Properties

Label 576.2.y.a.335.15
Level $576$
Weight $2$
Character 576.335
Analytic conductor $4.599$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,2,Mod(47,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 335.15
Character \(\chi\) \(=\) 576.335
Dual form 576.2.y.a.239.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.800065 - 1.53620i) q^{3} +(3.73424 + 1.00059i) q^{5} +(1.68236 - 2.91393i) q^{7} +(-1.71979 - 2.45811i) q^{9} +(-0.211428 + 0.0566521i) q^{11} +(-2.71526 - 0.727551i) q^{13} +(4.52473 - 4.93599i) q^{15} +4.23937i q^{17} +(1.12365 + 1.12365i) q^{19} +(-3.13037 - 4.91577i) q^{21} +(-3.33369 + 1.92471i) q^{23} +(8.61325 + 4.97286i) q^{25} +(-5.15209 + 0.675290i) q^{27} +(2.03634 - 0.545635i) q^{29} +(-7.21206 + 4.16388i) q^{31} +(-0.0821277 + 0.370121i) q^{33} +(9.19798 - 9.19798i) q^{35} +(-2.66564 - 2.66564i) q^{37} +(-3.29004 + 3.58908i) q^{39} +(1.70386 + 2.95117i) q^{41} +(1.25664 + 4.68985i) q^{43} +(-3.96257 - 10.9000i) q^{45} +(2.34998 - 4.07028i) q^{47} +(-2.16067 - 3.74239i) q^{49} +(6.51251 + 3.39177i) q^{51} +(7.58271 - 7.58271i) q^{53} -0.846209 q^{55} +(2.62513 - 0.827151i) q^{57} +(1.43167 - 5.34305i) q^{59} +(-2.33105 - 8.69958i) q^{61} +(-10.0561 + 0.875933i) q^{63} +(-9.41144 - 5.43370i) q^{65} +(-1.38665 + 5.17504i) q^{67} +(0.289558 + 6.66110i) q^{69} +7.53614i q^{71} +3.22646i q^{73} +(14.5304 - 9.25302i) q^{75} +(-0.190618 + 0.711397i) q^{77} +(-4.98587 - 2.87859i) q^{79} +(-3.08462 + 8.45489i) q^{81} +(-1.20739 - 4.50604i) q^{83} +(-4.24186 + 15.8308i) q^{85} +(0.790999 - 3.56475i) q^{87} +2.96157 q^{89} +(-6.68807 + 6.68807i) q^{91} +(0.626426 + 14.4105i) q^{93} +(3.07166 + 5.32027i) q^{95} +(-7.63883 + 13.2308i) q^{97} +(0.502870 + 0.422285i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{3} - 6 q^{5} + 4 q^{7} + 6 q^{11} - 2 q^{13} + 8 q^{19} + 2 q^{21} + 12 q^{23} + 16 q^{27} - 6 q^{29} - 8 q^{33} - 8 q^{37} + 32 q^{39} + 2 q^{43} + 6 q^{45} - 24 q^{49} + 12 q^{51} + 16 q^{55}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.800065 1.53620i 0.461918 0.886923i
\(4\) 0 0
\(5\) 3.73424 + 1.00059i 1.67000 + 0.447476i 0.965111 0.261839i \(-0.0843291\pi\)
0.704891 + 0.709315i \(0.250996\pi\)
\(6\) 0 0
\(7\) 1.68236 2.91393i 0.635872 1.10136i −0.350457 0.936579i \(-0.613974\pi\)
0.986330 0.164785i \(-0.0526929\pi\)
\(8\) 0 0
\(9\) −1.71979 2.45811i −0.573264 0.819371i
\(10\) 0 0
\(11\) −0.211428 + 0.0566521i −0.0637480 + 0.0170812i −0.290552 0.956859i \(-0.593839\pi\)
0.226804 + 0.973940i \(0.427172\pi\)
\(12\) 0 0
\(13\) −2.71526 0.727551i −0.753076 0.201786i −0.138194 0.990405i \(-0.544130\pi\)
−0.614882 + 0.788619i \(0.710796\pi\)
\(14\) 0 0
\(15\) 4.52473 4.93599i 1.16828 1.27447i
\(16\) 0 0
\(17\) 4.23937i 1.02820i 0.857731 + 0.514100i \(0.171874\pi\)
−0.857731 + 0.514100i \(0.828126\pi\)
\(18\) 0 0
\(19\) 1.12365 + 1.12365i 0.257782 + 0.257782i 0.824152 0.566369i \(-0.191652\pi\)
−0.566369 + 0.824152i \(0.691652\pi\)
\(20\) 0 0
\(21\) −3.13037 4.91577i −0.683104 1.07271i
\(22\) 0 0
\(23\) −3.33369 + 1.92471i −0.695123 + 0.401329i −0.805528 0.592557i \(-0.798118\pi\)
0.110405 + 0.993887i \(0.464785\pi\)
\(24\) 0 0
\(25\) 8.61325 + 4.97286i 1.72265 + 0.994572i
\(26\) 0 0
\(27\) −5.15209 + 0.675290i −0.991519 + 0.129960i
\(28\) 0 0
\(29\) 2.03634 0.545635i 0.378138 0.101322i −0.0647434 0.997902i \(-0.520623\pi\)
0.442882 + 0.896580i \(0.353956\pi\)
\(30\) 0 0
\(31\) −7.21206 + 4.16388i −1.29532 + 0.747856i −0.979593 0.200993i \(-0.935583\pi\)
−0.315731 + 0.948849i \(0.602250\pi\)
\(32\) 0 0
\(33\) −0.0821277 + 0.370121i −0.0142966 + 0.0644297i
\(34\) 0 0
\(35\) 9.19798 9.19798i 1.55474 1.55474i
\(36\) 0 0
\(37\) −2.66564 2.66564i −0.438229 0.438229i 0.453187 0.891416i \(-0.350287\pi\)
−0.891416 + 0.453187i \(0.850287\pi\)
\(38\) 0 0
\(39\) −3.29004 + 3.58908i −0.526828 + 0.574712i
\(40\) 0 0
\(41\) 1.70386 + 2.95117i 0.266098 + 0.460895i 0.967851 0.251526i \(-0.0809323\pi\)
−0.701753 + 0.712420i \(0.747599\pi\)
\(42\) 0 0
\(43\) 1.25664 + 4.68985i 0.191636 + 0.715195i 0.993112 + 0.117168i \(0.0373817\pi\)
−0.801476 + 0.598027i \(0.795952\pi\)
\(44\) 0 0
\(45\) −3.96257 10.9000i −0.590704 1.62487i
\(46\) 0 0
\(47\) 2.34998 4.07028i 0.342779 0.593711i −0.642168 0.766564i \(-0.721965\pi\)
0.984948 + 0.172852i \(0.0552984\pi\)
\(48\) 0 0
\(49\) −2.16067 3.74239i −0.308667 0.534628i
\(50\) 0 0
\(51\) 6.51251 + 3.39177i 0.911933 + 0.474943i
\(52\) 0 0
\(53\) 7.58271 7.58271i 1.04157 1.04157i 0.0424680 0.999098i \(-0.486478\pi\)
0.999098 0.0424680i \(-0.0135220\pi\)
\(54\) 0 0
\(55\) −0.846209 −0.114103
\(56\) 0 0
\(57\) 2.62513 0.827151i 0.347707 0.109559i
\(58\) 0 0
\(59\) 1.43167 5.34305i 0.186387 0.695605i −0.807942 0.589261i \(-0.799419\pi\)
0.994329 0.106344i \(-0.0339145\pi\)
\(60\) 0 0
\(61\) −2.33105 8.69958i −0.298460 1.11387i −0.938431 0.345468i \(-0.887720\pi\)
0.639971 0.768399i \(-0.278946\pi\)
\(62\) 0 0
\(63\) −10.0561 + 0.875933i −1.26695 + 0.110357i
\(64\) 0 0
\(65\) −9.41144 5.43370i −1.16735 0.673967i
\(66\) 0 0
\(67\) −1.38665 + 5.17504i −0.169406 + 0.632231i 0.828031 + 0.560682i \(0.189461\pi\)
−0.997437 + 0.0715493i \(0.977206\pi\)
\(68\) 0 0
\(69\) 0.289558 + 6.66110i 0.0348587 + 0.801902i
\(70\) 0 0
\(71\) 7.53614i 0.894375i 0.894440 + 0.447187i \(0.147574\pi\)
−0.894440 + 0.447187i \(0.852426\pi\)
\(72\) 0 0
\(73\) 3.22646i 0.377629i 0.982013 + 0.188814i \(0.0604644\pi\)
−0.982013 + 0.188814i \(0.939536\pi\)
\(74\) 0 0
\(75\) 14.5304 9.25302i 1.67783 1.06845i
\(76\) 0 0
\(77\) −0.190618 + 0.711397i −0.0217230 + 0.0810712i
\(78\) 0 0
\(79\) −4.98587 2.87859i −0.560954 0.323867i 0.192574 0.981282i \(-0.438316\pi\)
−0.753528 + 0.657415i \(0.771650\pi\)
\(80\) 0 0
\(81\) −3.08462 + 8.45489i −0.342736 + 0.939432i
\(82\) 0 0
\(83\) −1.20739 4.50604i −0.132528 0.494602i 0.867468 0.497494i \(-0.165746\pi\)
−0.999996 + 0.00289160i \(0.999080\pi\)
\(84\) 0 0
\(85\) −4.24186 + 15.8308i −0.460094 + 1.71710i
\(86\) 0 0
\(87\) 0.790999 3.56475i 0.0848040 0.382182i
\(88\) 0 0
\(89\) 2.96157 0.313926 0.156963 0.987605i \(-0.449830\pi\)
0.156963 + 0.987605i \(0.449830\pi\)
\(90\) 0 0
\(91\) −6.68807 + 6.68807i −0.701100 + 0.701100i
\(92\) 0 0
\(93\) 0.626426 + 14.4105i 0.0649573 + 1.49430i
\(94\) 0 0
\(95\) 3.07166 + 5.32027i 0.315146 + 0.545849i
\(96\) 0 0
\(97\) −7.63883 + 13.2308i −0.775606 + 1.34339i 0.158848 + 0.987303i \(0.449222\pi\)
−0.934453 + 0.356085i \(0.884111\pi\)
\(98\) 0 0
\(99\) 0.502870 + 0.422285i 0.0505403 + 0.0424412i
\(100\) 0 0
\(101\) 0.0347486 + 0.129684i 0.00345762 + 0.0129040i 0.967633 0.252361i \(-0.0812071\pi\)
−0.964175 + 0.265265i \(0.914540\pi\)
\(102\) 0 0
\(103\) 4.09117 + 7.08611i 0.403115 + 0.698215i 0.994100 0.108467i \(-0.0345942\pi\)
−0.590985 + 0.806682i \(0.701261\pi\)
\(104\) 0 0
\(105\) −6.77091 21.4889i −0.660774 2.09710i
\(106\) 0 0
\(107\) 8.28837 + 8.28837i 0.801267 + 0.801267i 0.983294 0.182027i \(-0.0582658\pi\)
−0.182027 + 0.983294i \(0.558266\pi\)
\(108\) 0 0
\(109\) 6.31291 6.31291i 0.604667 0.604667i −0.336881 0.941547i \(-0.609372\pi\)
0.941547 + 0.336881i \(0.109372\pi\)
\(110\) 0 0
\(111\) −6.22764 + 1.96226i −0.591101 + 0.186250i
\(112\) 0 0
\(113\) 14.6562 8.46178i 1.37874 0.796017i 0.386735 0.922191i \(-0.373603\pi\)
0.992008 + 0.126174i \(0.0402696\pi\)
\(114\) 0 0
\(115\) −14.3746 + 3.85167i −1.34044 + 0.359171i
\(116\) 0 0
\(117\) 2.88128 + 7.92564i 0.266374 + 0.732725i
\(118\) 0 0
\(119\) 12.3533 + 7.13215i 1.13242 + 0.653803i
\(120\) 0 0
\(121\) −9.48479 + 5.47604i −0.862253 + 0.497822i
\(122\) 0 0
\(123\) 5.89676 0.256333i 0.531693 0.0231128i
\(124\) 0 0
\(125\) 13.5199 + 13.5199i 1.20926 + 1.20926i
\(126\) 0 0
\(127\) 13.4028i 1.18931i 0.803981 + 0.594654i \(0.202711\pi\)
−0.803981 + 0.594654i \(0.797289\pi\)
\(128\) 0 0
\(129\) 8.20992 + 1.82174i 0.722843 + 0.160395i
\(130\) 0 0
\(131\) −0.632708 0.169534i −0.0552800 0.0148122i 0.231073 0.972936i \(-0.425776\pi\)
−0.286353 + 0.958124i \(0.592443\pi\)
\(132\) 0 0
\(133\) 5.16461 1.38385i 0.447829 0.119995i
\(134\) 0 0
\(135\) −19.9148 2.63341i −1.71399 0.226648i
\(136\) 0 0
\(137\) −10.5230 + 18.2263i −0.899037 + 1.55718i −0.0703095 + 0.997525i \(0.522399\pi\)
−0.828727 + 0.559652i \(0.810935\pi\)
\(138\) 0 0
\(139\) −6.44400 1.72666i −0.546573 0.146454i −0.0250423 0.999686i \(-0.507972\pi\)
−0.521530 + 0.853233i \(0.674639\pi\)
\(140\) 0 0
\(141\) −4.37261 6.86651i −0.368240 0.578264i
\(142\) 0 0
\(143\) 0.615299 0.0514539
\(144\) 0 0
\(145\) 8.15012 0.676831
\(146\) 0 0
\(147\) −7.47772 + 0.325057i −0.616752 + 0.0268103i
\(148\) 0 0
\(149\) −21.5773 5.78161i −1.76768 0.473648i −0.779428 0.626492i \(-0.784490\pi\)
−0.988250 + 0.152844i \(0.951157\pi\)
\(150\) 0 0
\(151\) 9.97506 17.2773i 0.811759 1.40601i −0.0998734 0.995000i \(-0.531844\pi\)
0.911632 0.411007i \(-0.134823\pi\)
\(152\) 0 0
\(153\) 10.4209 7.29084i 0.842476 0.589430i
\(154\) 0 0
\(155\) −31.0979 + 8.33265i −2.49784 + 0.669295i
\(156\) 0 0
\(157\) −14.3943 3.85693i −1.14879 0.307817i −0.366308 0.930494i \(-0.619378\pi\)
−0.782479 + 0.622677i \(0.786045\pi\)
\(158\) 0 0
\(159\) −5.58187 17.7152i −0.442671 1.40491i
\(160\) 0 0
\(161\) 12.9522i 1.02078i
\(162\) 0 0
\(163\) 4.35766 + 4.35766i 0.341318 + 0.341318i 0.856863 0.515545i \(-0.172410\pi\)
−0.515545 + 0.856863i \(0.672410\pi\)
\(164\) 0 0
\(165\) −0.677022 + 1.29994i −0.0527061 + 0.101200i
\(166\) 0 0
\(167\) 11.8952 6.86770i 0.920479 0.531439i 0.0366910 0.999327i \(-0.488318\pi\)
0.883788 + 0.467888i \(0.154985\pi\)
\(168\) 0 0
\(169\) −4.41505 2.54903i −0.339619 0.196079i
\(170\) 0 0
\(171\) 0.829610 4.69449i 0.0634418 0.358997i
\(172\) 0 0
\(173\) 5.24342 1.40497i 0.398650 0.106818i −0.0539235 0.998545i \(-0.517173\pi\)
0.452573 + 0.891727i \(0.350506\pi\)
\(174\) 0 0
\(175\) 28.9812 16.7323i 2.19077 1.26484i
\(176\) 0 0
\(177\) −7.06254 6.47410i −0.530853 0.486623i
\(178\) 0 0
\(179\) 0.380130 0.380130i 0.0284123 0.0284123i −0.692758 0.721170i \(-0.743605\pi\)
0.721170 + 0.692758i \(0.243605\pi\)
\(180\) 0 0
\(181\) −4.98992 4.98992i −0.370898 0.370898i 0.496906 0.867804i \(-0.334469\pi\)
−0.867804 + 0.496906i \(0.834469\pi\)
\(182\) 0 0
\(183\) −15.2292 3.37929i −1.12578 0.249804i
\(184\) 0 0
\(185\) −7.28695 12.6214i −0.535747 0.927941i
\(186\) 0 0
\(187\) −0.240169 0.896324i −0.0175629 0.0655457i
\(188\) 0 0
\(189\) −6.69991 + 16.1489i −0.487347 + 1.17466i
\(190\) 0 0
\(191\) −5.40555 + 9.36269i −0.391132 + 0.677461i −0.992599 0.121437i \(-0.961250\pi\)
0.601467 + 0.798898i \(0.294583\pi\)
\(192\) 0 0
\(193\) 2.60044 + 4.50410i 0.187184 + 0.324212i 0.944310 0.329056i \(-0.106731\pi\)
−0.757126 + 0.653268i \(0.773397\pi\)
\(194\) 0 0
\(195\) −15.8770 + 10.1105i −1.13697 + 0.724028i
\(196\) 0 0
\(197\) 2.94550 2.94550i 0.209858 0.209858i −0.594349 0.804207i \(-0.702590\pi\)
0.804207 + 0.594349i \(0.202590\pi\)
\(198\) 0 0
\(199\) −2.57285 −0.182384 −0.0911921 0.995833i \(-0.529068\pi\)
−0.0911921 + 0.995833i \(0.529068\pi\)
\(200\) 0 0
\(201\) 6.84046 + 6.27053i 0.482489 + 0.442289i
\(202\) 0 0
\(203\) 1.83591 6.85170i 0.128856 0.480895i
\(204\) 0 0
\(205\) 3.40971 + 12.7252i 0.238145 + 0.888768i
\(206\) 0 0
\(207\) 10.4644 + 4.88449i 0.727327 + 0.339495i
\(208\) 0 0
\(209\) −0.301228 0.173914i −0.0208364 0.0120299i
\(210\) 0 0
\(211\) 4.70786 17.5700i 0.324103 1.20957i −0.591108 0.806592i \(-0.701309\pi\)
0.915211 0.402975i \(-0.132024\pi\)
\(212\) 0 0
\(213\) 11.5770 + 6.02940i 0.793242 + 0.413127i
\(214\) 0 0
\(215\) 18.7704i 1.28013i
\(216\) 0 0
\(217\) 28.0206i 1.90216i
\(218\) 0 0
\(219\) 4.95647 + 2.58138i 0.334927 + 0.174433i
\(220\) 0 0
\(221\) 3.08436 11.5110i 0.207476 0.774312i
\(222\) 0 0
\(223\) 2.82059 + 1.62847i 0.188881 + 0.109050i 0.591458 0.806336i \(-0.298552\pi\)
−0.402578 + 0.915386i \(0.631886\pi\)
\(224\) 0 0
\(225\) −2.58916 29.7246i −0.172610 1.98164i
\(226\) 0 0
\(227\) 2.36663 + 8.83238i 0.157079 + 0.586226i 0.998918 + 0.0464979i \(0.0148061\pi\)
−0.841840 + 0.539728i \(0.818527\pi\)
\(228\) 0 0
\(229\) 1.36053 5.07755i 0.0899061 0.335534i −0.906292 0.422652i \(-0.861099\pi\)
0.996198 + 0.0871183i \(0.0277658\pi\)
\(230\) 0 0
\(231\) 0.940338 + 0.861991i 0.0618697 + 0.0567148i
\(232\) 0 0
\(233\) −14.1506 −0.927034 −0.463517 0.886088i \(-0.653413\pi\)
−0.463517 + 0.886088i \(0.653413\pi\)
\(234\) 0 0
\(235\) 12.8480 12.8480i 0.838114 0.838114i
\(236\) 0 0
\(237\) −8.41110 + 5.35621i −0.546360 + 0.347923i
\(238\) 0 0
\(239\) −7.51536 13.0170i −0.486128 0.841999i 0.513745 0.857943i \(-0.328258\pi\)
−0.999873 + 0.0159444i \(0.994925\pi\)
\(240\) 0 0
\(241\) 7.18920 12.4521i 0.463097 0.802108i −0.536016 0.844208i \(-0.680071\pi\)
0.999113 + 0.0420996i \(0.0134047\pi\)
\(242\) 0 0
\(243\) 10.5205 + 11.5030i 0.674888 + 0.737921i
\(244\) 0 0
\(245\) −4.32388 16.1369i −0.276242 1.03095i
\(246\) 0 0
\(247\) −2.23348 3.86850i −0.142113 0.246147i
\(248\) 0 0
\(249\) −7.88815 1.75034i −0.499891 0.110923i
\(250\) 0 0
\(251\) −3.59758 3.59758i −0.227077 0.227077i 0.584393 0.811471i \(-0.301333\pi\)
−0.811471 + 0.584393i \(0.801333\pi\)
\(252\) 0 0
\(253\) 0.595798 0.595798i 0.0374575 0.0374575i
\(254\) 0 0
\(255\) 20.9255 + 19.1820i 1.31041 + 1.20122i
\(256\) 0 0
\(257\) −4.92640 + 2.84426i −0.307300 + 0.177420i −0.645718 0.763576i \(-0.723442\pi\)
0.338418 + 0.940996i \(0.390108\pi\)
\(258\) 0 0
\(259\) −12.2521 + 3.28294i −0.761307 + 0.203992i
\(260\) 0 0
\(261\) −4.84331 4.06716i −0.299793 0.251751i
\(262\) 0 0
\(263\) −18.8392 10.8768i −1.16167 0.670693i −0.209970 0.977708i \(-0.567337\pi\)
−0.951705 + 0.307015i \(0.900670\pi\)
\(264\) 0 0
\(265\) 35.9028 20.7285i 2.20549 1.27334i
\(266\) 0 0
\(267\) 2.36945 4.54955i 0.145008 0.278428i
\(268\) 0 0
\(269\) 7.43467 + 7.43467i 0.453300 + 0.453300i 0.896448 0.443148i \(-0.146139\pi\)
−0.443148 + 0.896448i \(0.646139\pi\)
\(270\) 0 0
\(271\) 11.8875i 0.722111i 0.932544 + 0.361056i \(0.117584\pi\)
−0.932544 + 0.361056i \(0.882416\pi\)
\(272\) 0 0
\(273\) 4.92329 + 15.6251i 0.297971 + 0.945673i
\(274\) 0 0
\(275\) −2.10281 0.563445i −0.126804 0.0339770i
\(276\) 0 0
\(277\) −10.0081 + 2.68166i −0.601329 + 0.161126i −0.546626 0.837377i \(-0.684088\pi\)
−0.0547032 + 0.998503i \(0.517421\pi\)
\(278\) 0 0
\(279\) 22.6385 + 10.5670i 1.35533 + 0.632631i
\(280\) 0 0
\(281\) 7.05630 12.2219i 0.420944 0.729096i −0.575088 0.818091i \(-0.695032\pi\)
0.996032 + 0.0889955i \(0.0283657\pi\)
\(282\) 0 0
\(283\) 12.7951 + 3.42843i 0.760588 + 0.203799i 0.618209 0.786013i \(-0.287858\pi\)
0.142378 + 0.989812i \(0.454525\pi\)
\(284\) 0 0
\(285\) 10.6305 0.462109i 0.629697 0.0273730i
\(286\) 0 0
\(287\) 11.4660 0.676817
\(288\) 0 0
\(289\) −0.972286 −0.0571933
\(290\) 0 0
\(291\) 14.2136 + 22.3203i 0.833216 + 1.30844i
\(292\) 0 0
\(293\) 29.7073 + 7.96005i 1.73552 + 0.465031i 0.981443 0.191756i \(-0.0614181\pi\)
0.754077 + 0.656787i \(0.228085\pi\)
\(294\) 0 0
\(295\) 10.6924 18.5197i 0.622533 1.07826i
\(296\) 0 0
\(297\) 1.05104 0.434652i 0.0609875 0.0252210i
\(298\) 0 0
\(299\) 10.4522 2.80065i 0.604463 0.161965i
\(300\) 0 0
\(301\) 15.7800 + 4.22825i 0.909546 + 0.243712i
\(302\) 0 0
\(303\) 0.227020 + 0.0503746i 0.0130420 + 0.00289395i
\(304\) 0 0
\(305\) 34.8187i 1.99371i
\(306\) 0 0
\(307\) −23.8109 23.8109i −1.35896 1.35896i −0.875202 0.483758i \(-0.839272\pi\)
−0.483758 0.875202i \(-0.660728\pi\)
\(308\) 0 0
\(309\) 14.1588 0.615486i 0.805469 0.0350138i
\(310\) 0 0
\(311\) 9.20941 5.31706i 0.522218 0.301503i −0.215624 0.976477i \(-0.569178\pi\)
0.737842 + 0.674974i \(0.235845\pi\)
\(312\) 0 0
\(313\) −16.4634 9.50514i −0.930565 0.537262i −0.0435750 0.999050i \(-0.513875\pi\)
−0.886990 + 0.461788i \(0.847208\pi\)
\(314\) 0 0
\(315\) −38.4283 6.79104i −2.16519 0.382632i
\(316\) 0 0
\(317\) −11.8751 + 3.18193i −0.666972 + 0.178715i −0.576391 0.817174i \(-0.695539\pi\)
−0.0905818 + 0.995889i \(0.528873\pi\)
\(318\) 0 0
\(319\) −0.399628 + 0.230725i −0.0223749 + 0.0129181i
\(320\) 0 0
\(321\) 19.3638 6.10132i 1.08078 0.340543i
\(322\) 0 0
\(323\) −4.76356 + 4.76356i −0.265052 + 0.265052i
\(324\) 0 0
\(325\) −19.7692 19.7692i −1.09660 1.09660i
\(326\) 0 0
\(327\) −4.64712 14.7486i −0.256987 0.815599i
\(328\) 0 0
\(329\) −7.90701 13.6953i −0.435928 0.755049i
\(330\) 0 0
\(331\) 8.94844 + 33.3960i 0.491851 + 1.83561i 0.546998 + 0.837134i \(0.315771\pi\)
−0.0551468 + 0.998478i \(0.517563\pi\)
\(332\) 0 0
\(333\) −1.96809 + 11.1368i −0.107851 + 0.610293i
\(334\) 0 0
\(335\) −10.3561 + 17.9374i −0.565817 + 0.980023i
\(336\) 0 0
\(337\) −14.3693 24.8884i −0.782746 1.35576i −0.930336 0.366707i \(-0.880485\pi\)
0.147591 0.989049i \(-0.452848\pi\)
\(338\) 0 0
\(339\) −1.27301 29.2848i −0.0691406 1.59053i
\(340\) 0 0
\(341\) 1.28894 1.28894i 0.0698001 0.0698001i
\(342\) 0 0
\(343\) 9.01293 0.486653
\(344\) 0 0
\(345\) −5.58372 + 25.1639i −0.300617 + 1.35478i
\(346\) 0 0
\(347\) 2.92992 10.9346i 0.157287 0.587002i −0.841612 0.540082i \(-0.818393\pi\)
0.998899 0.0469191i \(-0.0149403\pi\)
\(348\) 0 0
\(349\) −2.90715 10.8496i −0.155616 0.580767i −0.999052 0.0435372i \(-0.986137\pi\)
0.843436 0.537230i \(-0.180529\pi\)
\(350\) 0 0
\(351\) 14.4805 + 1.91482i 0.772914 + 0.102205i
\(352\) 0 0
\(353\) 1.85946 + 1.07356i 0.0989689 + 0.0571397i 0.548668 0.836041i \(-0.315135\pi\)
−0.449699 + 0.893180i \(0.648469\pi\)
\(354\) 0 0
\(355\) −7.54056 + 28.1417i −0.400211 + 1.49361i
\(356\) 0 0
\(357\) 20.8398 13.2708i 1.10296 0.702366i
\(358\) 0 0
\(359\) 11.0166i 0.581435i −0.956809 0.290718i \(-0.906106\pi\)
0.956809 0.290718i \(-0.0938941\pi\)
\(360\) 0 0
\(361\) 16.4748i 0.867097i
\(362\) 0 0
\(363\) 0.823831 + 18.9517i 0.0432399 + 0.994705i
\(364\) 0 0
\(365\) −3.22835 + 12.0484i −0.168980 + 0.630641i
\(366\) 0 0
\(367\) −20.1365 11.6258i −1.05112 0.606863i −0.128156 0.991754i \(-0.540906\pi\)
−0.922962 + 0.384891i \(0.874239\pi\)
\(368\) 0 0
\(369\) 4.32402 9.26366i 0.225099 0.482247i
\(370\) 0 0
\(371\) −9.33867 34.8524i −0.484839 1.80945i
\(372\) 0 0
\(373\) −2.66079 + 9.93021i −0.137771 + 0.514167i 0.862201 + 0.506567i \(0.169086\pi\)
−0.999971 + 0.00759967i \(0.997581\pi\)
\(374\) 0 0
\(375\) 31.5860 9.95240i 1.63109 0.513940i
\(376\) 0 0
\(377\) −5.92615 −0.305212
\(378\) 0 0
\(379\) 6.14819 6.14819i 0.315811 0.315811i −0.531345 0.847156i \(-0.678313\pi\)
0.847156 + 0.531345i \(0.178313\pi\)
\(380\) 0 0
\(381\) 20.5894 + 10.7231i 1.05483 + 0.549363i
\(382\) 0 0
\(383\) −1.40170 2.42782i −0.0716238 0.124056i 0.827989 0.560744i \(-0.189485\pi\)
−0.899613 + 0.436688i \(0.856151\pi\)
\(384\) 0 0
\(385\) −1.42363 + 2.46580i −0.0725548 + 0.125669i
\(386\) 0 0
\(387\) 9.36701 11.1545i 0.476152 0.567017i
\(388\) 0 0
\(389\) 7.82350 + 29.1977i 0.396667 + 1.48038i 0.818922 + 0.573905i \(0.194572\pi\)
−0.422255 + 0.906477i \(0.638761\pi\)
\(390\) 0 0
\(391\) −8.15956 14.1328i −0.412647 0.714725i
\(392\) 0 0
\(393\) −0.766644 + 0.836325i −0.0386721 + 0.0421870i
\(394\) 0 0
\(395\) −15.7382 15.7382i −0.791873 0.791873i
\(396\) 0 0
\(397\) 1.95789 1.95789i 0.0982636 0.0982636i −0.656266 0.754530i \(-0.727865\pi\)
0.754530 + 0.656266i \(0.227865\pi\)
\(398\) 0 0
\(399\) 2.00615 9.04103i 0.100433 0.452617i
\(400\) 0 0
\(401\) −28.7356 + 16.5905i −1.43499 + 0.828489i −0.997495 0.0707337i \(-0.977466\pi\)
−0.437490 + 0.899223i \(0.644133\pi\)
\(402\) 0 0
\(403\) 22.6120 6.05887i 1.12638 0.301814i
\(404\) 0 0
\(405\) −19.9786 + 28.4861i −0.992743 + 1.41549i
\(406\) 0 0
\(407\) 0.714607 + 0.412578i 0.0354217 + 0.0204508i
\(408\) 0 0
\(409\) 22.8959 13.2190i 1.13213 0.653636i 0.187660 0.982234i \(-0.439910\pi\)
0.944470 + 0.328598i \(0.106576\pi\)
\(410\) 0 0
\(411\) 19.5801 + 30.7475i 0.965816 + 1.51666i
\(412\) 0 0
\(413\) −13.1607 13.1607i −0.647596 0.647596i
\(414\) 0 0
\(415\) 18.0347i 0.885290i
\(416\) 0 0
\(417\) −7.80811 + 8.51780i −0.382365 + 0.417118i
\(418\) 0 0
\(419\) 0.499479 + 0.133835i 0.0244012 + 0.00653827i 0.270999 0.962580i \(-0.412646\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(420\) 0 0
\(421\) 12.8514 3.44352i 0.626339 0.167827i 0.0683313 0.997663i \(-0.478233\pi\)
0.558008 + 0.829836i \(0.311566\pi\)
\(422\) 0 0
\(423\) −14.0467 + 1.22353i −0.682972 + 0.0594902i
\(424\) 0 0
\(425\) −21.0818 + 36.5148i −1.02262 + 1.77123i
\(426\) 0 0
\(427\) −29.2717 7.84332i −1.41655 0.379565i
\(428\) 0 0
\(429\) 0.492279 0.945220i 0.0237675 0.0456356i
\(430\) 0 0
\(431\) 8.61129 0.414791 0.207396 0.978257i \(-0.433501\pi\)
0.207396 + 0.978257i \(0.433501\pi\)
\(432\) 0 0
\(433\) 6.43973 0.309474 0.154737 0.987956i \(-0.450547\pi\)
0.154737 + 0.987956i \(0.450547\pi\)
\(434\) 0 0
\(435\) 6.52063 12.5202i 0.312640 0.600297i
\(436\) 0 0
\(437\) −5.90859 1.58320i −0.282646 0.0757348i
\(438\) 0 0
\(439\) −14.4510 + 25.0298i −0.689707 + 1.19461i 0.282225 + 0.959348i \(0.408927\pi\)
−0.971933 + 0.235260i \(0.924406\pi\)
\(440\) 0 0
\(441\) −5.48331 + 11.7473i −0.261110 + 0.559396i
\(442\) 0 0
\(443\) 31.1860 8.35627i 1.48169 0.397018i 0.574770 0.818315i \(-0.305092\pi\)
0.906923 + 0.421297i \(0.138425\pi\)
\(444\) 0 0
\(445\) 11.0592 + 2.96330i 0.524257 + 0.140474i
\(446\) 0 0
\(447\) −26.1449 + 28.5212i −1.23661 + 1.34901i
\(448\) 0 0
\(449\) 10.7097i 0.505423i 0.967542 + 0.252711i \(0.0813223\pi\)
−0.967542 + 0.252711i \(0.918678\pi\)
\(450\) 0 0
\(451\) −0.527433 0.527433i −0.0248359 0.0248359i
\(452\) 0 0
\(453\) −18.5606 29.1466i −0.872054 1.36943i
\(454\) 0 0
\(455\) −31.6669 + 18.2829i −1.48457 + 0.857114i
\(456\) 0 0
\(457\) 13.1358 + 7.58393i 0.614465 + 0.354761i 0.774711 0.632316i \(-0.217895\pi\)
−0.160246 + 0.987077i \(0.551229\pi\)
\(458\) 0 0
\(459\) −2.86281 21.8416i −0.133624 1.01948i
\(460\) 0 0
\(461\) −11.5696 + 3.10006i −0.538849 + 0.144384i −0.517971 0.855398i \(-0.673313\pi\)
−0.0208774 + 0.999782i \(0.506646\pi\)
\(462\) 0 0
\(463\) 2.03363 1.17412i 0.0945107 0.0545658i −0.452000 0.892018i \(-0.649289\pi\)
0.546510 + 0.837452i \(0.315956\pi\)
\(464\) 0 0
\(465\) −12.0797 + 54.4391i −0.560184 + 2.52455i
\(466\) 0 0
\(467\) −24.1509 + 24.1509i −1.11757 + 1.11757i −0.125473 + 0.992097i \(0.540045\pi\)
−0.992097 + 0.125473i \(0.959955\pi\)
\(468\) 0 0
\(469\) 12.7469 + 12.7469i 0.588596 + 0.588596i
\(470\) 0 0
\(471\) −17.4413 + 19.0266i −0.803654 + 0.876700i
\(472\) 0 0
\(473\) −0.531379 0.920376i −0.0244328 0.0423189i
\(474\) 0 0
\(475\) 4.09051 + 15.2660i 0.187685 + 0.700452i
\(476\) 0 0
\(477\) −31.6799 5.59846i −1.45052 0.256336i
\(478\) 0 0
\(479\) 2.40917 4.17281i 0.110078 0.190660i −0.805724 0.592292i \(-0.798223\pi\)
0.915801 + 0.401631i \(0.131557\pi\)
\(480\) 0 0
\(481\) 5.29851 + 9.17730i 0.241591 + 0.418449i
\(482\) 0 0
\(483\) 19.8971 + 10.3626i 0.905351 + 0.471515i
\(484\) 0 0
\(485\) −41.7638 + 41.7638i −1.89640 + 1.89640i
\(486\) 0 0
\(487\) −37.5042 −1.69948 −0.849739 0.527204i \(-0.823240\pi\)
−0.849739 + 0.527204i \(0.823240\pi\)
\(488\) 0 0
\(489\) 10.1806 3.20781i 0.460384 0.145062i
\(490\) 0 0
\(491\) 0.504576 1.88310i 0.0227712 0.0849832i −0.953605 0.301060i \(-0.902660\pi\)
0.976376 + 0.216077i \(0.0693262\pi\)
\(492\) 0 0
\(493\) 2.31315 + 8.63279i 0.104179 + 0.388801i
\(494\) 0 0
\(495\) 1.45530 + 2.08008i 0.0654111 + 0.0934925i
\(496\) 0 0
\(497\) 21.9598 + 12.6785i 0.985032 + 0.568708i
\(498\) 0 0
\(499\) 2.91509 10.8793i 0.130497 0.487023i −0.869478 0.493971i \(-0.835545\pi\)
0.999976 + 0.00694794i \(0.00221162\pi\)
\(500\) 0 0
\(501\) −1.03320 23.7680i −0.0461598 1.06187i
\(502\) 0 0
\(503\) 15.3339i 0.683706i 0.939753 + 0.341853i \(0.111055\pi\)
−0.939753 + 0.341853i \(0.888945\pi\)
\(504\) 0 0
\(505\) 0.519039i 0.0230969i
\(506\) 0 0
\(507\) −7.44813 + 4.74299i −0.330783 + 0.210644i
\(508\) 0 0
\(509\) 8.59758 32.0866i 0.381081 1.42221i −0.463172 0.886269i \(-0.653289\pi\)
0.844253 0.535945i \(-0.180045\pi\)
\(510\) 0 0
\(511\) 9.40169 + 5.42807i 0.415906 + 0.240124i
\(512\) 0 0
\(513\) −6.54791 5.03034i −0.289097 0.222095i
\(514\) 0 0
\(515\) 8.18713 + 30.5548i 0.360768 + 1.34641i
\(516\) 0 0
\(517\) −0.266262 + 0.993703i −0.0117102 + 0.0437030i
\(518\) 0 0
\(519\) 2.03677 9.17899i 0.0894042 0.402913i
\(520\) 0 0
\(521\) 20.5032 0.898262 0.449131 0.893466i \(-0.351734\pi\)
0.449131 + 0.893466i \(0.351734\pi\)
\(522\) 0 0
\(523\) 29.2406 29.2406i 1.27860 1.27860i 0.337151 0.941451i \(-0.390537\pi\)
0.941451 0.337151i \(-0.109463\pi\)
\(524\) 0 0
\(525\) −2.51725 57.9076i −0.109862 2.52730i
\(526\) 0 0
\(527\) −17.6523 30.5746i −0.768944 1.33185i
\(528\) 0 0
\(529\) −4.09099 + 7.08581i −0.177869 + 0.308079i
\(530\) 0 0
\(531\) −15.5960 + 5.66974i −0.676808 + 0.246046i
\(532\) 0 0
\(533\) −2.47928 9.25281i −0.107390 0.400784i
\(534\) 0 0
\(535\) 22.6575 + 39.2440i 0.979570 + 1.69667i
\(536\) 0 0
\(537\) −0.279825 0.888083i −0.0120754 0.0383236i
\(538\) 0 0
\(539\) 0.668841 + 0.668841i 0.0288090 + 0.0288090i
\(540\) 0 0
\(541\) 20.5836 20.5836i 0.884956 0.884956i −0.109077 0.994033i \(-0.534790\pi\)
0.994033 + 0.109077i \(0.0347895\pi\)
\(542\) 0 0
\(543\) −11.6578 + 3.67324i −0.500282 + 0.157634i
\(544\) 0 0
\(545\) 29.8905 17.2573i 1.28037 0.739221i
\(546\) 0 0
\(547\) 38.0779 10.2029i 1.62809 0.436246i 0.674728 0.738067i \(-0.264261\pi\)
0.953365 + 0.301821i \(0.0975945\pi\)
\(548\) 0 0
\(549\) −17.3756 + 20.6914i −0.741574 + 0.883089i
\(550\) 0 0
\(551\) 2.90122 + 1.67502i 0.123596 + 0.0713584i
\(552\) 0 0
\(553\) −16.7761 + 9.68566i −0.713391 + 0.411876i
\(554\) 0 0
\(555\) −25.2189 + 1.09627i −1.07048 + 0.0465340i
\(556\) 0 0
\(557\) 1.52288 + 1.52288i 0.0645265 + 0.0645265i 0.738634 0.674107i \(-0.235471\pi\)
−0.674107 + 0.738634i \(0.735471\pi\)
\(558\) 0 0
\(559\) 13.6484i 0.577266i
\(560\) 0 0
\(561\) −1.56908 0.348170i −0.0662466 0.0146998i
\(562\) 0 0
\(563\) 4.85715 + 1.30147i 0.204705 + 0.0548504i 0.359714 0.933063i \(-0.382874\pi\)
−0.155010 + 0.987913i \(0.549541\pi\)
\(564\) 0 0
\(565\) 63.1966 16.9335i 2.65870 0.712397i
\(566\) 0 0
\(567\) 19.4475 + 23.2126i 0.816719 + 0.974836i
\(568\) 0 0
\(569\) 17.4710 30.2606i 0.732421 1.26859i −0.223425 0.974721i \(-0.571724\pi\)
0.955846 0.293869i \(-0.0949430\pi\)
\(570\) 0 0
\(571\) −34.1869 9.16034i −1.43068 0.383348i −0.541417 0.840754i \(-0.682112\pi\)
−0.889258 + 0.457406i \(0.848779\pi\)
\(572\) 0 0
\(573\) 10.0581 + 15.7947i 0.420185 + 0.659835i
\(574\) 0 0
\(575\) −38.2852 −1.59660
\(576\) 0 0
\(577\) −17.4865 −0.727972 −0.363986 0.931404i \(-0.618584\pi\)
−0.363986 + 0.931404i \(0.618584\pi\)
\(578\) 0 0
\(579\) 8.99970 0.391218i 0.374015 0.0162584i
\(580\) 0 0
\(581\) −15.1616 4.06253i −0.629008 0.168542i
\(582\) 0 0
\(583\) −1.17362 + 2.03278i −0.0486065 + 0.0841890i
\(584\) 0 0
\(585\) 2.82909 + 32.4792i 0.116969 + 1.34285i
\(586\) 0 0
\(587\) −12.3561 + 3.31081i −0.509991 + 0.136652i −0.504633 0.863334i \(-0.668372\pi\)
−0.00535825 + 0.999986i \(0.501706\pi\)
\(588\) 0 0
\(589\) −12.7825 3.42507i −0.526696 0.141128i
\(590\) 0 0
\(591\) −2.16827 6.88145i −0.0891907 0.283065i
\(592\) 0 0
\(593\) 25.7816i 1.05872i 0.848397 + 0.529361i \(0.177568\pi\)
−0.848397 + 0.529361i \(0.822432\pi\)
\(594\) 0 0
\(595\) 38.9937 + 38.9937i 1.59858 + 1.59858i
\(596\) 0 0
\(597\) −2.05844 + 3.95239i −0.0842465 + 0.161761i
\(598\) 0 0
\(599\) 27.3647 15.7990i 1.11809 0.645531i 0.177180 0.984179i \(-0.443303\pi\)
0.940913 + 0.338647i \(0.109969\pi\)
\(600\) 0 0
\(601\) −23.3729 13.4944i −0.953401 0.550447i −0.0592656 0.998242i \(-0.518876\pi\)
−0.894136 + 0.447796i \(0.852209\pi\)
\(602\) 0 0
\(603\) 15.1056 5.49146i 0.615146 0.223630i
\(604\) 0 0
\(605\) −40.8977 + 10.9585i −1.66273 + 0.445527i
\(606\) 0 0
\(607\) −21.2314 + 12.2579i −0.861755 + 0.497534i −0.864600 0.502462i \(-0.832428\pi\)
0.00284471 + 0.999996i \(0.499095\pi\)
\(608\) 0 0
\(609\) −9.05671 8.30212i −0.366996 0.336419i
\(610\) 0 0
\(611\) −9.34212 + 9.34212i −0.377942 + 0.377942i
\(612\) 0 0
\(613\) −30.3894 30.3894i −1.22742 1.22742i −0.964937 0.262481i \(-0.915459\pi\)
−0.262481 0.964937i \(-0.584541\pi\)
\(614\) 0 0
\(615\) 22.2764 + 4.94301i 0.898272 + 0.199322i
\(616\) 0 0
\(617\) 15.8393 + 27.4345i 0.637668 + 1.10447i 0.985943 + 0.167081i \(0.0534341\pi\)
−0.348275 + 0.937392i \(0.613233\pi\)
\(618\) 0 0
\(619\) −5.39413 20.1312i −0.216809 0.809141i −0.985522 0.169547i \(-0.945769\pi\)
0.768713 0.639593i \(-0.220897\pi\)
\(620\) 0 0
\(621\) 15.8757 12.1675i 0.637071 0.488264i
\(622\) 0 0
\(623\) 4.98242 8.62981i 0.199617 0.345746i
\(624\) 0 0
\(625\) 12.0944 + 20.9481i 0.483775 + 0.837923i
\(626\) 0 0
\(627\) −0.508167 + 0.323602i −0.0202943 + 0.0129234i
\(628\) 0 0
\(629\) 11.3007 11.3007i 0.450587 0.450587i
\(630\) 0 0
\(631\) 19.9953 0.796002 0.398001 0.917385i \(-0.369704\pi\)
0.398001 + 0.917385i \(0.369704\pi\)
\(632\) 0 0
\(633\) −23.2243 21.2893i −0.923084 0.846174i
\(634\) 0 0
\(635\) −13.4107 + 50.0494i −0.532187 + 1.98615i
\(636\) 0 0
\(637\) 3.14400 + 11.7335i 0.124570 + 0.464900i
\(638\) 0 0
\(639\) 18.5247 12.9606i 0.732824 0.512713i
\(640\) 0 0
\(641\) 12.6976 + 7.33098i 0.501526 + 0.289556i 0.729344 0.684148i \(-0.239826\pi\)
−0.227818 + 0.973704i \(0.573159\pi\)
\(642\) 0 0
\(643\) 3.45056 12.8777i 0.136077 0.507846i −0.863914 0.503639i \(-0.831994\pi\)
0.999991 0.00420705i \(-0.00133915\pi\)
\(644\) 0 0
\(645\) 28.8350 + 15.0175i 1.13538 + 0.591315i
\(646\) 0 0
\(647\) 30.5078i 1.19939i −0.800231 0.599693i \(-0.795290\pi\)
0.800231 0.599693i \(-0.204710\pi\)
\(648\) 0 0
\(649\) 1.21078i 0.0475272i
\(650\) 0 0
\(651\) 43.0451 + 22.4183i 1.68707 + 0.878642i
\(652\) 0 0
\(653\) 5.39824 20.1465i 0.211249 0.788394i −0.776204 0.630482i \(-0.782857\pi\)
0.987453 0.157912i \(-0.0504761\pi\)
\(654\) 0 0
\(655\) −2.19305 1.26616i −0.0856896 0.0494729i
\(656\) 0 0
\(657\) 7.93100 5.54884i 0.309418 0.216481i
\(658\) 0 0
\(659\) 3.90477 + 14.5728i 0.152108 + 0.567676i 0.999336 + 0.0364452i \(0.0116034\pi\)
−0.847227 + 0.531230i \(0.821730\pi\)
\(660\) 0 0
\(661\) 2.44325 9.11835i 0.0950316 0.354663i −0.901993 0.431751i \(-0.857896\pi\)
0.997024 + 0.0770887i \(0.0245625\pi\)
\(662\) 0 0
\(663\) −15.2154 13.9477i −0.590918 0.541684i
\(664\) 0 0
\(665\) 20.6706 0.801570
\(666\) 0 0
\(667\) −5.73833 + 5.73833i −0.222189 + 0.222189i
\(668\) 0 0
\(669\) 4.75830 3.03010i 0.183966 0.117150i
\(670\) 0 0
\(671\) 0.985698 + 1.70728i 0.0380525 + 0.0659088i
\(672\) 0 0
\(673\) −16.1140 + 27.9103i −0.621149 + 1.07586i 0.368123 + 0.929777i \(0.380001\pi\)
−0.989272 + 0.146085i \(0.953333\pi\)
\(674\) 0 0
\(675\) −47.7343 19.8042i −1.83729 0.762263i
\(676\) 0 0
\(677\) −4.16296 15.5364i −0.159996 0.597111i −0.998626 0.0524101i \(-0.983310\pi\)
0.838630 0.544701i \(-0.183357\pi\)
\(678\) 0 0
\(679\) 25.7025 + 44.5181i 0.986372 + 1.70845i
\(680\) 0 0
\(681\) 15.4617 + 3.43087i 0.592494 + 0.131471i
\(682\) 0 0
\(683\) 28.6734 + 28.6734i 1.09716 + 1.09716i 0.994742 + 0.102416i \(0.0326571\pi\)
0.102416 + 0.994742i \(0.467343\pi\)
\(684\) 0 0
\(685\) −57.5322 + 57.5322i −2.19819 + 2.19819i
\(686\) 0 0
\(687\) −6.71160 6.15240i −0.256064 0.234729i
\(688\) 0 0
\(689\) −26.1058 + 15.0722i −0.994552 + 0.574205i
\(690\) 0 0
\(691\) −44.0504 + 11.8033i −1.67575 + 0.449017i −0.966653 0.256089i \(-0.917566\pi\)
−0.709102 + 0.705106i \(0.750899\pi\)
\(692\) 0 0
\(693\) 2.07652 0.754895i 0.0788804 0.0286761i
\(694\) 0 0
\(695\) −22.3358 12.8956i −0.847243 0.489156i
\(696\) 0 0
\(697\) −12.5111 + 7.22328i −0.473892 + 0.273601i
\(698\) 0 0
\(699\) −11.3214 + 21.7380i −0.428213 + 0.822208i
\(700\) 0 0
\(701\) −13.0178 13.0178i −0.491676 0.491676i 0.417158 0.908834i \(-0.363026\pi\)
−0.908834 + 0.417158i \(0.863026\pi\)
\(702\) 0 0
\(703\) 5.99049i 0.225935i
\(704\) 0 0
\(705\) −9.45784 30.0164i −0.356203 1.13048i
\(706\) 0 0
\(707\) 0.436349 + 0.116919i 0.0164106 + 0.00439721i
\(708\) 0 0
\(709\) −16.3841 + 4.39011i −0.615319 + 0.164874i −0.552999 0.833182i \(-0.686517\pi\)
−0.0623199 + 0.998056i \(0.519850\pi\)
\(710\) 0 0
\(711\) 1.49876 + 17.2064i 0.0562079 + 0.645291i
\(712\) 0 0
\(713\) 16.0285 27.7622i 0.600273 1.03970i
\(714\) 0 0
\(715\) 2.29767 + 0.615660i 0.0859282 + 0.0230244i
\(716\) 0 0
\(717\) −26.0094 + 1.13063i −0.971339 + 0.0422242i
\(718\) 0 0
\(719\) 43.0731 1.60635 0.803177 0.595740i \(-0.203141\pi\)
0.803177 + 0.595740i \(0.203141\pi\)
\(720\) 0 0
\(721\) 27.5313 1.02532
\(722\) 0 0
\(723\) −13.3770 21.0065i −0.497495 0.781240i
\(724\) 0 0
\(725\) 20.2528 + 5.42673i 0.752171 + 0.201544i
\(726\) 0 0
\(727\) −15.3101 + 26.5179i −0.567821 + 0.983495i 0.428960 + 0.903324i \(0.358880\pi\)
−0.996781 + 0.0801716i \(0.974453\pi\)
\(728\) 0 0
\(729\) 26.0880 6.95830i 0.966221 0.257715i
\(730\) 0 0
\(731\) −19.8820 + 5.32737i −0.735363 + 0.197040i
\(732\) 0 0
\(733\) −2.53658 0.679676i −0.0936909 0.0251044i 0.211669 0.977341i \(-0.432110\pi\)
−0.305360 + 0.952237i \(0.598777\pi\)
\(734\) 0 0
\(735\) −28.2489 6.26827i −1.04197 0.231209i
\(736\) 0 0
\(737\) 1.17271i 0.0431972i
\(738\) 0 0
\(739\) −13.1402 13.1402i −0.483370 0.483370i 0.422836 0.906206i \(-0.361035\pi\)
−0.906206 + 0.422836i \(0.861035\pi\)
\(740\) 0 0
\(741\) −7.72970 + 0.336011i −0.283958 + 0.0123437i
\(742\) 0 0
\(743\) 1.79055 1.03378i 0.0656890 0.0379255i −0.466796 0.884365i \(-0.654592\pi\)
0.532485 + 0.846440i \(0.321258\pi\)
\(744\) 0 0
\(745\) −74.7897 43.1798i −2.74008 1.58199i
\(746\) 0 0
\(747\) −8.99989 + 10.7174i −0.329289 + 0.392127i
\(748\) 0 0
\(749\) 38.0958 10.2077i 1.39199 0.372982i
\(750\) 0 0
\(751\) −7.86676 + 4.54188i −0.287062 + 0.165735i −0.636616 0.771181i \(-0.719666\pi\)
0.349554 + 0.936916i \(0.386333\pi\)
\(752\) 0 0
\(753\) −8.40489 + 2.64829i −0.306291 + 0.0965091i
\(754\) 0 0
\(755\) 54.5367 54.5367i 1.98479 1.98479i
\(756\) 0 0
\(757\) 18.3910 + 18.3910i 0.668433 + 0.668433i 0.957353 0.288920i \(-0.0932961\pi\)
−0.288920 + 0.957353i \(0.593296\pi\)
\(758\) 0 0
\(759\) −0.438586 1.39194i −0.0159196 0.0505242i
\(760\) 0 0
\(761\) 14.1080 + 24.4358i 0.511415 + 0.885797i 0.999912 + 0.0132318i \(0.00421194\pi\)
−0.488497 + 0.872565i \(0.662455\pi\)
\(762\) 0 0
\(763\) −7.77481 29.0160i −0.281467 1.05045i
\(764\) 0 0
\(765\) 46.2091 16.7988i 1.67069 0.607362i
\(766\) 0 0
\(767\) −7.77467 + 13.4661i −0.280727 + 0.486234i
\(768\) 0 0
\(769\) −14.6064 25.2991i −0.526722 0.912309i −0.999515 0.0311354i \(-0.990088\pi\)
0.472794 0.881173i \(-0.343246\pi\)
\(770\) 0 0
\(771\) 0.427898 + 9.84350i 0.0154104 + 0.354505i
\(772\) 0 0
\(773\) 10.5491 10.5491i 0.379425 0.379425i −0.491470 0.870895i \(-0.663540\pi\)
0.870895 + 0.491470i \(0.163540\pi\)
\(774\) 0 0
\(775\) −82.8256 −2.97518
\(776\) 0 0
\(777\) −4.75923 + 21.4482i −0.170736 + 0.769448i
\(778\) 0 0
\(779\) −1.40154 + 5.23060i −0.0502152 + 0.187406i
\(780\) 0 0
\(781\) −0.426938 1.59335i −0.0152770 0.0570146i
\(782\) 0 0
\(783\) −10.1229 + 4.18627i −0.361764 + 0.149605i
\(784\) 0 0
\(785\) −49.8924 28.8054i −1.78074 1.02811i
\(786\) 0 0
\(787\) 9.05729 33.8023i 0.322857 1.20492i −0.593591 0.804767i \(-0.702290\pi\)
0.916448 0.400153i \(-0.131043\pi\)
\(788\) 0 0
\(789\) −31.7815 + 20.2385i −1.13145 + 0.720511i
\(790\) 0 0
\(791\) 56.9431i 2.02466i
\(792\) 0 0
\(793\) 25.3175i 0.899052i
\(794\) 0 0
\(795\) −3.11845 71.7379i −0.110600 2.54428i
\(796\) 0 0
\(797\) −7.41329 + 27.6668i −0.262592 + 0.980007i 0.701116 + 0.713048i \(0.252686\pi\)
−0.963708 + 0.266959i \(0.913981\pi\)
\(798\) 0 0
\(799\) 17.2554 + 9.96243i 0.610453 + 0.352445i
\(800\) 0 0
\(801\) −5.09328 7.27986i −0.179962 0.257221i
\(802\) 0 0
\(803\) −0.182786 0.682165i −0.00645036 0.0240731i
\(804\) 0 0
\(805\) −12.9598 + 48.3667i −0.456773 + 1.70470i
\(806\) 0 0
\(807\) 17.3693 5.47289i 0.611429 0.192655i
\(808\) 0 0
\(809\) 39.9831 1.40573 0.702865 0.711323i \(-0.251904\pi\)
0.702865 + 0.711323i \(0.251904\pi\)
\(810\) 0 0
\(811\) 33.5121 33.5121i 1.17677 1.17677i 0.196204 0.980563i \(-0.437138\pi\)
0.980563 0.196204i \(-0.0628616\pi\)
\(812\) 0 0
\(813\) 18.2614 + 9.51073i 0.640457 + 0.333556i
\(814\) 0 0
\(815\) 11.9123 + 20.6328i 0.417271 + 0.722734i
\(816\) 0 0
\(817\) −3.85771 + 6.68176i −0.134964 + 0.233765i
\(818\) 0 0
\(819\) 27.9421 + 4.93793i 0.976377 + 0.172545i
\(820\) 0 0
\(821\) −2.91908 10.8942i −0.101877 0.380209i 0.896096 0.443861i \(-0.146392\pi\)
−0.997972 + 0.0636527i \(0.979725\pi\)
\(822\) 0 0
\(823\) −27.4702 47.5798i −0.957551 1.65853i −0.728420 0.685131i \(-0.759745\pi\)
−0.229131 0.973396i \(-0.573588\pi\)
\(824\) 0 0
\(825\) −2.54794 + 2.77953i −0.0887080 + 0.0967708i
\(826\) 0 0
\(827\) 14.2104 + 14.2104i 0.494144 + 0.494144i 0.909609 0.415465i \(-0.136381\pi\)
−0.415465 + 0.909609i \(0.636381\pi\)
\(828\) 0 0
\(829\) 6.15512 6.15512i 0.213776 0.213776i −0.592093 0.805869i \(-0.701698\pi\)
0.805869 + 0.592093i \(0.201698\pi\)
\(830\) 0 0
\(831\) −3.88757 + 17.5199i −0.134858 + 0.607759i
\(832\) 0 0
\(833\) 15.8654 9.15989i 0.549704 0.317371i
\(834\) 0 0
\(835\) 51.2913 13.7435i 1.77501 0.475612i
\(836\) 0 0
\(837\) 34.3453 26.3229i 1.18715 0.909853i
\(838\) 0 0
\(839\) 21.5384 + 12.4352i 0.743590 + 0.429312i 0.823373 0.567500i \(-0.192089\pi\)
−0.0797833 + 0.996812i \(0.525423\pi\)
\(840\) 0 0
\(841\) −21.2658 + 12.2778i −0.733303 + 0.423373i
\(842\) 0 0
\(843\) −13.1297 20.6181i −0.452210 0.710127i
\(844\) 0 0
\(845\) −13.9363 13.9363i −0.479424 0.479424i
\(846\) 0 0
\(847\) 36.8507i 1.26621i
\(848\) 0 0
\(849\) 15.5036 16.9128i 0.532083 0.580444i
\(850\) 0 0
\(851\) 14.0170 + 3.75585i 0.480497 + 0.128749i
\(852\) 0 0
\(853\) 18.8477 5.05023i 0.645334 0.172917i 0.0787157 0.996897i \(-0.474918\pi\)
0.566618 + 0.823980i \(0.308251\pi\)
\(854\) 0 0
\(855\) 7.79521 16.7003i 0.266590 0.571137i
\(856\) 0 0
\(857\) 18.6982 32.3862i 0.638717 1.10629i −0.346998 0.937866i \(-0.612799\pi\)
0.985715 0.168424i \(-0.0538679\pi\)
\(858\) 0 0
\(859\) −26.5180 7.10549i −0.904784 0.242436i −0.223714 0.974655i \(-0.571818\pi\)
−0.681070 + 0.732219i \(0.738485\pi\)
\(860\) 0 0
\(861\) 9.17354 17.6140i 0.312634 0.600284i
\(862\) 0 0
\(863\) −10.1797 −0.346520 −0.173260 0.984876i \(-0.555430\pi\)
−0.173260 + 0.984876i \(0.555430\pi\)
\(864\) 0 0
\(865\) 20.9860 0.713545
\(866\) 0 0
\(867\) −0.777892 + 1.49362i −0.0264186 + 0.0507261i
\(868\) 0 0
\(869\) 1.21723 + 0.326156i 0.0412918 + 0.0110641i
\(870\) 0 0
\(871\) 7.53020 13.0427i 0.255151 0.441935i
\(872\) 0 0
\(873\) 45.6601 3.97721i 1.54536 0.134608i
\(874\) 0 0
\(875\) 62.1414 16.6507i 2.10076 0.562897i
\(876\) 0 0
\(877\) 25.7779 + 6.90717i 0.870458 + 0.233239i 0.666286 0.745696i \(-0.267883\pi\)
0.204172 + 0.978935i \(0.434550\pi\)
\(878\) 0 0
\(879\) 35.9960 39.2677i 1.21411 1.32447i
\(880\) 0 0
\(881\) 30.7798i 1.03700i −0.855078 0.518499i \(-0.826491\pi\)
0.855078 0.518499i \(-0.173509\pi\)
\(882\) 0 0
\(883\) 19.8089 + 19.8089i 0.666622 + 0.666622i 0.956933 0.290310i \(-0.0937586\pi\)
−0.290310 + 0.956933i \(0.593759\pi\)
\(884\) 0 0
\(885\) −19.8953 31.2425i −0.668774 1.05021i
\(886\) 0 0
\(887\) −21.0940 + 12.1786i −0.708266 + 0.408918i −0.810419 0.585851i \(-0.800760\pi\)
0.102153 + 0.994769i \(0.467427\pi\)
\(888\) 0 0
\(889\) 39.0550 + 22.5484i 1.30986 + 0.756249i
\(890\) 0 0
\(891\) 0.173190 1.96235i 0.00580210 0.0657413i
\(892\) 0 0
\(893\) 7.21410 1.93301i 0.241411 0.0646858i
\(894\) 0 0
\(895\) 1.79985 1.03914i 0.0601624 0.0347348i
\(896\) 0 0
\(897\) 4.06006 18.2972i 0.135561 0.610927i
\(898\) 0 0
\(899\) −12.4142 + 12.4142i −0.414037 + 0.414037i
\(900\) 0 0
\(901\) 32.1460 + 32.1460i 1.07094 + 1.07094i
\(902\) 0 0
\(903\) 19.1205 20.8583i 0.636289 0.694122i
\(904\) 0 0
\(905\) −13.6407 23.6264i −0.453433 0.785369i
\(906\) 0 0
\(907\) 15.0239 + 56.0698i 0.498859 + 1.86177i 0.507245 + 0.861802i \(0.330664\pi\)
−0.00838605 + 0.999965i \(0.502669\pi\)
\(908\) 0 0
\(909\) 0.259016 0.308445i 0.00859103 0.0102305i
\(910\) 0 0
\(911\) 11.9347 20.6715i 0.395414 0.684877i −0.597740 0.801690i \(-0.703934\pi\)
0.993154 + 0.116813i \(0.0372678\pi\)
\(912\) 0 0
\(913\) 0.510553 + 0.884303i 0.0168968 + 0.0292662i
\(914\) 0 0
\(915\) −53.4884 27.8572i −1.76827 0.920932i
\(916\) 0 0
\(917\) −1.55845 + 1.55845i −0.0514646 + 0.0514646i
\(918\) 0 0
\(919\) 15.7779 0.520466 0.260233 0.965546i \(-0.416201\pi\)
0.260233 + 0.965546i \(0.416201\pi\)
\(920\) 0 0
\(921\) −55.6284 + 17.5279i −1.83302 + 0.577565i
\(922\) 0 0
\(923\) 5.48292 20.4625i 0.180473 0.673533i
\(924\) 0 0
\(925\) −9.70397 36.2157i −0.319065 1.19077i
\(926\) 0 0
\(927\) 10.3825 22.2432i 0.341006 0.730562i
\(928\) 0 0
\(929\) 14.3132 + 8.26371i 0.469600 + 0.271123i 0.716072 0.698026i \(-0.245938\pi\)
−0.246472 + 0.969150i \(0.579271\pi\)
\(930\) 0 0
\(931\) 1.77730 6.63296i 0.0582485 0.217387i
\(932\) 0 0
\(933\) −0.799912 18.4014i −0.0261879 0.602436i
\(934\) 0 0
\(935\) 3.58740i 0.117320i
\(936\) 0 0
\(937\) 5.92940i 0.193705i −0.995299 0.0968526i \(-0.969122\pi\)
0.995299 0.0968526i \(-0.0308775\pi\)
\(938\) 0 0
\(939\) −27.7735 + 17.6862i −0.906354 + 0.577169i
\(940\) 0 0
\(941\) −5.52232 + 20.6096i −0.180022 + 0.671853i 0.815619 + 0.578589i \(0.196397\pi\)
−0.995641 + 0.0932635i \(0.970270\pi\)
\(942\) 0 0
\(943\) −11.3603 6.55886i −0.369941 0.213586i
\(944\) 0 0
\(945\) −41.1775 + 53.6001i −1.33950 + 1.74361i
\(946\) 0 0
\(947\) 8.57071 + 31.9863i 0.278511 + 1.03942i 0.953452 + 0.301545i \(0.0975022\pi\)
−0.674941 + 0.737871i \(0.735831\pi\)
\(948\) 0 0
\(949\) 2.34741 8.76066i 0.0762002 0.284383i
\(950\) 0 0
\(951\) −4.61279 + 20.7882i −0.149580 + 0.674105i
\(952\) 0 0
\(953\) 0.546564 0.0177049 0.00885247 0.999961i \(-0.497182\pi\)
0.00885247 + 0.999961i \(0.497182\pi\)
\(954\) 0 0
\(955\) −29.5538 + 29.5538i −0.956339 + 0.956339i
\(956\) 0 0
\(957\) 0.0347109 + 0.798502i 0.00112205 + 0.0258119i
\(958\) 0 0
\(959\) 35.4068 + 61.3264i 1.14335 + 1.98033i
\(960\) 0 0
\(961\) 19.1758 33.2135i 0.618576 1.07140i
\(962\) 0 0
\(963\) 6.11946 34.6280i 0.197197 1.11587i
\(964\) 0 0
\(965\) 5.20393 + 19.4213i 0.167521 + 0.625195i
\(966\) 0 0
\(967\) 7.49046 + 12.9739i 0.240877 + 0.417211i 0.960964 0.276672i \(-0.0892316\pi\)
−0.720087 + 0.693883i \(0.755898\pi\)
\(968\) 0 0
\(969\) 3.50660 + 11.1289i 0.112648 + 0.357512i
\(970\) 0 0
\(971\) −29.4725 29.4725i −0.945816 0.945816i 0.0527896 0.998606i \(-0.483189\pi\)
−0.998606 + 0.0527896i \(0.983189\pi\)
\(972\) 0 0
\(973\) −15.8725 + 15.8725i −0.508849 + 0.508849i
\(974\) 0 0
\(975\) −46.1859 + 14.5527i −1.47913 + 0.466059i
\(976\) 0 0
\(977\) 2.02199 1.16740i 0.0646892 0.0373483i −0.467307 0.884095i \(-0.654776\pi\)
0.531996 + 0.846747i \(0.321442\pi\)
\(978\) 0 0
\(979\) −0.626159 + 0.167779i −0.0200121 + 0.00536224i
\(980\) 0 0
\(981\) −26.3747 4.66094i −0.842080 0.148812i
\(982\) 0 0
\(983\) −21.5089 12.4182i −0.686029 0.396079i 0.116094 0.993238i \(-0.462963\pi\)
−0.802123 + 0.597159i \(0.796296\pi\)
\(984\) 0 0
\(985\) 13.9464 8.05197i 0.444370 0.256557i
\(986\) 0 0
\(987\) −27.3649 + 1.18955i −0.871033 + 0.0378639i
\(988\) 0 0
\(989\) −13.2158 13.2158i −0.420240 0.420240i
\(990\) 0 0
\(991\) 7.12527i 0.226342i 0.993576 + 0.113171i \(0.0361008\pi\)
−0.993576 + 0.113171i \(0.963899\pi\)
\(992\) 0 0
\(993\) 58.4622 + 12.9724i 1.85524 + 0.411668i
\(994\) 0 0
\(995\) −9.60763 2.57436i −0.304582 0.0816126i
\(996\) 0 0
\(997\) −47.5897 + 12.7516i −1.50718 + 0.403848i −0.915498 0.402322i \(-0.868203\pi\)
−0.591684 + 0.806170i \(0.701537\pi\)
\(998\) 0 0
\(999\) 15.5337 + 11.9335i 0.491465 + 0.377561i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.y.a.335.15 88
3.2 odd 2 1728.2.z.a.143.1 88
4.3 odd 2 144.2.u.a.11.7 88
9.4 even 3 1728.2.z.a.719.1 88
9.5 odd 6 inner 576.2.y.a.527.3 88
12.11 even 2 432.2.v.a.251.16 88
16.3 odd 4 inner 576.2.y.a.47.3 88
16.13 even 4 144.2.u.a.83.14 yes 88
36.23 even 6 144.2.u.a.59.14 yes 88
36.31 odd 6 432.2.v.a.395.9 88
48.29 odd 4 432.2.v.a.35.9 88
48.35 even 4 1728.2.z.a.1007.1 88
144.13 even 12 432.2.v.a.179.16 88
144.67 odd 12 1728.2.z.a.1583.1 88
144.77 odd 12 144.2.u.a.131.7 yes 88
144.131 even 12 inner 576.2.y.a.239.15 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.7 88 4.3 odd 2
144.2.u.a.59.14 yes 88 36.23 even 6
144.2.u.a.83.14 yes 88 16.13 even 4
144.2.u.a.131.7 yes 88 144.77 odd 12
432.2.v.a.35.9 88 48.29 odd 4
432.2.v.a.179.16 88 144.13 even 12
432.2.v.a.251.16 88 12.11 even 2
432.2.v.a.395.9 88 36.31 odd 6
576.2.y.a.47.3 88 16.3 odd 4 inner
576.2.y.a.239.15 88 144.131 even 12 inner
576.2.y.a.335.15 88 1.1 even 1 trivial
576.2.y.a.527.3 88 9.5 odd 6 inner
1728.2.z.a.143.1 88 3.2 odd 2
1728.2.z.a.719.1 88 9.4 even 3
1728.2.z.a.1007.1 88 48.35 even 4
1728.2.z.a.1583.1 88 144.67 odd 12