(-3.81437 - 4.17739i) q^{32} +(-4.27769 + 4.20071i) q^{34} +(9.19798 + 9.19798i) q^{35} +(-2.66564 + 2.66564i) q^{37} +(-2.24720 - 0.0204025i) q^{38} +(5.72317 - 9.31725i) q^{40} +(-1.70386 + 2.95117i) q^{41} +(-1.25664 + 4.68985i) q^{43} +(0.120963 - 0.420730i) q^{44} +(-1.36119 - 5.27098i) q^{46} +(2.34998 + 4.07028i) q^{47} +(-2.16067 + 3.74239i) q^{49} +(13.5525 + 3.76358i) q^{50} +(-1.35626 - 5.45604i) q^{52} +(-7.58271 - 7.58271i) q^{53} +0.846209 q^{55} +(9.12210 + 2.71258i) q^{56} +(-1.46720 - 2.59540i) q^{58} +(1.43167 + 5.34305i) q^{59} +(-2.33105 + 8.69958i) q^{61} +(2.94477 + 11.4031i) q^{62} +(0.435568 - 7.98813i) q^{64} +(9.41144 - 5.43370i) q^{65} +(1.38665 + 5.17504i) q^{67} +(-8.47735 - 0.153945i) q^{68} +(-0.167011 + 18.3952i) q^{70} -7.53614i q^{71} -3.22646i q^{73} +(-5.33107 - 0.0484011i) q^{74} +(-2.20612 - 2.28773i) q^{76} +(0.190618 + 0.711397i) q^{77} +(4.98587 - 2.87859i) q^{79} +(15.0724 - 3.45739i) q^{80} +(-4.66616 + 1.20500i) q^{82} +(-1.20739 + 4.50604i) q^{83} +(-4.24186 - 15.8308i) q^{85} +(-5.97741 + 3.37908i) q^{86} +(0.544392 - 0.294836i) q^{88} -2.96157 q^{89} +(6.68807 + 6.68807i) q^{91} +(3.96984 - 6.59639i) q^{92} +(-1.77852 + 6.40437i) q^{94} +(3.07166 - 5.32027i) q^{95} +(-7.63883 - 13.2308i) q^{97} +(-5.91718 + 1.52806i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{2} - 2 q^{4} + 6 q^{5} - 4 q^{7} - 8 q^{10} + 6 q^{11} - 2 q^{13} + 6 q^{14} - 2 q^{16} - 8 q^{19} + 48 q^{20} - 2 q^{22} + 12 q^{23} + 8 q^{28} + 6 q^{29} + 6 q^{32} + 2 q^{34} - 8 q^{37} + 6 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.990880 + 1.00904i 0.700658 + 0.713497i
\(3\) 0 0
\(4\) −0.0363133 + 1.99967i −0.0181566 + 0.999835i
\(5\) −3.73424 + 1.00059i −1.67000 + 0.447476i −0.965111 0.261839i \(-0.915671\pi\)
−0.704891 + 0.709315i \(0.749004\pi\)
\(6\) 0 0
\(7\) −1.68236 2.91393i −0.635872 1.10136i −0.986330 0.164785i \(-0.947307\pi\)
0.350457 0.936579i \(-0.386026\pi\)
\(8\) −2.05372 + 1.94479i −0.726101 + 0.687588i
\(9\) 0 0
\(10\) −4.70981 2.77653i −1.48937 0.878015i
\(11\) −0.211428 0.0566521i −0.0637480 0.0170812i 0.226804 0.973940i \(-0.427172\pi\)
−0.290552 + 0.956859i \(0.593839\pi\)
\(12\) 0 0
\(13\) −2.71526 + 0.727551i −0.753076 + 0.201786i −0.614882 0.788619i \(-0.710796\pi\)
−0.138194 + 0.990405i \(0.544130\pi\)
\(14\) 1.27325 4.58492i 0.340291 1.22537i
\(15\) 0 0
\(16\) −3.99736 0.145229i −0.999341 0.0363073i
\(17\) 4.23937i 1.02820i 0.857731 + 0.514100i \(0.171874\pi\)
−0.857731 + 0.514100i \(0.828126\pi\)
\(18\) 0 0
\(19\) −1.12365 + 1.12365i −0.257782 + 0.257782i −0.824152 0.566369i \(-0.808348\pi\)
0.566369 + 0.824152i \(0.308348\pi\)
\(20\) −1.86524 7.50358i −0.417081 1.67785i
\(21\) 0 0
\(22\) −0.152336 0.269474i −0.0324782 0.0574522i
\(23\) −3.33369 1.92471i −0.695123 0.401329i 0.110405 0.993887i \(-0.464785\pi\)
−0.805528 + 0.592557i \(0.798118\pi\)
\(24\) 0 0
\(25\) 8.61325 4.97286i 1.72265 0.994572i
\(26\) −3.42462 2.01888i −0.671623 0.395935i
\(27\) 0 0
\(28\) 5.88800 3.25835i 1.11273 0.615771i
\(29\) −2.03634 0.545635i −0.378138 0.101322i 0.0647434 0.997902i \(-0.479377\pi\)
−0.442882 + 0.896580i \(0.646044\pi\)
\(30\) 0 0
\(31\) 7.21206 + 4.16388i 1.29532 + 0.747856i 0.979593 0.200993i \(-0.0644169\pi\)
0.315731 + 0.948849i \(0.397750\pi\)
\(32\) −3.81437 4.17739i −0.674291 0.738466i
\(33\) 0 0
\(34\) −4.27769 + 4.20071i −0.733617 + 0.720416i
\(35\) 9.19798 + 9.19798i 1.55474 + 1.55474i
\(36\) 0 0
\(37\) −2.66564 + 2.66564i −0.438229 + 0.438229i −0.891416 0.453187i \(-0.850287\pi\)
0.453187 + 0.891416i \(0.350287\pi\)
\(38\) −2.24720 0.0204025i −0.364544 0.00330972i
\(39\) 0 0
\(40\) 5.72317 9.31725i 0.904912 1.47319i
\(41\) −1.70386 + 2.95117i −0.266098 + 0.460895i −0.967851 0.251526i \(-0.919068\pi\)
0.701753 + 0.712420i \(0.252401\pi\)
\(42\) 0 0
\(43\) −1.25664 + 4.68985i −0.191636 + 0.715195i 0.801476 + 0.598027i \(0.204048\pi\)
−0.993112 + 0.117168i \(0.962618\pi\)
\(44\) 0.120963 0.420730i 0.0182359 0.0634274i
\(45\) 0 0
\(46\) −1.36119 5.27098i −0.200696 0.777163i
\(47\) 2.34998 + 4.07028i 0.342779 + 0.593711i 0.984948 0.172852i \(-0.0552984\pi\)
−0.642168 + 0.766564i \(0.721965\pi\)
\(48\) 0 0
\(49\) −2.16067 + 3.74239i −0.308667 + 0.534628i
\(50\) 13.5525 + 3.76358i 1.91661 + 0.532251i
\(51\) 0 0
\(52\) −1.35626 5.45604i −0.188080 0.756616i
\(53\) −7.58271 7.58271i −1.04157 1.04157i −0.999098 0.0424680i \(-0.986478\pi\)
−0.0424680 0.999098i \(-0.513522\pi\)
\(54\) 0 0
\(55\) 0.846209 0.114103
\(56\) 9.12210 + 2.71258i 1.21899 + 0.362483i
\(57\) 0 0
\(58\) −1.46720 2.59540i −0.192653 0.340793i
\(59\) 1.43167 + 5.34305i 0.186387 + 0.695605i 0.994329 + 0.106344i \(0.0339145\pi\)
−0.807942 + 0.589261i \(0.799419\pi\)
\(60\) 0 0
\(61\) −2.33105 + 8.69958i −0.298460 + 1.11387i 0.639971 + 0.768399i \(0.278946\pi\)
−0.938431 + 0.345468i \(0.887720\pi\)
\(62\) 2.94477 + 11.4031i 0.373986 + 1.44820i
\(63\) 0 0
\(64\) 0.435568 7.98813i 0.0544460 0.998517i
\(65\) 9.41144 5.43370i 1.16735 0.673967i
\(66\) 0 0
\(67\) 1.38665 + 5.17504i 0.169406 + 0.632231i 0.997437 + 0.0715493i \(0.0227943\pi\)
−0.828031 + 0.560682i \(0.810539\pi\)
\(68\) −8.47735 0.153945i −1.02803 0.0186686i
\(69\) 0 0
\(70\) −0.167011 + 18.3952i −0.0199617 + 2.19865i
\(71\) 7.53614i 0.894375i −0.894440 0.447187i \(-0.852426\pi\)
0.894440 0.447187i \(-0.147574\pi\)
\(72\) 0 0
\(73\) 3.22646i 0.377629i −0.982013 0.188814i \(-0.939536\pi\)
0.982013 0.188814i \(-0.0604644\pi\)
\(74\) −5.33107 0.0484011i −0.619724 0.00562651i
\(75\) 0 0
\(76\) −2.20612 2.28773i −0.253059 0.262420i
\(77\) 0.190618 + 0.711397i 0.0217230 + 0.0810712i
\(78\) 0 0
\(79\) 4.98587 2.87859i 0.560954 0.323867i −0.192574 0.981282i \(-0.561684\pi\)
0.753528 + 0.657415i \(0.228350\pi\)
\(80\) 15.0724 3.45739i 1.68515 0.386548i
\(81\) 0 0
\(82\) −4.66616 + 1.20500i −0.515291 + 0.133070i
\(83\) −1.20739 + 4.50604i −0.132528 + 0.494602i −0.999996 0.00289160i \(-0.999080\pi\)
0.867468 + 0.497494i \(0.165746\pi\)
\(84\) 0 0
\(85\) −4.24186 15.8308i −0.460094 1.71710i
\(86\) −5.97741 + 3.37908i −0.644561 + 0.364376i
\(87\) 0 0
\(88\) 0.544392 0.294836i 0.0580324 0.0314297i
\(89\) −2.96157 −0.313926 −0.156963 0.987605i \(-0.550170\pi\)
−0.156963 + 0.987605i \(0.550170\pi\)
\(90\) 0 0
\(91\) 6.68807 + 6.68807i 0.701100 + 0.701100i
\(92\) 3.96984 6.59639i 0.413884 0.687722i
\(93\) 0 0
\(94\) −1.77852 + 6.40437i −0.183440 + 0.660561i
\(95\) 3.07166 5.32027i 0.315146 0.545849i
\(96\) 0 0
\(97\) −7.63883 13.2308i −0.775606 1.34339i −0.934453 0.356085i \(-0.884111\pi\)
0.158848 0.987303i \(-0.449222\pi\)
\(98\) −5.91718 + 1.52806i −0.597726 + 0.154358i
\(99\) 0 0
\(100\) 9.63131 + 17.4042i 0.963131 + 1.74042i
\(101\) −0.0347486 + 0.129684i −0.00345762 + 0.0129040i −0.967633 0.252361i \(-0.918793\pi\)
0.964175 + 0.265265i \(0.0854595\pi\)
\(102\) 0 0
\(103\) −4.09117 + 7.08611i −0.403115 + 0.698215i −0.994100 0.108467i \(-0.965406\pi\)
0.590985 + 0.806682i \(0.298739\pi\)
\(104\) 4.16145 6.77480i 0.408064 0.664323i
\(105\) 0 0
\(106\) 0.137682 15.1648i 0.0133729 1.47294i
\(107\) 8.28837 8.28837i 0.801267 0.801267i −0.182027 0.983294i \(-0.558266\pi\)
0.983294 + 0.182027i \(0.0582658\pi\)
\(108\) 0 0
\(109\) 6.31291 + 6.31291i 0.604667 + 0.604667i 0.941547 0.336881i \(-0.109372\pi\)
−0.336881 + 0.941547i \(0.609372\pi\)
\(110\) 0.838492 + 0.853857i 0.0799471 + 0.0814121i
\(111\) 0 0
\(112\) 6.30182 + 11.8924i 0.595466 + 1.12372i
\(113\) −14.6562 8.46178i −1.37874 0.796017i −0.386735 0.922191i \(-0.626397\pi\)
−0.992008 + 0.126174i \(0.959730\pi\)
\(114\) 0 0
\(115\) 14.3746 + 3.85167i 1.34044 + 0.359171i
\(116\) 1.16504 4.05219i 0.108171 0.376236i
\(117\) 0 0
\(118\) −3.97273 + 6.73892i −0.365719 + 0.620368i
\(119\) 12.3533 7.13215i 1.13242 0.653803i
\(120\) 0 0
\(121\) −9.48479 5.47604i −0.862253 0.497822i
\(122\) −11.0880 + 6.26813i −1.00386 + 0.567490i
\(123\) 0 0
\(124\) −8.58829 + 14.2705i −0.771251 + 1.28153i
\(125\) −13.5199 + 13.5199i −1.20926 + 1.20926i
\(126\) 0 0
\(127\) 13.4028i 1.18931i 0.803981 + 0.594654i \(0.202711\pi\)
−0.803981 + 0.594654i \(0.797289\pi\)
\(128\) 8.49192 7.47578i 0.750587 0.660772i
\(129\) 0 0
\(130\) 14.8084 + 4.11235i 1.29878 + 0.360677i
\(131\) −0.632708 + 0.169534i −0.0552800 + 0.0148122i −0.286353 0.958124i \(-0.592443\pi\)
0.231073 + 0.972936i \(0.425776\pi\)
\(132\) 0 0
\(133\) 5.16461 + 1.38385i 0.447829 + 0.119995i
\(134\) −3.84781 + 6.52702i −0.332400 + 0.563849i
\(135\) 0 0
\(136\) −8.24470 8.70650i −0.706977 0.746577i
\(137\) 10.5230 + 18.2263i 0.899037 + 1.55718i 0.828727 + 0.559652i \(0.189065\pi\)
0.0703095 + 0.997525i \(0.477601\pi\)
\(138\) 0 0
\(139\) 6.44400 1.72666i 0.546573 0.146454i 0.0250423 0.999686i \(-0.492028\pi\)
0.521530 + 0.853233i \(0.325361\pi\)
\(140\) −18.7269 + 18.0589i −1.58271 + 1.52626i
\(141\) 0 0
\(142\) 7.60424 7.46741i 0.638134 0.626651i
\(143\) 0.615299 0.0514539
\(144\) 0 0
\(145\) 8.15012 0.676831
\(146\) 3.25562 3.19703i 0.269437 0.264588i
\(147\) 0 0
\(148\) −5.23361 5.42721i −0.430200 0.446114i
\(149\) 21.5773 5.78161i 1.76768 0.473648i 0.779428 0.626492i \(-0.215510\pi\)
0.988250 + 0.152844i \(0.0488431\pi\)
\(150\) 0 0
\(151\) −9.97506 17.2773i −0.811759 1.40601i −0.911632 0.411007i \(-0.865177\pi\)
0.0998734 0.995000i \(-0.468156\pi\)
\(152\) 0.122401 4.49292i 0.00992807 0.364424i
\(153\) 0 0
\(154\) −0.528947 + 0.897250i −0.0426237 + 0.0723025i
\(155\) −31.0979 8.33265i −2.49784 0.669295i
\(156\) 0 0
\(157\) −14.3943 + 3.85693i −1.14879 + 0.307817i −0.782479 0.622677i \(-0.786045\pi\)
−0.366308 + 0.930494i \(0.619378\pi\)
\(158\) 7.84501 + 2.17859i 0.624115 + 0.173319i
\(159\) 0 0
\(160\) 18.4236 + 11.7828i 1.45651 + 0.931511i
\(161\) 12.9522i 1.02078i
\(162\) 0 0
\(163\) −4.35766 + 4.35766i −0.341318 + 0.341318i −0.856863 0.515545i \(-0.827590\pi\)
0.515545 + 0.856863i \(0.327590\pi\)
\(164\) −5.83949 3.51432i −0.455987 0.274422i
\(165\) 0 0
\(166\) −5.74314 + 3.24664i −0.445754 + 0.251988i
\(167\) 11.8952 + 6.86770i 0.920479 + 0.531439i 0.883788 0.467888i \(-0.154985\pi\)
0.0366910 + 0.999327i \(0.488318\pi\)
\(168\) 0 0
\(169\) −4.41505 + 2.54903i −0.339619 + 0.196079i
\(170\) 11.7707 19.9667i 0.902774 1.53137i
\(171\) 0 0
\(172\) −9.33252 2.68317i −0.711598 0.204590i
\(173\) −5.24342 1.40497i −0.398650 0.106818i 0.0539235 0.998545i \(-0.482827\pi\)
−0.452573 + 0.891727i \(0.649494\pi\)
\(174\) 0 0
\(175\) −28.9812 16.7323i −2.19077 1.26484i
\(176\) 0.836928 + 0.257164i 0.0630858 + 0.0193845i
\(177\) 0 0
\(178\) −2.93456 2.98833i −0.219954 0.223985i
\(179\) 0.380130 + 0.380130i 0.0284123 + 0.0284123i 0.721170 0.692758i \(-0.243605\pi\)
−0.692758 + 0.721170i \(0.743605\pi\)
\(180\) 0 0
\(181\) −4.98992 + 4.98992i −0.370898 + 0.370898i −0.867804 0.496906i \(-0.834469\pi\)
0.496906 + 0.867804i \(0.334469\pi\)
\(182\) −0.121438 + 13.3756i −0.00900157 + 0.991465i
\(183\) 0 0
\(184\) 10.5896 2.53052i 0.780679 0.186552i
\(185\) 7.28695 12.6214i 0.535747 0.927941i
\(186\) 0 0
\(187\) 0.240169 0.896324i 0.0175629 0.0655457i
\(188\) −8.22455 + 4.55137i −0.599837 + 0.331943i
\(189\) 0 0
\(190\) 8.41200 2.17233i 0.610271 0.157598i
\(191\) −5.40555 9.36269i −0.391132 0.677461i 0.601467 0.798898i \(-0.294583\pi\)
−0.992599 + 0.121437i \(0.961250\pi\)
\(192\) 0 0
\(193\) 2.60044 4.50410i 0.187184 0.324212i −0.757126 0.653268i \(-0.773397\pi\)
0.944310 + 0.329056i \(0.106731\pi\)
\(194\) 5.78125 20.8180i 0.415070 1.49465i
\(195\) 0 0
\(196\) −7.40509 4.45653i −0.528935 0.318323i
\(197\) −2.94550 2.94550i −0.209858 0.209858i 0.594349 0.804207i \(-0.297410\pi\)
−0.804207 + 0.594349i \(0.797410\pi\)
\(198\) 0 0
\(199\) 2.57285 0.182384 0.0911921 0.995833i \(-0.470932\pi\)
0.0911921 + 0.995833i \(0.470932\pi\)
\(200\) −8.01806 + 26.9639i −0.566962 + 1.90663i
\(201\) 0 0
\(202\) −0.165287 + 0.0934382i −0.0116296 + 0.00657429i
\(203\) 1.83591 + 6.85170i 0.128856 + 0.480895i
\(204\) 0 0
\(205\) 3.40971 12.7252i 0.238145 0.888768i
\(206\) −11.2040 + 2.89334i −0.780620 + 0.201589i
\(207\) 0 0
\(208\) 10.9595 2.51395i 0.759906 0.174311i
\(209\) 0.301228 0.173914i 0.0208364 0.0120299i
\(210\) 0 0
\(211\) −4.70786 17.5700i −0.324103 1.20957i −0.915211 0.402975i \(-0.867976\pi\)
0.591108 0.806592i \(-0.298691\pi\)
\(212\) 15.4383 14.8876i 1.06031 1.02248i
\(213\) 0 0
\(214\) 16.5761 + 0.150495i 1.13312 + 0.0102876i
\(215\) 18.7704i 1.28013i
\(216\) 0 0
\(217\) 28.0206i 1.90216i
\(218\) −0.114626 + 12.6253i −0.00776344 + 0.855093i
\(219\) 0 0
\(220\) −0.0307286 + 1.69214i −0.00207172 + 0.114084i
\(221\) −3.08436 11.5110i −0.207476 0.774312i
\(222\) 0 0
\(223\) −2.82059 + 1.62847i −0.188881 + 0.109050i −0.591458 0.806336i \(-0.701448\pi\)
0.402578 + 0.915386i \(0.368114\pi\)
\(224\) −5.75551 + 18.1427i −0.384556 + 1.21221i
\(225\) 0 0
\(226\) −5.98432 23.1733i −0.398071 1.54147i
\(227\) 2.36663 8.83238i 0.157079 0.586226i −0.841840 0.539728i \(-0.818527\pi\)
0.998918 0.0464979i \(-0.0148061\pi\)
\(228\) 0 0
\(229\) 1.36053 + 5.07755i 0.0899061 + 0.335534i 0.996198 0.0871183i \(-0.0277658\pi\)
−0.906292 + 0.422652i \(0.861099\pi\)
\(230\) 10.3571 + 18.3211i 0.682925 + 1.20806i
\(231\) 0 0
\(232\) 5.24322 2.83967i 0.344234 0.186433i
\(233\) 14.1506 0.927034 0.463517 0.886088i \(-0.346587\pi\)
0.463517 + 0.886088i \(0.346587\pi\)
\(234\) 0 0
\(235\) −12.8480 12.8480i −0.838114 0.838114i
\(236\) −10.7363 + 2.66883i −0.698875 + 0.173726i
\(237\) 0 0
\(238\) 19.4372 + 5.39779i 1.25993 + 0.349886i
\(239\) −7.51536 + 13.0170i −0.486128 + 0.841999i −0.999873 0.0159444i \(-0.994925\pi\)
0.513745 + 0.857943i \(0.328258\pi\)
\(240\) 0 0
\(241\) 7.18920 + 12.4521i 0.463097 + 0.802108i 0.999113 0.0420996i \(-0.0134047\pi\)
−0.536016 + 0.844208i \(0.680071\pi\)
\(242\) −3.87275 14.9966i −0.248950 0.964019i
\(243\) 0 0
\(244\) −17.3116 4.97723i −1.10826 0.318635i
\(245\) 4.32388 16.1369i 0.276242 1.03095i
\(246\) 0 0
\(247\) 2.23348 3.86850i 0.142113 0.246147i
\(248\) −22.9095 + 5.47448i −1.45475 + 0.347630i
\(249\) 0 0
\(250\) −27.0387 0.245486i −1.71007 0.0155259i
\(251\) −3.59758 + 3.59758i −0.227077 + 0.227077i −0.811471 0.584393i \(-0.801333\pi\)
0.584393 + 0.811471i \(0.301333\pi\)
\(252\) 0 0
\(253\) 0.595798 + 0.595798i 0.0374575 + 0.0374575i
\(254\) −13.5240 + 13.2806i −0.848569 + 0.833299i
\(255\) 0 0
\(256\) 15.9578 + 1.16107i 0.997364 + 0.0725667i
\(257\) 4.92640 + 2.84426i 0.307300 + 0.177420i 0.645718 0.763576i \(-0.276558\pi\)
−0.338418 + 0.940996i \(0.609892\pi\)
\(258\) 0 0
\(259\) 12.2521 + 3.28294i 0.761307 + 0.203992i
\(260\) 10.5238 + 19.0171i 0.652661 + 1.17939i
\(261\) 0 0
\(262\) −0.798004 0.470439i −0.0493008 0.0290638i
\(263\) −18.8392 + 10.8768i −1.16167 + 0.670693i −0.951705 0.307015i \(-0.900670\pi\)
−0.209970 + 0.977708i \(0.567337\pi\)
\(264\) 0 0
\(265\) 35.9028 + 20.7285i 2.20549 + 1.27334i
\(266\) 3.72115 + 6.58252i 0.228158 + 0.403600i
\(267\) 0 0
\(268\) −10.3987 + 2.58491i −0.635203 + 0.157899i
\(269\) −7.43467 + 7.43467i −0.453300 + 0.453300i −0.896448 0.443148i \(-0.853861\pi\)
0.443148 + 0.896448i \(0.353861\pi\)
\(270\) 0 0
\(271\) 11.8875i 0.722111i 0.932544 + 0.361056i \(0.117584\pi\)
−0.932544 + 0.361056i \(0.882416\pi\)
\(272\) 0.615680 16.9463i 0.0373311 1.02752i
\(273\) 0 0
\(274\) −7.96403 + 28.6781i −0.481125 + 1.73251i
\(275\) −2.10281 + 0.563445i −0.126804 + 0.0339770i
\(276\) 0 0
\(277\) −10.0081 2.68166i −0.601329 0.161126i −0.0547032 0.998503i \(-0.517421\pi\)
−0.546626 + 0.837377i \(0.684088\pi\)
\(278\) 8.12750 + 4.79132i 0.487455 + 0.287364i
\(279\) 0 0
\(280\) −36.7783 1.00196i −2.19792 0.0598784i
\(281\) −7.05630 12.2219i −0.420944 0.729096i 0.575088 0.818091i \(-0.304968\pi\)
−0.996032 + 0.0889955i \(0.971634\pi\)
\(282\) 0 0
\(283\) −12.7951 + 3.42843i −0.760588 + 0.203799i −0.618209 0.786013i \(-0.712142\pi\)
−0.142378 + 0.989812i \(0.545475\pi\)
\(284\) 15.0698 + 0.273662i 0.894227 + 0.0162388i
\(285\) 0 0
\(286\) 0.609688 + 0.620860i 0.0360516 + 0.0367122i
\(287\) 11.4660 0.676817
\(288\) 0 0
\(289\) −0.972286 −0.0571933
\(290\) 8.07580 + 8.22378i 0.474227 + 0.482917i
\(291\) 0 0
\(292\) 6.45186 + 0.117163i 0.377566 + 0.00685646i
\(293\) −29.7073 + 7.96005i −1.73552 + 0.465031i −0.981443 0.191756i \(-0.938582\pi\)
−0.754077 + 0.656787i \(0.771915\pi\)
\(294\) 0 0
\(295\) −10.6924 18.5197i −0.622533 1.07826i
\(296\) 0.290375 10.6586i 0.0168777 0.619520i
\(297\) 0 0
\(298\) 27.2143 + 16.0434i 1.57648 + 0.929368i
\(299\) 10.4522 + 2.80065i 0.604463 + 0.161965i
\(300\) 0 0
\(301\) 15.7800 4.22825i 0.909546 0.243712i
\(302\) 7.54936 27.1849i 0.434417 1.56432i
\(303\) 0 0
\(304\) 4.65481 4.32844i 0.266972 0.248253i
\(305\) 34.8187i 1.99371i
\(306\) 0 0
\(307\) 23.8109 23.8109i 1.35896 1.35896i 0.483758 0.875202i \(-0.339272\pi\)
0.875202 0.483758i \(-0.160728\pi\)
\(308\) −1.42948 + 0.355341i −0.0814523 + 0.0202474i
\(309\) 0 0
\(310\) −22.4063 39.6356i −1.27259 2.25115i
\(311\) 9.20941 + 5.31706i 0.522218 + 0.301503i 0.737842 0.674974i \(-0.235845\pi\)
−0.215624 + 0.976477i \(0.569178\pi\)
\(312\) 0 0
\(313\) −16.4634 + 9.50514i −0.930565 + 0.537262i −0.886990 0.461788i \(-0.847208\pi\)
−0.0435750 + 0.999050i \(0.513875\pi\)
\(314\) −18.1548 10.7026i −1.02453 0.603982i
\(315\) 0 0
\(316\) 5.57519 + 10.0746i 0.313629 + 0.566742i
\(317\) 11.8751 + 3.18193i 0.666972 + 0.178715i 0.576391 0.817174i \(-0.304461\pi\)
0.0905818 + 0.995889i \(0.471127\pi\)
\(318\) 0 0
\(319\) 0.399628 + 0.230725i 0.0223749 + 0.0129181i
\(320\) 6.36631 + 30.2654i 0.355887 + 1.69189i
\(321\) 0 0
\(322\) −13.0693 + 12.8341i −0.728322 + 0.715216i
\(323\) −4.76356 4.76356i −0.265052 0.265052i
\(324\) 0 0
\(325\) −19.7692 + 19.7692i −1.09660 + 1.09660i
\(326\) −8.71496 0.0791237i −0.482677 0.00438226i
\(327\) 0 0
\(328\) −2.24015 9.37453i −0.123692 0.517622i
\(329\) 7.90701 13.6953i 0.435928 0.755049i
\(330\) 0 0
\(331\) −8.94844 + 33.3960i −0.491851 + 1.83561i 0.0551468 + 0.998478i \(0.482437\pi\)
−0.546998 + 0.837134i \(0.684229\pi\)
\(332\) −8.96675 2.57801i −0.492114 0.141487i
\(333\) 0 0
\(334\) 4.85696 + 18.8078i 0.265761 + 1.02912i
\(335\) −10.3561 17.9374i −0.565817 0.980023i
\(336\) 0 0
\(337\) −14.3693 + 24.8884i −0.782746 + 1.35576i 0.147591 + 0.989049i \(0.452848\pi\)
−0.930336 + 0.366707i \(0.880485\pi\)
\(338\) −6.94685 1.92917i −0.377859 0.104933i
\(339\) 0 0
\(340\) 31.8105 7.90745i 1.72517 0.428842i
\(341\) −1.28894 1.28894i −0.0698001 0.0698001i
\(342\) 0 0
\(343\) −9.01293 −0.486653
\(344\) −6.53999 12.0756i −0.352612 0.651071i
\(345\) 0 0
\(346\) −3.77793 6.68297i −0.203103 0.359278i
\(347\) 2.92992 + 10.9346i 0.157287 + 0.587002i 0.998899 + 0.0469191i \(0.0149403\pi\)
−0.841612 + 0.540082i \(0.818393\pi\)
\(348\) 0 0
\(349\) −2.90715 + 10.8496i −0.155616 + 0.580767i 0.843436 + 0.537230i \(0.180529\pi\)
−0.999052 + 0.0435372i \(0.986137\pi\)
\(350\) −11.8334 45.8228i −0.632520 2.44933i
\(351\) 0 0
\(352\) 0.569807 + 1.09931i 0.0303708 + 0.0585935i
\(353\) −1.85946 + 1.07356i −0.0989689 + 0.0571397i −0.548668 0.836041i \(-0.684865\pi\)
0.449699 + 0.893180i \(0.351531\pi\)
\(354\) 0 0
\(355\) 7.54056 + 28.1417i 0.400211 + 1.49361i
\(356\) 0.107544 5.92216i 0.00569983 0.313874i
\(357\) 0 0
\(358\) −0.00690217 + 0.760229i −0.000364791 + 0.0401793i
\(359\) 11.0166i 0.581435i 0.956809 + 0.290718i \(0.0938941\pi\)
−0.956809 + 0.290718i \(0.906106\pi\)
\(360\) 0 0
\(361\) 16.4748i 0.867097i
\(362\) −9.97944 0.0906039i −0.524508 0.00476204i
\(363\) 0 0
\(364\) −13.6168 + 13.1311i −0.713714 + 0.688255i
\(365\) 3.22835 + 12.0484i 0.168980 + 0.630641i
\(366\) 0 0
\(367\) 20.1365 11.6258i 1.05112 0.606863i 0.128156 0.991754i \(-0.459094\pi\)
0.922962 + 0.384891i \(0.125761\pi\)
\(368\) 13.0465 + 8.17791i 0.680094 + 0.426303i
\(369\) 0 0
\(370\) 19.9559 5.15345i 1.03746 0.267915i
\(371\) −9.33867 + 34.8524i −0.484839 + 1.80945i
\(372\) 0 0
\(373\) −2.66079 9.93021i −0.137771 0.514167i −0.999971 0.00759967i \(-0.997581\pi\)
0.862201 0.506567i \(-0.169086\pi\)
\(374\) 1.14240 0.645810i 0.0590723 0.0333940i
\(375\) 0 0
\(376\) −12.7420 3.78901i −0.657121 0.195404i
\(377\) 5.92615 0.305212
\(378\) 0 0
\(379\) −6.14819 6.14819i −0.315811 0.315811i 0.531345 0.847156i \(-0.321687\pi\)
−0.847156 + 0.531345i \(0.821687\pi\)
\(380\) 10.5273 + 6.33551i 0.540037 + 0.325005i
\(381\) 0 0
\(382\) 4.09105 14.7317i 0.209316 0.753740i
\(383\) −1.40170 + 2.42782i −0.0716238 + 0.124056i −0.899613 0.436688i \(-0.856151\pi\)
0.827989 + 0.560744i \(0.189485\pi\)
\(384\) 0 0
\(385\) −1.42363 2.46580i −0.0725548 0.125669i
\(386\) 7.12153 1.83908i 0.362476 0.0936066i
\(387\) 0 0
\(388\) 26.7347 14.7947i 1.35725 0.751086i
\(389\) −7.82350 + 29.1977i −0.396667 + 1.48038i 0.422255 + 0.906477i \(0.361239\pi\)
−0.818922 + 0.573905i \(0.805428\pi\)
\(390\) 0 0
\(391\) 8.15956 14.1328i 0.412647 0.714725i
\(392\) −2.84075 11.8879i −0.143480 0.600430i
\(393\) 0 0
\(394\) 0.0534825 5.89075i 0.00269441 0.296772i
\(395\) −15.7382 + 15.7382i −0.791873 + 0.791873i
\(396\) 0 0
\(397\) 1.95789 + 1.95789i 0.0982636 + 0.0982636i 0.754530 0.656266i \(-0.227865\pi\)
−0.656266 + 0.754530i \(0.727865\pi\)
\(398\) 2.54938 + 2.59610i 0.127789 + 0.130131i
\(399\) 0 0
\(400\) −35.1525 + 18.6274i −1.75762 + 0.931372i
\(401\) 28.7356 + 16.5905i 1.43499 + 0.828489i 0.997495 0.0707337i \(-0.0225340\pi\)
0.437490 + 0.899223i \(0.355867\pi\)
\(402\) 0 0
\(403\) −22.6120 6.05887i −1.12638 0.301814i
\(404\) −0.258063 0.0741950i −0.0128391 0.00369134i
\(405\) 0 0
\(406\) −5.09446 + 8.64172i −0.252834 + 0.428881i
\(407\) 0.714607 0.412578i 0.0354217 0.0204508i
\(408\) 0 0
\(409\) 22.8959 + 13.2190i 1.13213 + 0.653636i 0.944470 0.328598i \(-0.106576\pi\)
0.187660 + 0.982234i \(0.439910\pi\)
\(410\) 16.2188 9.16864i 0.800991 0.452807i
\(411\) 0 0
\(412\) −14.0213 8.43831i −0.690781 0.415725i
\(413\) 13.1607 13.1607i 0.647596 0.647596i
\(414\) 0 0
\(415\) 18.0347i 0.885290i
\(416\) 13.3962 + 8.56755i 0.656805 + 0.420059i
\(417\) 0 0
\(418\) 0.473966 + 0.131622i 0.0231824 + 0.00643785i
\(419\) 0.499479 0.133835i 0.0244012 0.00653827i −0.246598 0.969118i \(-0.579313\pi\)
0.270999 + 0.962580i \(0.412646\pi\)
\(420\) 0 0
\(421\) 12.8514 + 3.44352i 0.626339 + 0.167827i 0.558008 0.829836i \(-0.311566\pi\)
0.0683313 + 0.997663i \(0.478233\pi\)
\(422\) 13.0638 22.1601i 0.635938 1.07874i
\(423\) 0 0
\(424\) 30.3196 + 0.826002i 1.47245 + 0.0401142i
\(425\) 21.0818 + 36.5148i 1.02262 + 1.77123i
\(426\) 0 0
\(427\) 29.2717 7.84332i 1.41655 0.379565i
\(428\) 16.2730 + 16.8750i 0.786586 + 0.815683i
\(429\) 0 0
\(430\) 18.9400 18.5992i 0.913370 0.896934i
\(431\) 8.61129 0.414791 0.207396 0.978257i \(-0.433501\pi\)
0.207396 + 0.978257i \(0.433501\pi\)
\(432\) 0 0
\(433\) 6.43973 0.309474 0.154737 0.987956i \(-0.450547\pi\)
0.154737 + 0.987956i \(0.450547\pi\)
\(434\) 28.2738 27.7651i 1.35719 1.33277i
\(435\) 0 0
\(436\) −12.8530 + 12.3945i −0.615546 + 0.593588i
\(437\) 5.90859 1.58320i 0.282646 0.0757348i
\(438\) 0 0
\(439\) 14.4510 + 25.0298i 0.689707 + 1.19461i 0.971933 + 0.235260i \(0.0755941\pi\)
−0.282225 + 0.959348i \(0.591073\pi\)
\(440\) −1.73788 + 1.64570i −0.0828502 + 0.0784557i
\(441\) 0 0
\(442\) 8.55878 14.5182i 0.407100 0.690562i
\(443\) 31.1860 + 8.35627i 1.48169 + 0.397018i 0.906923 0.421297i \(-0.138425\pi\)
0.574770 + 0.818315i \(0.305092\pi\)
\(444\) 0 0
\(445\) 11.0592 2.96330i 0.524257 0.140474i
\(446\) −4.43805 1.23246i −0.210148 0.0583588i
\(447\) 0 0
\(448\) −24.0097 + 12.1697i −1.13435 + 0.574964i
\(449\) 10.7097i 0.505423i 0.967542 + 0.252711i \(0.0813223\pi\)
−0.967542 + 0.252711i \(0.918678\pi\)
\(450\) 0 0
\(451\) 0.527433 0.527433i 0.0248359 0.0248359i
\(452\) 17.4530 29.0004i 0.820920 1.36406i
\(453\) 0 0
\(454\) 11.2572 6.36381i 0.528329 0.298668i
\(455\) −31.6669 18.2829i −1.48457 0.857114i
\(456\) 0 0
\(457\) 13.1358 7.58393i 0.614465 0.354761i −0.160246 0.987077i \(-0.551229\pi\)
0.774711 + 0.632316i \(0.217895\pi\)
\(458\) −3.77532 + 6.40406i −0.176409 + 0.299242i
\(459\) 0 0
\(460\) −8.22407 + 28.6047i −0.383449 + 1.33370i
\(461\) 11.5696 + 3.10006i 0.538849 + 0.144384i 0.517971 0.855398i \(-0.326687\pi\)
0.0208774 + 0.999782i \(0.493354\pi\)
\(462\) 0 0
\(463\) −2.03363 1.17412i −0.0945107 0.0545658i 0.452000 0.892018i \(-0.350711\pi\)
−0.546510 + 0.837452i \(0.684044\pi\)
\(464\) 8.06073 + 2.47684i 0.374210 + 0.114984i
\(465\) 0 0
\(466\) 14.0215 + 14.2784i 0.649534 + 0.661436i
\(467\) −24.1509 24.1509i −1.11757 1.11757i −0.992097 0.125473i \(-0.959955\pi\)
−0.125473 0.992097i \(-0.540045\pi\)
\(468\) 0 0
\(469\) 12.7469 12.7469i 0.588596 0.588596i
\(470\) 0.233287 25.6950i 0.0107607 1.18522i
\(471\) 0 0
\(472\) −13.3314 8.18886i −0.613626 0.376923i
\(473\) 0.531379 0.920376i 0.0244328 0.0423189i
\(474\) 0 0
\(475\) −4.09051 + 15.2660i −0.187685 + 0.700452i
\(476\) 13.8134 + 24.9614i 0.633135 + 1.14410i
\(477\) 0 0
\(478\) −20.5814 + 5.31499i −0.941373 + 0.243102i
\(479\) 2.40917 + 4.17281i 0.110078 + 0.190660i 0.915801 0.401631i \(-0.131557\pi\)
−0.805724 + 0.592292i \(0.798223\pi\)
\(480\) 0 0
\(481\) 5.29851 9.17730i 0.241591 0.418449i
\(482\) −5.44096 + 19.5927i −0.247829 + 0.892422i
\(483\) 0 0
\(484\) 11.2947 18.7676i 0.513396 0.853072i
\(485\) 41.7638 + 41.7638i 1.89640 + 1.89640i
\(486\) 0 0
\(487\) 37.5042 1.69948 0.849739 0.527204i \(-0.176760\pi\)
0.849739 + 0.527204i \(0.176760\pi\)
\(488\) −12.1315 22.3999i −0.549169 1.01400i
\(489\) 0 0
\(490\) 20.5672 11.6268i 0.929132 0.525246i
\(491\) 0.504576 + 1.88310i 0.0227712 + 0.0849832i 0.976376 0.216077i \(-0.0693262\pi\)
−0.953605 + 0.301060i \(0.902660\pi\)
\(492\) 0 0
\(493\) 2.31315 8.63279i 0.104179 0.388801i
\(494\) 6.11657 1.57955i 0.275198 0.0710675i
\(495\) 0 0
\(496\) −28.2245 17.6920i −1.26732 0.794392i
\(497\) −21.9598 + 12.6785i −0.985032 + 0.568708i
\(498\) 0 0
\(499\) −2.91509 10.8793i −0.130497 0.487023i 0.869478 0.493971i \(-0.164455\pi\)
−0.999976 + 0.00694794i \(0.997788\pi\)
\(500\) −26.5444 27.5263i −1.18710 1.23101i
\(501\) 0 0
\(502\) −7.19487 0.0653226i −0.321123 0.00291549i
\(503\) 15.3339i 0.683706i −0.939753 0.341853i \(-0.888945\pi\)
0.939753 0.341853i \(-0.111055\pi\)
\(504\) 0 0
\(505\) 0.519039i 0.0230969i
\(506\) −0.0108181 + 1.19155i −0.000480925 + 0.0529708i
\(507\) 0 0
\(508\) −26.8012 0.486700i −1.18911 0.0215938i
\(509\) −8.59758 32.0866i −0.381081 1.42221i −0.844253 0.535945i \(-0.819955\pi\)
0.463172 0.886269i \(-0.346711\pi\)
\(510\) 0 0
\(511\) −9.40169 + 5.42807i −0.415906 + 0.240124i
\(512\) 14.6407 + 17.2525i 0.647035 + 0.762461i
\(513\) 0 0
\(514\) 2.01151 + 7.78924i 0.0887238 + 0.343568i
\(515\) 8.18713 30.5548i 0.360768 1.34641i
\(516\) 0 0
\(517\) −0.266262 0.993703i −0.0117102 0.0437030i
\(518\) 8.82774 + 15.6158i 0.387869 + 0.686119i
\(519\) 0 0
\(520\) −8.76109 + 29.4626i −0.384199 + 1.29202i
\(521\) −20.5032 −0.898262 −0.449131 0.893466i \(-0.648266\pi\)
−0.449131 + 0.893466i \(0.648266\pi\)
\(522\) 0 0
\(523\) −29.2406 29.2406i −1.27860 1.27860i −0.941451 0.337151i \(-0.890537\pi\)
−0.337151 0.941451i \(-0.609463\pi\)
\(524\) −0.316036 1.27136i −0.0138061 0.0555398i
\(525\) 0 0
\(526\) −29.6425 8.23184i −1.29247 0.358925i
\(527\) −17.6523 + 30.5746i −0.768944 + 1.33185i
\(528\) 0 0
\(529\) −4.09099 7.08581i −0.177869 0.308079i
\(530\) 14.6596 + 56.7668i 0.636771 + 2.46579i
\(531\) 0 0
\(532\) −2.95479 + 10.2773i −0.128107 + 0.445576i
\(533\) 2.47928 9.25281i 0.107390 0.400784i
\(534\) 0 0
\(535\) −22.6575 + 39.2440i −0.979570 + 1.69667i
\(536\) −12.9122 7.93136i −0.557720 0.342583i
\(537\) 0 0
\(538\) −14.8687 0.134994i −0.641036 0.00582001i
\(539\) 0.668841 0.668841i 0.0288090 0.0288090i
\(540\) 0 0
\(541\) 20.5836 + 20.5836i 0.884956 + 0.884956i 0.994033 0.109077i \(-0.0347895\pi\)
−0.109077 + 0.994033i \(0.534790\pi\)
\(542\) −11.9949 + 11.7790i −0.515224 + 0.505953i
\(543\) 0 0
\(544\) 17.7095 16.1705i 0.759290 0.693305i
\(545\) −29.8905 17.2573i −1.28037 0.739221i
\(546\) 0 0
\(547\) −38.0779 10.2029i −1.62809 0.436246i −0.674728 0.738067i \(-0.735739\pi\)
−0.953365 + 0.301821i \(0.902406\pi\)
\(548\) −36.8287 + 20.3806i −1.57324 + 0.870616i
\(549\) 0 0
\(550\) −2.65217 1.56350i −0.113089 0.0666680i
\(551\) 2.90122 1.67502i 0.123596 0.0713584i
\(552\) 0 0
\(553\) −16.7761 9.68566i −0.713391 0.411876i
\(554\) −7.21093 12.7558i −0.306363 0.541940i
\(555\) 0 0
\(556\) 3.21876 + 12.9486i 0.136506 + 0.549142i
\(557\) −1.52288 + 1.52288i −0.0645265 + 0.0645265i −0.738634 0.674107i \(-0.764529\pi\)
0.674107 + 0.738634i \(0.264529\pi\)
\(558\) 0 0
\(559\) 13.6484i 0.577266i
\(560\) −35.4318 38.1035i −1.49727 1.61017i
\(561\) 0 0
\(562\) 5.34038 19.2305i 0.225270 0.811189i
\(563\) 4.85715 1.30147i 0.204705 0.0548504i −0.155010 0.987913i \(-0.549541\pi\)
0.359714 + 0.933063i \(0.382874\pi\)
\(564\) 0 0
\(565\) 63.1966 + 16.9335i 2.65870 + 0.712397i
\(566\) −16.1378 9.51354i −0.678322 0.399884i
\(567\) 0 0
\(568\) 14.6562 + 15.4771i 0.614961 + 0.649407i
\(569\) −17.4710 30.2606i −0.732421 1.26859i −0.955846 0.293869i \(-0.905057\pi\)
0.223425 0.974721i \(-0.428276\pi\)
\(570\) 0 0
\(571\) 34.1869 9.16034i 1.43068 0.383348i 0.541417 0.840754i \(-0.317888\pi\)
0.889258 + 0.457406i \(0.151221\pi\)
\(572\) −0.0223435 + 1.23040i −0.000934229 + 0.0514454i
\(573\) 0 0
\(574\) 11.3614 + 11.5696i 0.474217 + 0.482907i
\(575\) −38.2852 −1.59660
\(576\) 0 0
\(577\) −17.4865 −0.727972 −0.363986 0.931404i \(-0.618584\pi\)
−0.363986 + 0.931404i \(0.618584\pi\)
\(578\) −0.963419 0.981073i −0.0400730 0.0408073i
\(579\) 0 0
\(580\) −0.295958 + 16.2976i −0.0122890 + 0.676719i
\(581\) 15.1616 4.06253i 0.629008 0.168542i
\(582\) 0 0
\(583\) 1.17362 + 2.03278i 0.0486065 + 0.0841890i
\(584\) 6.27479 + 6.62626i 0.259653 + 0.274197i
\(585\) 0 0
\(586\) −37.4684 22.0883i −1.54780 0.912461i
\(587\) −12.3561 3.31081i −0.509991 0.136652i −0.00535825 0.999986i \(-0.501706\pi\)
−0.504633 + 0.863334i \(0.668372\pi\)
\(588\) 0 0
\(589\) −12.7825 + 3.42507i −0.526696 + 0.141128i
\(590\) 8.09224 29.1398i 0.333152 1.19967i
\(591\) 0 0
\(592\) 11.0427 10.2684i 0.453851 0.422029i
\(593\) 25.7816i 1.05872i 0.848397 + 0.529361i \(0.177568\pi\)
−0.848397 + 0.529361i \(0.822432\pi\)
\(594\) 0 0
\(595\) −38.9937 + 38.9937i −1.59858 + 1.59858i
\(596\) 10.7778 + 43.3574i 0.441475 + 1.77599i
\(597\) 0 0
\(598\) 7.53087 + 13.3217i 0.307960 + 0.544765i
\(599\) 27.3647 + 15.7990i 1.11809 + 0.645531i 0.940913 0.338647i \(-0.109969\pi\)
0.177180 + 0.984179i \(0.443303\pi\)
\(600\) 0 0
\(601\) −23.3729 + 13.4944i −0.953401 + 0.550447i −0.894136 0.447796i \(-0.852209\pi\)
−0.0592656 + 0.998242i \(0.518876\pi\)
\(602\) 19.9026 + 11.7330i 0.811169 + 0.478200i
\(603\) 0 0
\(604\) 34.9111 19.3194i 1.42051 0.786097i
\(605\) 40.8977 + 10.9585i 1.66273 + 0.445527i
\(606\) 0 0
\(607\) 21.2314 + 12.2579i 0.861755 + 0.497534i 0.864600 0.502462i \(-0.167572\pi\)
−0.00284471 + 0.999996i \(0.500905\pi\)
\(608\) 8.97992 + 0.407915i 0.364184 + 0.0165431i
\(609\) 0 0
\(610\) 35.1334 34.5012i 1.42251 1.39691i
\(611\) −9.34212 9.34212i −0.377942 0.377942i
\(612\) 0 0
\(613\) −30.3894 + 30.3894i −1.22742 + 1.22742i −0.262481 + 0.964937i \(0.584541\pi\)
−0.964937 + 0.262481i \(0.915459\pi\)
\(614\) 47.6198 + 0.432343i 1.92178 + 0.0174480i
\(615\) 0 0
\(616\) −1.77500 1.09030i −0.0715167 0.0439295i
\(617\) −15.8393 + 27.4345i −0.637668 + 1.10447i 0.348275 + 0.937392i \(0.386767\pi\)
−0.985943 + 0.167081i \(0.946566\pi\)
\(618\) 0 0
\(619\) 5.39413 20.1312i 0.216809 0.809141i −0.768713 0.639593i \(-0.779103\pi\)
0.985522 0.169547i \(-0.0542305\pi\)
\(620\) 17.7918 61.8829i 0.714537 2.48528i
\(621\) 0 0
\(622\) 3.76031 + 14.5612i 0.150775 + 0.583851i
\(623\) 4.98242 + 8.62981i 0.199617 + 0.345746i
\(624\) 0 0
\(625\) 12.0944 20.9481i 0.483775 0.837923i
\(626\) −25.9043 7.19372i −1.03534 0.287519i
\(627\) 0 0
\(628\) −7.18989 28.9238i −0.286908 1.15419i
\(629\) −11.3007 11.3007i −0.450587 0.450587i
\(630\) 0 0
\(631\) −19.9953 −0.796002 −0.398001 0.917385i \(-0.630296\pi\)
−0.398001 + 0.917385i \(0.630296\pi\)
\(632\) −4.64134 + 15.6083i −0.184623 + 0.620866i
\(633\) 0 0
\(634\) 8.55612 + 15.1353i 0.339807 + 0.601101i
\(635\) −13.4107 50.0494i −0.532187 1.98615i
\(636\) 0 0
\(637\) 3.14400 11.7335i 0.124570 0.464900i
\(638\) 0.163173 + 0.631861i 0.00646008 + 0.0250156i
\(639\) 0 0
\(640\) −24.2307 + 36.4133i −0.957803 + 1.43936i
\(641\) −12.6976 + 7.33098i −0.501526 + 0.289556i −0.729344 0.684148i \(-0.760174\pi\)
0.227818 + 0.973704i \(0.426841\pi\)
\(642\) 0 0
\(643\) −3.45056 12.8777i −0.136077 0.507846i −0.999991 0.00420705i \(-0.998661\pi\)
0.863914 0.503639i \(-0.168006\pi\)
\(644\) −25.9002 0.470337i −1.02061 0.0185339i
\(645\) 0 0
\(646\) 0.0864938 9.52673i 0.00340305 0.374824i
\(647\) 30.5078i 1.19939i 0.800231 + 0.599693i \(0.204710\pi\)
−0.800231 + 0.599693i \(0.795290\pi\)
\(648\) 0 0
\(649\) 1.21078i 0.0475272i
\(650\) −39.5367 0.358956i −1.55076 0.0140794i
\(651\) 0 0
\(652\) −8.55564 8.87212i −0.335065 0.347459i
\(653\) −5.39824 20.1465i −0.211249 0.788394i −0.987453 0.157912i \(-0.949524\pi\)
0.776204 0.630482i \(-0.217143\pi\)
\(654\) 0 0
\(655\) 2.19305 1.26616i 0.0856896 0.0494729i
\(656\) 7.23953 11.5494i 0.282656 0.450930i
\(657\) 0 0
\(658\) 21.6540 5.59198i 0.844162 0.217998i
\(659\) 3.90477 14.5728i 0.152108 0.567676i −0.847227 0.531230i \(-0.821730\pi\)
0.999336 0.0364452i \(-0.0116034\pi\)
\(660\) 0 0
\(661\) 2.44325 + 9.11835i 0.0950316 + 0.354663i 0.997024 0.0770887i \(-0.0245625\pi\)
−0.901993 + 0.431751i \(0.857896\pi\)
\(662\) −42.5647 + 24.0622i −1.65432 + 0.935202i
\(663\) 0 0
\(664\) −6.28366 11.6023i −0.243853 0.450256i
\(665\) −20.6706 −0.801570
\(666\) 0 0
\(667\) 5.73833 + 5.73833i 0.222189 + 0.222189i
\(668\) −14.1651 + 23.5371i −0.548064 + 0.910678i
\(669\) 0 0
\(670\) 7.83778 28.2235i 0.302800 1.09037i
\(671\) 0.985698 1.70728i 0.0380525 0.0659088i
\(672\) 0 0
\(673\) −16.1140 27.9103i −0.621149 1.07586i −0.989272 0.146085i \(-0.953333\pi\)
0.368123 0.929777i \(-0.380001\pi\)
\(674\) −39.3516 + 10.1622i −1.51577 + 0.391434i
\(675\) 0 0
\(676\) −4.93689 8.92120i −0.189880 0.343123i
\(677\) 4.16296 15.5364i 0.159996 0.597111i −0.838630 0.544701i \(-0.816643\pi\)
0.998626 0.0524101i \(-0.0166903\pi\)
\(678\) 0 0
\(679\) −25.7025 + 44.5181i −0.986372 + 1.70845i
\(680\) 39.4993 + 24.2626i 1.51473 + 0.930430i
\(681\) 0 0
\(682\) 0.0234038 2.57778i 0.000896177 0.0987081i
\(683\) 28.6734 28.6734i 1.09716 1.09716i 0.102416 0.994742i \(-0.467343\pi\)
0.994742 0.102416i \(-0.0326571\pi\)
\(684\) 0 0
\(685\) −57.5322 57.5322i −2.19819 2.19819i
\(686\) −8.93074 9.09439i −0.340977 0.347225i
\(687\) 0 0
\(688\) 5.70435 18.5645i 0.217476 0.707766i
\(689\) 26.1058 + 15.0722i 0.994552 + 0.574205i
\(690\) 0 0
\(691\) 44.0504 + 11.8033i 1.67575 + 0.449017i 0.966653 0.256089i \(-0.0824340\pi\)
0.709102 + 0.705106i \(0.249101\pi\)
\(692\) 2.99988 10.4341i 0.114038 0.396645i
\(693\) 0 0
\(694\) −8.13025 + 13.7913i −0.308620 + 0.523511i
\(695\) −22.3358 + 12.8956i −0.847243 + 0.489156i
\(696\) 0 0
\(697\) −12.5111 7.22328i −0.473892 0.273601i
\(698\) −13.8283 + 7.81726i −0.523410 + 0.295888i
\(699\) 0 0
\(700\) 34.5115 57.3452i 1.30441 2.16744i
\(701\) 13.0178 13.0178i 0.491676 0.491676i −0.417158 0.908834i \(-0.636974\pi\)
0.908834 + 0.417158i \(0.136974\pi\)
\(702\) 0 0
\(703\) 5.99049i 0.225935i
\(704\) −0.544635 + 1.66424i −0.0205267 + 0.0627235i
\(705\) 0 0
\(706\) −2.92576 0.812494i −0.110112 0.0305786i
\(707\) 0.436349 0.116919i 0.0164106 0.00439721i
\(708\) 0 0
\(709\) −16.3841 4.39011i −0.615319 0.164874i −0.0623199 0.998056i \(-0.519850\pi\)
−0.552999 + 0.833182i \(0.686517\pi\)
\(710\) −20.9243 + 35.4938i −0.785274 + 1.33206i
\(711\) 0 0
\(712\) 6.08224 5.75963i 0.227942 0.215851i
\(713\) −16.0285 27.7622i −0.600273 1.03970i
\(714\) 0 0
\(715\) −2.29767 + 0.615660i −0.0859282 + 0.0230244i
\(716\) −0.773939 + 0.746331i −0.0289234 + 0.0278917i
\(717\) 0 0
\(718\) −11.1162 + 10.9162i −0.414853 + 0.407387i
\(719\) 43.0731 1.60635 0.803177 0.595740i \(-0.203141\pi\)
0.803177 + 0.595740i \(0.203141\pi\)
\(720\) 0 0
\(721\) 27.5313 1.02532
\(722\) −16.6237 + 16.3246i −0.618671 + 0.607538i
\(723\) 0 0
\(724\) −9.79700 10.1594i −0.364103 0.377571i
\(725\) −20.2528 + 5.42673i −0.752171 + 0.201544i
\(726\) 0 0
\(727\) 15.3101 + 26.5179i 0.567821 + 0.983495i 0.996781 + 0.0801716i \(0.0255468\pi\)
−0.428960 + 0.903324i \(0.641120\pi\)
\(728\) −26.7424 0.728547i −0.991138 0.0270017i
\(729\) 0 0
\(730\) −8.95835 + 15.1960i −0.331563 + 0.562430i
\(731\) −19.8820 5.32737i −0.735363 0.197040i
\(732\) 0 0
\(733\) −2.53658 + 0.679676i −0.0936909 + 0.0251044i −0.305360 0.952237i \(-0.598777\pi\)
0.211669 + 0.977341i \(0.432110\pi\)
\(734\) 31.6838 + 8.79870i 1.16947 + 0.324766i
\(735\) 0 0
\(736\) 4.67566 + 21.2677i 0.172347 + 0.783937i
\(737\) 1.17271i 0.0431972i
\(738\) 0 0
\(739\) 13.1402 13.1402i 0.483370 0.483370i −0.422836 0.906206i \(-0.638965\pi\)
0.906206 + 0.422836i \(0.138965\pi\)
\(740\) 24.9739 + 15.0298i 0.918061 + 0.552507i
\(741\) 0 0
\(742\) −44.4209 + 25.1115i −1.63074 + 0.921871i
\(743\) 1.79055 + 1.03378i 0.0656890 + 0.0379255i 0.532485 0.846440i \(-0.321258\pi\)
−0.466796 + 0.884365i \(0.654592\pi\)
\(744\) 0 0
\(745\) −74.7897 + 43.1798i −2.74008 + 1.58199i
\(746\) 7.38343 12.5245i 0.270327 0.458554i
\(747\) 0 0
\(748\) 1.78363 + 0.512808i 0.0652160 + 0.0187501i
\(749\) −38.0958 10.2077i −1.39199 0.372982i
\(750\) 0 0
\(751\) 7.86676 + 4.54188i 0.287062 + 0.165735i 0.636616 0.771181i \(-0.280334\pi\)
−0.349554 + 0.936916i \(0.613667\pi\)
\(752\) −8.80258 16.6117i −0.320997 0.605765i
\(753\) 0 0
\(754\) 5.87211 + 5.97971i 0.213849 + 0.217768i
\(755\) 54.5367 + 54.5367i 1.98479 + 1.98479i
\(756\) 0 0
\(757\) 18.3910 18.3910i 0.668433 0.668433i −0.288920 0.957353i \(-0.593296\pi\)
0.957353 + 0.288920i \(0.0932961\pi\)
\(758\) 0.111635 12.2959i 0.00405476 0.446606i
\(759\) 0 0
\(760\) 4.03848 + 16.9001i 0.146491 + 0.613032i
\(761\) −14.1080 + 24.4358i −0.511415 + 0.885797i 0.488497 + 0.872565i \(0.337545\pi\)
−0.999912 + 0.0132318i \(0.995788\pi\)
\(762\) 0 0
\(763\) 7.77481 29.0160i 0.281467 1.05045i
\(764\) 18.9186 10.4693i 0.684451 0.378767i
\(765\) 0 0
\(766\) −3.83869 + 0.991310i −0.138697 + 0.0358175i
\(767\) −7.77467 13.4661i −0.280727 0.486234i
\(768\) 0 0
\(769\) −14.6064 + 25.2991i −0.526722 + 0.912309i 0.472794 + 0.881173i \(0.343246\pi\)
−0.999515 + 0.0311354i \(0.990088\pi\)
\(770\) 1.07744 3.87980i 0.0388281 0.139818i
\(771\) 0 0
\(772\) 8.91228 + 5.36358i 0.320760 + 0.193040i
\(773\) −10.5491 10.5491i −0.379425 0.379425i 0.491470 0.870895i \(-0.336460\pi\)
−0.870895 + 0.491470i \(0.836460\pi\)
\(774\) 0 0
\(775\) 82.8256 2.97518
\(776\) 41.4193 + 12.3166i 1.48687 + 0.442139i
\(777\) 0 0
\(778\) −37.2137 + 21.0372i −1.33418 + 0.754220i
\(779\) −1.40154 5.23060i −0.0502152 0.187406i
\(780\) 0 0
\(781\) −0.426938 + 1.59335i −0.0152770 + 0.0570146i
\(782\) 22.3456 5.77058i 0.799078 0.206356i
\(783\) 0 0
\(784\) 9.18049 14.6459i 0.327875 0.523068i
\(785\) 49.8924 28.8054i 1.78074 1.02811i
\(786\) 0 0
\(787\) −9.05729 33.8023i −0.322857 1.20492i −0.916448 0.400153i \(-0.868957\pi\)
0.593591 0.804767i \(-0.297710\pi\)
\(788\) 5.99698 5.78306i 0.213634 0.206013i
\(789\) 0 0
\(790\) −31.4750 0.285764i −1.11983 0.0101670i
\(791\) 56.9431i 2.02466i
\(792\) 0 0
\(793\) 25.3175i 0.899052i
\(794\) −0.0355501 + 3.91561i −0.00126163 + 0.138960i
\(795\) 0 0
\(796\) −0.0934284 + 5.14484i −0.00331148 + 0.182354i
\(797\) 7.41329 + 27.6668i 0.262592 + 0.980007i 0.963708 + 0.266959i \(0.0860190\pi\)
−0.701116 + 0.713048i \(0.747314\pi\)
\(798\) 0 0
\(799\) −17.2554 + 9.96243i −0.610453 + 0.352445i
\(800\) −53.6277 17.0126i −1.89602 0.601487i
\(801\) 0 0
\(802\) 11.7331 + 45.4344i 0.414309 + 1.60435i
\(803\) −0.182786 + 0.682165i −0.00645036 + 0.0240731i
\(804\) 0 0
\(805\) −12.9598 48.3667i −0.456773 1.70470i
\(806\) −16.2922 28.8200i −0.573867 1.01514i
\(807\) 0 0
\(808\) −0.180844 0.333913i −0.00636205 0.0117470i
\(809\) −39.9831 −1.40573 −0.702865 0.711323i \(-0.748096\pi\)
−0.702865 + 0.711323i \(0.748096\pi\)
\(810\) 0 0
\(811\) −33.5121 33.5121i −1.17677 1.17677i −0.980563 0.196204i \(-0.937138\pi\)
−0.196204 0.980563i \(-0.562862\pi\)
\(812\) −13.7678 + 3.42240i −0.483156 + 0.120103i
\(813\) 0 0
\(814\) 1.12440 + 0.312249i 0.0394101 + 0.0109443i
\(815\) 11.9123 20.6328i 0.417271 0.722734i
\(816\) 0 0
\(817\) −3.85771 6.68176i −0.134964 0.233765i
\(818\) 9.34868 + 36.2012i 0.326869 + 1.26575i
\(819\) 0 0
\(820\) 25.3224 + 7.28039i 0.884297 + 0.254242i
\(821\) 2.91908 10.8942i 0.101877 0.380209i −0.896096 0.443861i \(-0.853608\pi\)
0.997972 + 0.0636527i \(0.0202750\pi\)
\(822\) 0 0
\(823\) 27.4702 47.5798i 0.957551 1.65853i 0.229131 0.973396i \(-0.426412\pi\)
0.728420 0.685131i \(-0.240255\pi\)
\(824\) −5.37888 22.5094i −0.187382 0.784152i
\(825\) 0 0
\(826\) 26.3203 + 0.238964i 0.915801 + 0.00831462i
\(827\) 14.2104 14.2104i 0.494144 0.494144i −0.415465 0.909609i \(-0.636381\pi\)
0.909609 + 0.415465i \(0.136381\pi\)
\(828\) 0 0
\(829\) 6.15512 + 6.15512i 0.213776 + 0.213776i 0.805869 0.592093i \(-0.201698\pi\)
−0.592093 + 0.805869i \(0.701698\pi\)
\(830\) 18.1977 17.8703i 0.631652 0.620286i
\(831\) 0 0
\(832\) 4.62909 + 22.0067i 0.160485 + 0.762946i
\(833\) −15.8654 9.15989i −0.549704 0.317371i
\(834\) 0 0
\(835\) −51.2913 13.7435i −1.77501 0.475612i
\(836\) 0.336832 + 0.608672i 0.0116496 + 0.0210513i
\(837\) 0 0
\(838\) 0.629969 + 0.371379i 0.0217619 + 0.0128291i
\(839\) 21.5384 12.4352i 0.743590 0.429312i −0.0797833 0.996812i \(-0.525423\pi\)
0.823373 + 0.567500i \(0.192089\pi\)
\(840\) 0 0
\(841\) −21.2658 12.2778i −0.733303 0.423373i
\(842\) 9.25956 + 16.3797i 0.319105 + 0.564481i
\(843\) 0 0
\(844\) 35.3051 8.77615i 1.21525 0.302087i
\(845\) 13.9363 13.9363i 0.479424 0.479424i
\(846\) 0 0
\(847\) 36.8507i 1.26621i
\(848\) 29.2096 + 31.4121i 1.00306 + 1.07870i
\(849\) 0 0
\(850\) −15.9552 + 57.4541i −0.547260 + 1.97066i
\(851\) 14.0170 3.75585i 0.480497 0.128749i
\(852\) 0 0
\(853\) 18.8477 + 5.05023i 0.645334 + 0.172917i 0.566618 0.823980i \(-0.308251\pi\)
0.0787157 + 0.996897i \(0.474918\pi\)
\(854\) 36.9189 + 21.7644i 1.26334 + 0.744763i
\(855\) 0 0
\(856\) −0.902871 + 33.1412i −0.0308595 + 1.13274i
\(857\) −18.6982 32.3862i −0.638717 1.10629i −0.985715 0.168424i \(-0.946132\pi\)
0.346998 0.937866i \(-0.387201\pi\)
\(858\) 0 0
\(859\) 26.5180 7.10549i 0.904784 0.242436i 0.223714 0.974655i \(-0.428182\pi\)
0.681070 + 0.732219i \(0.261515\pi\)
\(860\) 37.5346 + 0.681614i 1.27992 + 0.0232429i
\(861\) 0 0
\(862\) 8.53276 + 8.68912i 0.290627 + 0.295953i
\(863\) −10.1797 −0.346520 −0.173260 0.984876i \(-0.555430\pi\)
−0.173260 + 0.984876i \(0.555430\pi\)
\(864\) 0 0
\(865\) 20.9860 0.713545
\(866\) 6.38100 + 6.49793i 0.216835 + 0.220808i
\(867\) 0 0
\(868\) 56.0320 + 1.01752i 1.90185 + 0.0345369i
\(869\) −1.21723 + 0.326156i −0.0412918 + 0.0110641i
\(870\) 0 0
\(871\) −7.53020 13.0427i −0.255151 0.441935i
\(872\) −25.2423 0.687680i −0.854811 0.0232878i
\(873\) 0 0
\(874\) 7.45221 + 4.39322i 0.252075 + 0.148603i
\(875\) 62.1414 + 16.6507i 2.10076 + 0.562897i
\(876\) 0 0
\(877\) 25.7779 6.90717i 0.870458 0.233239i 0.204172 0.978935i \(-0.434550\pi\)
0.666286 + 0.745696i \(0.267883\pi\)
\(878\) −10.9368 + 39.3831i −0.369101 + 1.32912i
\(879\) 0 0
\(880\) −3.38261 0.122894i −0.114028 0.00414276i
\(881\) 30.7798i 1.03700i −0.855078 0.518499i \(-0.826491\pi\)
0.855078 0.518499i \(-0.173509\pi\)
\(882\) 0 0
\(883\) −19.8089 + 19.8089i −0.666622 + 0.666622i −0.956933 0.290310i \(-0.906241\pi\)
0.290310 + 0.956933i \(0.406241\pi\)
\(884\) 23.1302 5.74970i 0.777952 0.193383i
\(885\) 0 0
\(886\) 22.4698 + 39.7479i 0.754888 + 1.33536i
\(887\) −21.0940 12.1786i −0.708266 0.408918i 0.102153 0.994769i \(-0.467427\pi\)
−0.810419 + 0.585851i \(0.800760\pi\)
\(888\) 0 0
\(889\) 39.0550 22.5484i 1.30986 0.756249i
\(890\) 13.9484 + 8.22287i 0.467552 + 0.275631i
\(891\) 0 0
\(892\) −3.15397 5.69938i −0.105603 0.190829i
\(893\) −7.21410 1.93301i −0.241411 0.0646858i
\(894\) 0 0
\(895\) −1.79985 1.03914i −0.0601624 0.0347348i
\(896\) −36.0704 12.1679i −1.20503 0.406502i
\(897\) 0 0
\(898\) −10.8065 + 10.6120i −0.360618 + 0.354128i
\(899\) −12.4142 12.4142i −0.414037 0.414037i
\(900\) 0 0
\(901\) 32.1460 32.1460i 1.07094 1.07094i
\(902\) 1.05482 + 0.00957680i 0.0351218 + 0.000318873i
\(903\) 0 0
\(904\) 46.5563 11.1252i 1.54844 0.370017i
\(905\) 13.6407 23.6264i 0.453433 0.785369i
\(906\) 0 0
\(907\) −15.0239 + 56.0698i −0.498859 + 1.86177i 0.00838605 + 0.999965i \(0.497331\pi\)
−0.507245 + 0.861802i \(0.669336\pi\)
\(908\) 17.5759 + 5.05321i 0.583277 + 0.167697i
\(909\) 0 0
\(910\) −12.9300 50.0692i −0.428624 1.65978i
\(911\) 11.9347 + 20.6715i 0.395414 + 0.684877i 0.993154 0.116813i \(-0.0372678\pi\)
−0.597740 + 0.801690i \(0.703934\pi\)
\(912\) 0 0
\(913\) 0.510553 0.884303i 0.0168968 0.0292662i
\(914\) 20.6684 + 5.73970i 0.683651 + 0.189852i
\(915\) 0 0
\(916\) −10.2028 + 2.53622i −0.337111 + 0.0837991i
\(917\) 1.55845 + 1.55845i 0.0514646 + 0.0514646i
\(918\) 0 0
\(919\) −15.7779 −0.520466 −0.260233 0.965546i \(-0.583799\pi\)
−0.260233 + 0.965546i \(0.583799\pi\)
\(920\) −37.0123 + 20.0454i −1.22026 + 0.660878i
\(921\) 0 0
\(922\) 8.33599 + 14.7459i 0.274531 + 0.485631i
\(923\) 5.48292 + 20.4625i 0.180473 + 0.673533i
\(924\) 0 0
\(925\) −9.70397 + 36.2157i −0.319065 + 1.19077i
\(926\) −0.830355 3.21541i −0.0272872 0.105665i
\(927\) 0 0
\(928\) 5.48800 + 10.5878i 0.180152 + 0.347563i
\(929\) −14.3132 + 8.26371i −0.469600 + 0.271123i −0.716072 0.698026i \(-0.754062\pi\)
0.246472 + 0.969150i \(0.420729\pi\)
\(930\) 0 0
\(931\) −1.77730 6.63296i −0.0582485 0.217387i
\(932\) −0.513853 + 28.2965i −0.0168318 + 0.926881i
\(933\) 0 0
\(934\) 0.438517 48.2998i 0.0143487 1.58042i
\(935\) 3.58740i 0.117320i
\(936\) 0 0
\(937\) 5.92940i 0.193705i 0.995299 + 0.0968526i \(0.0308775\pi\)
−0.995299 + 0.0968526i \(0.969122\pi\)
\(938\) 25.4927 + 0.231450i 0.832366 + 0.00755710i
\(939\) 0 0
\(940\) 26.1584 25.2253i 0.853193 0.822758i
\(941\) 5.52232 + 20.6096i 0.180022 + 0.671853i 0.995641 + 0.0932635i \(0.0297299\pi\)
−0.815619 + 0.578589i \(0.803603\pi\)
\(942\) 0 0
\(943\) 11.3603 6.55886i 0.369941 0.213586i
\(944\) −4.94692 21.5660i −0.161008 0.701914i
\(945\) 0 0
\(946\) 1.45523 0.375800i 0.0473135 0.0122183i
\(947\) 8.57071 31.9863i 0.278511 1.03942i −0.674941 0.737871i \(-0.735831\pi\)
0.953452 0.301545i \(-0.0975022\pi\)
\(948\) 0 0
\(949\) 2.34741 + 8.76066i 0.0762002 + 0.284383i
\(950\) −19.4572 + 10.9993i −0.631274 + 0.356864i
\(951\) 0 0
\(952\) −11.4996 + 38.6720i −0.372705 + 1.25337i
\(953\) −0.546564 −0.0177049 −0.00885247 0.999961i \(-0.502818\pi\)
−0.00885247 + 0.999961i \(0.502818\pi\)
\(954\) 0 0
\(955\) 29.5538 + 29.5538i 0.956339 + 0.956339i
\(956\) −25.7568 15.5009i −0.833034 0.501336i
\(957\) 0 0
\(958\) −1.82332 + 6.56570i −0.0589088 + 0.212128i
\(959\) 35.4068 61.3264i 1.14335 1.98033i
\(960\) 0 0
\(961\) 19.1758 + 33.2135i 0.618576 + 1.07140i
\(962\) 14.5104 3.74720i 0.467835 0.120815i
\(963\) 0 0
\(964\) −25.1611 + 13.9239i −0.810384 + 0.448457i
\(965\) −5.20393 + 19.4213i −0.167521 + 0.625195i
\(966\) 0 0
\(967\) −7.49046 + 12.9739i −0.240877 + 0.417211i −0.960964 0.276672i \(-0.910768\pi\)
0.720087 + 0.693883i \(0.244102\pi\)
\(968\) 30.1289 7.19965i 0.968380 0.231406i
\(969\) 0 0
\(970\) −0.758322 + 83.5242i −0.0243482 + 2.68180i
\(971\) −29.4725 + 29.4725i −0.945816 + 0.945816i −0.998606 0.0527896i \(-0.983189\pi\)
0.0527896 + 0.998606i \(0.483189\pi\)
\(972\) 0 0
\(973\) −15.8725 15.8725i −0.508849 0.508849i
\(974\) 37.1622 + 37.8431i 1.19075 + 1.21257i
\(975\) 0 0
\(976\) 10.5815 34.4368i 0.338704 1.10230i
\(977\) −2.02199 1.16740i −0.0646892 0.0373483i 0.467307 0.884095i \(-0.345224\pi\)
−0.531996 + 0.846747i \(0.678558\pi\)
\(978\) 0 0
\(979\) 0.626159 + 0.167779i 0.0200121 + 0.00536224i
\(980\) 32.1115 + 9.23231i 1.02577 + 0.294915i
\(981\) 0 0
\(982\) −1.40015 + 2.37506i −0.0446805 + 0.0757913i
\(983\) −21.5089 + 12.4182i −0.686029 + 0.396079i −0.802123 0.597159i \(-0.796296\pi\)
0.116094 + 0.993238i \(0.462963\pi\)
\(984\) 0 0
\(985\) 13.9464 + 8.05197i 0.444370 + 0.256557i
\(986\) 11.0029 6.22001i 0.350403 0.198085i
\(987\) 0 0
\(988\) 7.65462 + 4.60670i 0.243526 + 0.146559i
\(989\) 13.2158 13.2158i 0.420240 0.420240i
\(990\) 0 0
\(991\) 7.12527i 0.226342i 0.993576 + 0.113171i \(0.0361008\pi\)
−0.993576 + 0.113171i \(0.963899\pi\)
\(992\) −10.1152 46.0102i −0.321159 1.46082i
\(993\) 0 0
\(994\) −34.5526 9.59539i −1.09594 0.304347i
\(995\) −9.60763 + 2.57436i −0.304582 + 0.0816126i
\(996\) 0 0
\(997\) −47.5897 12.7516i −1.50718 0.403848i −0.591684 0.806170i \(-0.701537\pi\)
−0.915498 + 0.402322i \(0.868203\pi\)
\(998\) 8.08908 13.7215i 0.256055 0.434346i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.v.a.179.16 88
3.2 odd 2 144.2.u.a.131.7 yes 88
4.3 odd 2 1728.2.z.a.1583.1 88
9.2 odd 6 inner 432.2.v.a.35.9 88
9.7 even 3 144.2.u.a.83.14 yes 88
12.11 even 2 576.2.y.a.239.15 88
16.5 even 4 1728.2.z.a.719.1 88
16.11 odd 4 inner 432.2.v.a.395.9 88
36.7 odd 6 576.2.y.a.47.3 88
36.11 even 6 1728.2.z.a.1007.1 88
48.5 odd 4 576.2.y.a.527.3 88
48.11 even 4 144.2.u.a.59.14 yes 88
144.11 even 12 inner 432.2.v.a.251.16 88
144.43 odd 12 144.2.u.a.11.7 88
144.101 odd 12 1728.2.z.a.143.1 88
144.133 even 12 576.2.y.a.335.15 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.7 88 144.43 odd 12
144.2.u.a.59.14 yes 88 48.11 even 4
144.2.u.a.83.14 yes 88 9.7 even 3
144.2.u.a.131.7 yes 88 3.2 odd 2
432.2.v.a.35.9 88 9.2 odd 6 inner
432.2.v.a.179.16 88 1.1 even 1 trivial
432.2.v.a.251.16 88 144.11 even 12 inner
432.2.v.a.395.9 88 16.11 odd 4 inner
576.2.y.a.47.3 88 36.7 odd 6
576.2.y.a.239.15 88 12.11 even 2
576.2.y.a.335.15 88 144.133 even 12
576.2.y.a.527.3 88 48.5 odd 4
1728.2.z.a.143.1 88 144.101 odd 12
1728.2.z.a.719.1 88 16.5 even 4
1728.2.z.a.1007.1 88 36.11 even 6
1728.2.z.a.1583.1 88 4.3 odd 2