Properties

Label 1728.2.z.a.143.1
Level $1728$
Weight $2$
Character 1728.143
Analytic conductor $13.798$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,2,Mod(143,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 143.1
Character \(\chi\) \(=\) 1728.143
Dual form 1728.2.z.a.1583.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.73424 - 1.00059i) q^{5} +(1.68236 - 2.91393i) q^{7} +(0.211428 - 0.0566521i) q^{11} +(-2.71526 - 0.727551i) q^{13} -4.23937i q^{17} +(1.12365 + 1.12365i) q^{19} +(3.33369 - 1.92471i) q^{23} +(8.61325 + 4.97286i) q^{25} +(-2.03634 + 0.545635i) q^{29} +(-7.21206 + 4.16388i) q^{31} +(-9.19798 + 9.19798i) q^{35} +(-2.66564 - 2.66564i) q^{37} +(-1.70386 - 2.95117i) q^{41} +(1.25664 + 4.68985i) q^{43} +(-2.34998 + 4.07028i) q^{47} +(-2.16067 - 3.74239i) q^{49} +(-7.58271 + 7.58271i) q^{53} -0.846209 q^{55} +(-1.43167 + 5.34305i) q^{59} +(-2.33105 - 8.69958i) q^{61} +(9.41144 + 5.43370i) q^{65} +(-1.38665 + 5.17504i) q^{67} -7.53614i q^{71} +3.22646i q^{73} +(0.190618 - 0.711397i) q^{77} +(-4.98587 - 2.87859i) q^{79} +(1.20739 + 4.50604i) q^{83} +(-4.24186 + 15.8308i) q^{85} -2.96157 q^{89} +(-6.68807 + 6.68807i) q^{91} +(-3.07166 - 5.32027i) q^{95} +(-7.63883 + 13.2308i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{5} + 4 q^{7} - 6 q^{11} - 2 q^{13} + 8 q^{19} - 12 q^{23} + 6 q^{29} - 8 q^{37} + 2 q^{43} - 24 q^{49} + 16 q^{55} - 42 q^{59} - 2 q^{61} + 12 q^{65} + 2 q^{67} + 6 q^{77} + 54 q^{83} + 8 q^{85}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.73424 1.00059i −1.67000 0.447476i −0.704891 0.709315i \(-0.749004\pi\)
−0.965111 + 0.261839i \(0.915671\pi\)
\(6\) 0 0
\(7\) 1.68236 2.91393i 0.635872 1.10136i −0.350457 0.936579i \(-0.613974\pi\)
0.986330 0.164785i \(-0.0526929\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.211428 0.0566521i 0.0637480 0.0170812i −0.226804 0.973940i \(-0.572828\pi\)
0.290552 + 0.956859i \(0.406161\pi\)
\(12\) 0 0
\(13\) −2.71526 0.727551i −0.753076 0.201786i −0.138194 0.990405i \(-0.544130\pi\)
−0.614882 + 0.788619i \(0.710796\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.23937i 1.02820i −0.857731 0.514100i \(-0.828126\pi\)
0.857731 0.514100i \(-0.171874\pi\)
\(18\) 0 0
\(19\) 1.12365 + 1.12365i 0.257782 + 0.257782i 0.824152 0.566369i \(-0.191652\pi\)
−0.566369 + 0.824152i \(0.691652\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.33369 1.92471i 0.695123 0.401329i −0.110405 0.993887i \(-0.535215\pi\)
0.805528 + 0.592557i \(0.201882\pi\)
\(24\) 0 0
\(25\) 8.61325 + 4.97286i 1.72265 + 0.994572i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.03634 + 0.545635i −0.378138 + 0.101322i −0.442882 0.896580i \(-0.646044\pi\)
0.0647434 + 0.997902i \(0.479377\pi\)
\(30\) 0 0
\(31\) −7.21206 + 4.16388i −1.29532 + 0.747856i −0.979593 0.200993i \(-0.935583\pi\)
−0.315731 + 0.948849i \(0.602250\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −9.19798 + 9.19798i −1.55474 + 1.55474i
\(36\) 0 0
\(37\) −2.66564 2.66564i −0.438229 0.438229i 0.453187 0.891416i \(-0.350287\pi\)
−0.891416 + 0.453187i \(0.850287\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.70386 2.95117i −0.266098 0.460895i 0.701753 0.712420i \(-0.252401\pi\)
−0.967851 + 0.251526i \(0.919068\pi\)
\(42\) 0 0
\(43\) 1.25664 + 4.68985i 0.191636 + 0.715195i 0.993112 + 0.117168i \(0.0373817\pi\)
−0.801476 + 0.598027i \(0.795952\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.34998 + 4.07028i −0.342779 + 0.593711i −0.984948 0.172852i \(-0.944702\pi\)
0.642168 + 0.766564i \(0.278035\pi\)
\(48\) 0 0
\(49\) −2.16067 3.74239i −0.308667 0.534628i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.58271 + 7.58271i −1.04157 + 1.04157i −0.0424680 + 0.999098i \(0.513522\pi\)
−0.999098 + 0.0424680i \(0.986478\pi\)
\(54\) 0 0
\(55\) −0.846209 −0.114103
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.43167 + 5.34305i −0.186387 + 0.695605i 0.807942 + 0.589261i \(0.200581\pi\)
−0.994329 + 0.106344i \(0.966085\pi\)
\(60\) 0 0
\(61\) −2.33105 8.69958i −0.298460 1.11387i −0.938431 0.345468i \(-0.887720\pi\)
0.639971 0.768399i \(-0.278946\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.41144 + 5.43370i 1.16735 + 0.673967i
\(66\) 0 0
\(67\) −1.38665 + 5.17504i −0.169406 + 0.632231i 0.828031 + 0.560682i \(0.189461\pi\)
−0.997437 + 0.0715493i \(0.977206\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.53614i 0.894375i −0.894440 0.447187i \(-0.852426\pi\)
0.894440 0.447187i \(-0.147574\pi\)
\(72\) 0 0
\(73\) 3.22646i 0.377629i 0.982013 + 0.188814i \(0.0604644\pi\)
−0.982013 + 0.188814i \(0.939536\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.190618 0.711397i 0.0217230 0.0810712i
\(78\) 0 0
\(79\) −4.98587 2.87859i −0.560954 0.323867i 0.192574 0.981282i \(-0.438316\pi\)
−0.753528 + 0.657415i \(0.771650\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.20739 + 4.50604i 0.132528 + 0.494602i 0.999996 0.00289160i \(-0.000920425\pi\)
−0.867468 + 0.497494i \(0.834254\pi\)
\(84\) 0 0
\(85\) −4.24186 + 15.8308i −0.460094 + 1.71710i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.96157 −0.313926 −0.156963 0.987605i \(-0.550170\pi\)
−0.156963 + 0.987605i \(0.550170\pi\)
\(90\) 0 0
\(91\) −6.68807 + 6.68807i −0.701100 + 0.701100i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.07166 5.32027i −0.315146 0.545849i
\(96\) 0 0
\(97\) −7.63883 + 13.2308i −0.775606 + 1.34339i 0.158848 + 0.987303i \(0.449222\pi\)
−0.934453 + 0.356085i \(0.884111\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.0347486 0.129684i −0.00345762 0.0129040i 0.964175 0.265265i \(-0.0854595\pi\)
−0.967633 + 0.252361i \(0.918793\pi\)
\(102\) 0 0
\(103\) 4.09117 + 7.08611i 0.403115 + 0.698215i 0.994100 0.108467i \(-0.0345942\pi\)
−0.590985 + 0.806682i \(0.701261\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.28837 8.28837i −0.801267 0.801267i 0.182027 0.983294i \(-0.441734\pi\)
−0.983294 + 0.182027i \(0.941734\pi\)
\(108\) 0 0
\(109\) 6.31291 6.31291i 0.604667 0.604667i −0.336881 0.941547i \(-0.609372\pi\)
0.941547 + 0.336881i \(0.109372\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.6562 + 8.46178i −1.37874 + 0.796017i −0.992008 0.126174i \(-0.959730\pi\)
−0.386735 + 0.922191i \(0.626397\pi\)
\(114\) 0 0
\(115\) −14.3746 + 3.85167i −1.34044 + 0.359171i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.3533 7.13215i −1.13242 0.653803i
\(120\) 0 0
\(121\) −9.48479 + 5.47604i −0.862253 + 0.497822i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −13.5199 13.5199i −1.20926 1.20926i
\(126\) 0 0
\(127\) 13.4028i 1.18931i 0.803981 + 0.594654i \(0.202711\pi\)
−0.803981 + 0.594654i \(0.797289\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.632708 + 0.169534i 0.0552800 + 0.0148122i 0.286353 0.958124i \(-0.407557\pi\)
−0.231073 + 0.972936i \(0.574224\pi\)
\(132\) 0 0
\(133\) 5.16461 1.38385i 0.447829 0.119995i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.5230 18.2263i 0.899037 1.55718i 0.0703095 0.997525i \(-0.477601\pi\)
0.828727 0.559652i \(-0.189065\pi\)
\(138\) 0 0
\(139\) −6.44400 1.72666i −0.546573 0.146454i −0.0250423 0.999686i \(-0.507972\pi\)
−0.521530 + 0.853233i \(0.674639\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.615299 −0.0514539
\(144\) 0 0
\(145\) 8.15012 0.676831
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.5773 + 5.78161i 1.76768 + 0.473648i 0.988250 0.152844i \(-0.0488431\pi\)
0.779428 + 0.626492i \(0.215510\pi\)
\(150\) 0 0
\(151\) 9.97506 17.2773i 0.811759 1.40601i −0.0998734 0.995000i \(-0.531844\pi\)
0.911632 0.411007i \(-0.134823\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 31.0979 8.33265i 2.49784 0.669295i
\(156\) 0 0
\(157\) −14.3943 3.85693i −1.14879 0.307817i −0.366308 0.930494i \(-0.619378\pi\)
−0.782479 + 0.622677i \(0.786045\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.9522i 1.02078i
\(162\) 0 0
\(163\) 4.35766 + 4.35766i 0.341318 + 0.341318i 0.856863 0.515545i \(-0.172410\pi\)
−0.515545 + 0.856863i \(0.672410\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.8952 + 6.86770i −0.920479 + 0.531439i −0.883788 0.467888i \(-0.845015\pi\)
−0.0366910 + 0.999327i \(0.511682\pi\)
\(168\) 0 0
\(169\) −4.41505 2.54903i −0.339619 0.196079i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.24342 + 1.40497i −0.398650 + 0.106818i −0.452573 0.891727i \(-0.649494\pi\)
0.0539235 + 0.998545i \(0.482827\pi\)
\(174\) 0 0
\(175\) 28.9812 16.7323i 2.19077 1.26484i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.380130 + 0.380130i −0.0284123 + 0.0284123i −0.721170 0.692758i \(-0.756395\pi\)
0.692758 + 0.721170i \(0.256395\pi\)
\(180\) 0 0
\(181\) −4.98992 4.98992i −0.370898 0.370898i 0.496906 0.867804i \(-0.334469\pi\)
−0.867804 + 0.496906i \(0.834469\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.28695 + 12.6214i 0.535747 + 0.927941i
\(186\) 0 0
\(187\) −0.240169 0.896324i −0.0175629 0.0655457i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.40555 9.36269i 0.391132 0.677461i −0.601467 0.798898i \(-0.705417\pi\)
0.992599 + 0.121437i \(0.0387502\pi\)
\(192\) 0 0
\(193\) 2.60044 + 4.50410i 0.187184 + 0.324212i 0.944310 0.329056i \(-0.106731\pi\)
−0.757126 + 0.653268i \(0.773397\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.94550 + 2.94550i −0.209858 + 0.209858i −0.804207 0.594349i \(-0.797410\pi\)
0.594349 + 0.804207i \(0.297410\pi\)
\(198\) 0 0
\(199\) −2.57285 −0.182384 −0.0911921 0.995833i \(-0.529068\pi\)
−0.0911921 + 0.995833i \(0.529068\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.83591 + 6.85170i −0.128856 + 0.480895i
\(204\) 0 0
\(205\) 3.40971 + 12.7252i 0.238145 + 0.888768i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.301228 + 0.173914i 0.0208364 + 0.0120299i
\(210\) 0 0
\(211\) 4.70786 17.5700i 0.324103 1.20957i −0.591108 0.806592i \(-0.701309\pi\)
0.915211 0.402975i \(-0.132024\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.7704i 1.28013i
\(216\) 0 0
\(217\) 28.0206i 1.90216i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.08436 + 11.5110i −0.207476 + 0.774312i
\(222\) 0 0
\(223\) 2.82059 + 1.62847i 0.188881 + 0.109050i 0.591458 0.806336i \(-0.298552\pi\)
−0.402578 + 0.915386i \(0.631886\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.36663 8.83238i −0.157079 0.586226i −0.998918 0.0464979i \(-0.985194\pi\)
0.841840 0.539728i \(-0.181473\pi\)
\(228\) 0 0
\(229\) 1.36053 5.07755i 0.0899061 0.335534i −0.906292 0.422652i \(-0.861099\pi\)
0.996198 + 0.0871183i \(0.0277658\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.1506 0.927034 0.463517 0.886088i \(-0.346587\pi\)
0.463517 + 0.886088i \(0.346587\pi\)
\(234\) 0 0
\(235\) 12.8480 12.8480i 0.838114 0.838114i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.51536 + 13.0170i 0.486128 + 0.841999i 0.999873 0.0159444i \(-0.00507546\pi\)
−0.513745 + 0.857943i \(0.671742\pi\)
\(240\) 0 0
\(241\) 7.18920 12.4521i 0.463097 0.802108i −0.536016 0.844208i \(-0.680071\pi\)
0.999113 + 0.0420996i \(0.0134047\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.32388 + 16.1369i 0.276242 + 1.03095i
\(246\) 0 0
\(247\) −2.23348 3.86850i −0.142113 0.246147i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.59758 + 3.59758i 0.227077 + 0.227077i 0.811471 0.584393i \(-0.198667\pi\)
−0.584393 + 0.811471i \(0.698667\pi\)
\(252\) 0 0
\(253\) 0.595798 0.595798i 0.0374575 0.0374575i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.92640 2.84426i 0.307300 0.177420i −0.338418 0.940996i \(-0.609892\pi\)
0.645718 + 0.763576i \(0.276558\pi\)
\(258\) 0 0
\(259\) −12.2521 + 3.28294i −0.761307 + 0.203992i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.8392 + 10.8768i 1.16167 + 0.670693i 0.951705 0.307015i \(-0.0993300\pi\)
0.209970 + 0.977708i \(0.432663\pi\)
\(264\) 0 0
\(265\) 35.9028 20.7285i 2.20549 1.27334i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.43467 7.43467i −0.453300 0.453300i 0.443148 0.896448i \(-0.353861\pi\)
−0.896448 + 0.443148i \(0.853861\pi\)
\(270\) 0 0
\(271\) 11.8875i 0.722111i 0.932544 + 0.361056i \(0.117584\pi\)
−0.932544 + 0.361056i \(0.882416\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.10281 + 0.563445i 0.126804 + 0.0339770i
\(276\) 0 0
\(277\) −10.0081 + 2.68166i −0.601329 + 0.161126i −0.546626 0.837377i \(-0.684088\pi\)
−0.0547032 + 0.998503i \(0.517421\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.05630 + 12.2219i −0.420944 + 0.729096i −0.996032 0.0889955i \(-0.971634\pi\)
0.575088 + 0.818091i \(0.304968\pi\)
\(282\) 0 0
\(283\) 12.7951 + 3.42843i 0.760588 + 0.203799i 0.618209 0.786013i \(-0.287858\pi\)
0.142378 + 0.989812i \(0.454525\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.4660 −0.676817
\(288\) 0 0
\(289\) −0.972286 −0.0571933
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −29.7073 7.96005i −1.73552 0.465031i −0.754077 0.656787i \(-0.771915\pi\)
−0.981443 + 0.191756i \(0.938582\pi\)
\(294\) 0 0
\(295\) 10.6924 18.5197i 0.622533 1.07826i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.4522 + 2.80065i −0.604463 + 0.161965i
\(300\) 0 0
\(301\) 15.7800 + 4.22825i 0.909546 + 0.243712i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 34.8187i 1.99371i
\(306\) 0 0
\(307\) −23.8109 23.8109i −1.35896 1.35896i −0.875202 0.483758i \(-0.839272\pi\)
−0.483758 0.875202i \(-0.660728\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.20941 + 5.31706i −0.522218 + 0.301503i −0.737842 0.674974i \(-0.764155\pi\)
0.215624 + 0.976477i \(0.430822\pi\)
\(312\) 0 0
\(313\) −16.4634 9.50514i −0.930565 0.537262i −0.0435750 0.999050i \(-0.513875\pi\)
−0.886990 + 0.461788i \(0.847208\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.8751 3.18193i 0.666972 0.178715i 0.0905818 0.995889i \(-0.471127\pi\)
0.576391 + 0.817174i \(0.304461\pi\)
\(318\) 0 0
\(319\) −0.399628 + 0.230725i −0.0223749 + 0.0129181i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.76356 4.76356i 0.265052 0.265052i
\(324\) 0 0
\(325\) −19.7692 19.7692i −1.09660 1.09660i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.90701 + 13.6953i 0.435928 + 0.755049i
\(330\) 0 0
\(331\) 8.94844 + 33.3960i 0.491851 + 1.83561i 0.546998 + 0.837134i \(0.315771\pi\)
−0.0551468 + 0.998478i \(0.517563\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.3561 17.9374i 0.565817 0.980023i
\(336\) 0 0
\(337\) −14.3693 24.8884i −0.782746 1.35576i −0.930336 0.366707i \(-0.880485\pi\)
0.147591 0.989049i \(-0.452848\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.28894 + 1.28894i −0.0698001 + 0.0698001i
\(342\) 0 0
\(343\) 9.01293 0.486653
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.92992 + 10.9346i −0.157287 + 0.587002i 0.841612 + 0.540082i \(0.181607\pi\)
−0.998899 + 0.0469191i \(0.985060\pi\)
\(348\) 0 0
\(349\) −2.90715 10.8496i −0.155616 0.580767i −0.999052 0.0435372i \(-0.986137\pi\)
0.843436 0.537230i \(-0.180529\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.85946 1.07356i −0.0989689 0.0571397i 0.449699 0.893180i \(-0.351531\pi\)
−0.548668 + 0.836041i \(0.684865\pi\)
\(354\) 0 0
\(355\) −7.54056 + 28.1417i −0.400211 + 1.49361i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.0166i 0.581435i 0.956809 + 0.290718i \(0.0938941\pi\)
−0.956809 + 0.290718i \(0.906106\pi\)
\(360\) 0 0
\(361\) 16.4748i 0.867097i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.22835 12.0484i 0.168980 0.630641i
\(366\) 0 0
\(367\) −20.1365 11.6258i −1.05112 0.606863i −0.128156 0.991754i \(-0.540906\pi\)
−0.922962 + 0.384891i \(0.874239\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.33867 + 34.8524i 0.484839 + 1.80945i
\(372\) 0 0
\(373\) −2.66079 + 9.93021i −0.137771 + 0.514167i 0.862201 + 0.506567i \(0.169086\pi\)
−0.999971 + 0.00759967i \(0.997581\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.92615 0.305212
\(378\) 0 0
\(379\) 6.14819 6.14819i 0.315811 0.315811i −0.531345 0.847156i \(-0.678313\pi\)
0.847156 + 0.531345i \(0.178313\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.40170 + 2.42782i 0.0716238 + 0.124056i 0.899613 0.436688i \(-0.143849\pi\)
−0.827989 + 0.560744i \(0.810515\pi\)
\(384\) 0 0
\(385\) −1.42363 + 2.46580i −0.0725548 + 0.125669i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.82350 29.1977i −0.396667 1.48038i −0.818922 0.573905i \(-0.805428\pi\)
0.422255 0.906477i \(-0.361239\pi\)
\(390\) 0 0
\(391\) −8.15956 14.1328i −0.412647 0.714725i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.7382 + 15.7382i 0.791873 + 0.791873i
\(396\) 0 0
\(397\) 1.95789 1.95789i 0.0982636 0.0982636i −0.656266 0.754530i \(-0.727865\pi\)
0.754530 + 0.656266i \(0.227865\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.7356 16.5905i 1.43499 0.828489i 0.437490 0.899223i \(-0.355867\pi\)
0.997495 + 0.0707337i \(0.0225340\pi\)
\(402\) 0 0
\(403\) 22.6120 6.05887i 1.12638 0.301814i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.714607 0.412578i −0.0354217 0.0204508i
\(408\) 0 0
\(409\) 22.8959 13.2190i 1.13213 0.653636i 0.187660 0.982234i \(-0.439910\pi\)
0.944470 + 0.328598i \(0.106576\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 13.1607 + 13.1607i 0.647596 + 0.647596i
\(414\) 0 0
\(415\) 18.0347i 0.885290i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.499479 0.133835i −0.0244012 0.00653827i 0.246598 0.969118i \(-0.420687\pi\)
−0.270999 + 0.962580i \(0.587354\pi\)
\(420\) 0 0
\(421\) 12.8514 3.44352i 0.626339 0.167827i 0.0683313 0.997663i \(-0.478233\pi\)
0.558008 + 0.829836i \(0.311566\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 21.0818 36.5148i 1.02262 1.77123i
\(426\) 0 0
\(427\) −29.2717 7.84332i −1.41655 0.379565i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.61129 −0.414791 −0.207396 0.978257i \(-0.566499\pi\)
−0.207396 + 0.978257i \(0.566499\pi\)
\(432\) 0 0
\(433\) 6.43973 0.309474 0.154737 0.987956i \(-0.450547\pi\)
0.154737 + 0.987956i \(0.450547\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.90859 + 1.58320i 0.282646 + 0.0757348i
\(438\) 0 0
\(439\) −14.4510 + 25.0298i −0.689707 + 1.19461i 0.282225 + 0.959348i \(0.408927\pi\)
−0.971933 + 0.235260i \(0.924406\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.1860 + 8.35627i −1.48169 + 0.397018i −0.906923 0.421297i \(-0.861575\pi\)
−0.574770 + 0.818315i \(0.694908\pi\)
\(444\) 0 0
\(445\) 11.0592 + 2.96330i 0.524257 + 0.140474i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.7097i 0.505423i −0.967542 0.252711i \(-0.918678\pi\)
0.967542 0.252711i \(-0.0813223\pi\)
\(450\) 0 0
\(451\) −0.527433 0.527433i −0.0248359 0.0248359i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 31.6669 18.2829i 1.48457 0.857114i
\(456\) 0 0
\(457\) 13.1358 + 7.58393i 0.614465 + 0.354761i 0.774711 0.632316i \(-0.217895\pi\)
−0.160246 + 0.987077i \(0.551229\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.5696 3.10006i 0.538849 0.144384i 0.0208774 0.999782i \(-0.493354\pi\)
0.517971 + 0.855398i \(0.326687\pi\)
\(462\) 0 0
\(463\) 2.03363 1.17412i 0.0945107 0.0545658i −0.452000 0.892018i \(-0.649289\pi\)
0.546510 + 0.837452i \(0.315956\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.1509 24.1509i 1.11757 1.11757i 0.125473 0.992097i \(-0.459955\pi\)
0.992097 0.125473i \(-0.0400449\pi\)
\(468\) 0 0
\(469\) 12.7469 + 12.7469i 0.588596 + 0.588596i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.531379 + 0.920376i 0.0244328 + 0.0423189i
\(474\) 0 0
\(475\) 4.09051 + 15.2660i 0.187685 + 0.700452i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.40917 + 4.17281i −0.110078 + 0.190660i −0.915801 0.401631i \(-0.868443\pi\)
0.805724 + 0.592292i \(0.201777\pi\)
\(480\) 0 0
\(481\) 5.29851 + 9.17730i 0.241591 + 0.418449i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 41.7638 41.7638i 1.89640 1.89640i
\(486\) 0 0
\(487\) −37.5042 −1.69948 −0.849739 0.527204i \(-0.823240\pi\)
−0.849739 + 0.527204i \(0.823240\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.504576 + 1.88310i −0.0227712 + 0.0849832i −0.976376 0.216077i \(-0.930674\pi\)
0.953605 + 0.301060i \(0.0973405\pi\)
\(492\) 0 0
\(493\) 2.31315 + 8.63279i 0.104179 + 0.388801i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −21.9598 12.6785i −0.985032 0.568708i
\(498\) 0 0
\(499\) 2.91509 10.8793i 0.130497 0.487023i −0.869478 0.493971i \(-0.835545\pi\)
0.999976 + 0.00694794i \(0.00221162\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.3339i 0.683706i −0.939753 0.341853i \(-0.888945\pi\)
0.939753 0.341853i \(-0.111055\pi\)
\(504\) 0 0
\(505\) 0.519039i 0.0230969i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.59758 + 32.0866i −0.381081 + 1.42221i 0.463172 + 0.886269i \(0.346711\pi\)
−0.844253 + 0.535945i \(0.819955\pi\)
\(510\) 0 0
\(511\) 9.40169 + 5.42807i 0.415906 + 0.240124i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.18713 30.5548i −0.360768 1.34641i
\(516\) 0 0
\(517\) −0.266262 + 0.993703i −0.0117102 + 0.0437030i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.5032 −0.898262 −0.449131 0.893466i \(-0.648266\pi\)
−0.449131 + 0.893466i \(0.648266\pi\)
\(522\) 0 0
\(523\) 29.2406 29.2406i 1.27860 1.27860i 0.337151 0.941451i \(-0.390537\pi\)
0.941451 0.337151i \(-0.109463\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.6523 + 30.5746i 0.768944 + 1.33185i
\(528\) 0 0
\(529\) −4.09099 + 7.08581i −0.177869 + 0.308079i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.47928 + 9.25281i 0.107390 + 0.400784i
\(534\) 0 0
\(535\) 22.6575 + 39.2440i 0.979570 + 1.69667i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.668841 0.668841i −0.0288090 0.0288090i
\(540\) 0 0
\(541\) 20.5836 20.5836i 0.884956 0.884956i −0.109077 0.994033i \(-0.534790\pi\)
0.994033 + 0.109077i \(0.0347895\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −29.8905 + 17.2573i −1.28037 + 0.739221i
\(546\) 0 0
\(547\) 38.0779 10.2029i 1.62809 0.436246i 0.674728 0.738067i \(-0.264261\pi\)
0.953365 + 0.301821i \(0.0975945\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.90122 1.67502i −0.123596 0.0713584i
\(552\) 0 0
\(553\) −16.7761 + 9.68566i −0.713391 + 0.411876i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.52288 1.52288i −0.0645265 0.0645265i 0.674107 0.738634i \(-0.264529\pi\)
−0.738634 + 0.674107i \(0.764529\pi\)
\(558\) 0 0
\(559\) 13.6484i 0.577266i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.85715 1.30147i −0.204705 0.0548504i 0.155010 0.987913i \(-0.450459\pi\)
−0.359714 + 0.933063i \(0.617126\pi\)
\(564\) 0 0
\(565\) 63.1966 16.9335i 2.65870 0.712397i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17.4710 + 30.2606i −0.732421 + 1.26859i 0.223425 + 0.974721i \(0.428276\pi\)
−0.955846 + 0.293869i \(0.905057\pi\)
\(570\) 0 0
\(571\) −34.1869 9.16034i −1.43068 0.383348i −0.541417 0.840754i \(-0.682112\pi\)
−0.889258 + 0.457406i \(0.848779\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 38.2852 1.59660
\(576\) 0 0
\(577\) −17.4865 −0.727972 −0.363986 0.931404i \(-0.618584\pi\)
−0.363986 + 0.931404i \(0.618584\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 15.1616 + 4.06253i 0.629008 + 0.168542i
\(582\) 0 0
\(583\) −1.17362 + 2.03278i −0.0486065 + 0.0841890i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.3561 3.31081i 0.509991 0.136652i 0.00535825 0.999986i \(-0.498294\pi\)
0.504633 + 0.863334i \(0.331628\pi\)
\(588\) 0 0
\(589\) −12.7825 3.42507i −0.526696 0.141128i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.7816i 1.05872i −0.848397 0.529361i \(-0.822432\pi\)
0.848397 0.529361i \(-0.177568\pi\)
\(594\) 0 0
\(595\) 38.9937 + 38.9937i 1.59858 + 1.59858i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.3647 + 15.7990i −1.11809 + 0.645531i −0.940913 0.338647i \(-0.890031\pi\)
−0.177180 + 0.984179i \(0.556697\pi\)
\(600\) 0 0
\(601\) −23.3729 13.4944i −0.953401 0.550447i −0.0592656 0.998242i \(-0.518876\pi\)
−0.894136 + 0.447796i \(0.852209\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 40.8977 10.9585i 1.66273 0.445527i
\(606\) 0 0
\(607\) −21.2314 + 12.2579i −0.861755 + 0.497534i −0.864600 0.502462i \(-0.832428\pi\)
0.00284471 + 0.999996i \(0.499095\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.34212 9.34212i 0.377942 0.377942i
\(612\) 0 0
\(613\) −30.3894 30.3894i −1.22742 1.22742i −0.964937 0.262481i \(-0.915459\pi\)
−0.262481 0.964937i \(-0.584541\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.8393 27.4345i −0.637668 1.10447i −0.985943 0.167081i \(-0.946566\pi\)
0.348275 0.937392i \(-0.386767\pi\)
\(618\) 0 0
\(619\) −5.39413 20.1312i −0.216809 0.809141i −0.985522 0.169547i \(-0.945769\pi\)
0.768713 0.639593i \(-0.220897\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.98242 + 8.62981i −0.199617 + 0.345746i
\(624\) 0 0
\(625\) 12.0944 + 20.9481i 0.483775 + 0.837923i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11.3007 + 11.3007i −0.450587 + 0.450587i
\(630\) 0 0
\(631\) 19.9953 0.796002 0.398001 0.917385i \(-0.369704\pi\)
0.398001 + 0.917385i \(0.369704\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 13.4107 50.0494i 0.532187 1.98615i
\(636\) 0 0
\(637\) 3.14400 + 11.7335i 0.124570 + 0.464900i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.6976 7.33098i −0.501526 0.289556i 0.227818 0.973704i \(-0.426841\pi\)
−0.729344 + 0.684148i \(0.760174\pi\)
\(642\) 0 0
\(643\) 3.45056 12.8777i 0.136077 0.507846i −0.863914 0.503639i \(-0.831994\pi\)
0.999991 0.00420705i \(-0.00133915\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30.5078i 1.19939i 0.800231 + 0.599693i \(0.204710\pi\)
−0.800231 + 0.599693i \(0.795290\pi\)
\(648\) 0 0
\(649\) 1.21078i 0.0475272i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.39824 + 20.1465i −0.211249 + 0.788394i 0.776204 + 0.630482i \(0.217143\pi\)
−0.987453 + 0.157912i \(0.949524\pi\)
\(654\) 0 0
\(655\) −2.19305 1.26616i −0.0856896 0.0494729i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.90477 14.5728i −0.152108 0.567676i −0.999336 0.0364452i \(-0.988397\pi\)
0.847227 0.531230i \(-0.178270\pi\)
\(660\) 0 0
\(661\) 2.44325 9.11835i 0.0950316 0.354663i −0.901993 0.431751i \(-0.857896\pi\)
0.997024 + 0.0770887i \(0.0245625\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −20.6706 −0.801570
\(666\) 0 0
\(667\) −5.73833 + 5.73833i −0.222189 + 0.222189i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.985698 1.70728i −0.0380525 0.0659088i
\(672\) 0 0
\(673\) −16.1140 + 27.9103i −0.621149 + 1.07586i 0.368123 + 0.929777i \(0.380001\pi\)
−0.989272 + 0.146085i \(0.953333\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.16296 + 15.5364i 0.159996 + 0.597111i 0.998626 + 0.0524101i \(0.0166903\pi\)
−0.838630 + 0.544701i \(0.816643\pi\)
\(678\) 0 0
\(679\) 25.7025 + 44.5181i 0.986372 + 1.70845i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −28.6734 28.6734i −1.09716 1.09716i −0.994742 0.102416i \(-0.967343\pi\)
−0.102416 0.994742i \(-0.532657\pi\)
\(684\) 0 0
\(685\) −57.5322 + 57.5322i −2.19819 + 2.19819i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 26.1058 15.0722i 0.994552 0.574205i
\(690\) 0 0
\(691\) −44.0504 + 11.8033i −1.67575 + 0.449017i −0.966653 0.256089i \(-0.917566\pi\)
−0.709102 + 0.705106i \(0.750899\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.3358 + 12.8956i 0.847243 + 0.489156i
\(696\) 0 0
\(697\) −12.5111 + 7.22328i −0.473892 + 0.273601i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.0178 + 13.0178i 0.491676 + 0.491676i 0.908834 0.417158i \(-0.136974\pi\)
−0.417158 + 0.908834i \(0.636974\pi\)
\(702\) 0 0
\(703\) 5.99049i 0.225935i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.436349 0.116919i −0.0164106 0.00439721i
\(708\) 0 0
\(709\) −16.3841 + 4.39011i −0.615319 + 0.164874i −0.552999 0.833182i \(-0.686517\pi\)
−0.0623199 + 0.998056i \(0.519850\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.0285 + 27.7622i −0.600273 + 1.03970i
\(714\) 0 0
\(715\) 2.29767 + 0.615660i 0.0859282 + 0.0230244i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −43.0731 −1.60635 −0.803177 0.595740i \(-0.796859\pi\)
−0.803177 + 0.595740i \(0.796859\pi\)
\(720\) 0 0
\(721\) 27.5313 1.02532
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −20.2528 5.42673i −0.752171 0.201544i
\(726\) 0 0
\(727\) −15.3101 + 26.5179i −0.567821 + 0.983495i 0.428960 + 0.903324i \(0.358880\pi\)
−0.996781 + 0.0801716i \(0.974453\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 19.8820 5.32737i 0.735363 0.197040i
\(732\) 0 0
\(733\) −2.53658 0.679676i −0.0936909 0.0251044i 0.211669 0.977341i \(-0.432110\pi\)
−0.305360 + 0.952237i \(0.598777\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.17271i 0.0431972i
\(738\) 0 0
\(739\) −13.1402 13.1402i −0.483370 0.483370i 0.422836 0.906206i \(-0.361035\pi\)
−0.906206 + 0.422836i \(0.861035\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.79055 + 1.03378i −0.0656890 + 0.0379255i −0.532485 0.846440i \(-0.678742\pi\)
0.466796 + 0.884365i \(0.345408\pi\)
\(744\) 0 0
\(745\) −74.7897 43.1798i −2.74008 1.58199i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −38.0958 + 10.2077i −1.39199 + 0.372982i
\(750\) 0 0
\(751\) −7.86676 + 4.54188i −0.287062 + 0.165735i −0.636616 0.771181i \(-0.719666\pi\)
0.349554 + 0.936916i \(0.386333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −54.5367 + 54.5367i −1.98479 + 1.98479i
\(756\) 0 0
\(757\) 18.3910 + 18.3910i 0.668433 + 0.668433i 0.957353 0.288920i \(-0.0932961\pi\)
−0.288920 + 0.957353i \(0.593296\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.1080 24.4358i −0.511415 0.885797i −0.999912 0.0132318i \(-0.995788\pi\)
0.488497 0.872565i \(-0.337545\pi\)
\(762\) 0 0
\(763\) −7.77481 29.0160i −0.281467 1.05045i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.77467 13.4661i 0.280727 0.486234i
\(768\) 0 0
\(769\) −14.6064 25.2991i −0.526722 0.912309i −0.999515 0.0311354i \(-0.990088\pi\)
0.472794 0.881173i \(-0.343246\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.5491 + 10.5491i −0.379425 + 0.379425i −0.870895 0.491470i \(-0.836460\pi\)
0.491470 + 0.870895i \(0.336460\pi\)
\(774\) 0 0
\(775\) −82.8256 −2.97518
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.40154 5.23060i 0.0502152 0.187406i
\(780\) 0 0
\(781\) −0.426938 1.59335i −0.0152770 0.0570146i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 49.8924 + 28.8054i 1.78074 + 1.02811i
\(786\) 0 0
\(787\) 9.05729 33.8023i 0.322857 1.20492i −0.593591 0.804767i \(-0.702290\pi\)
0.916448 0.400153i \(-0.131043\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 56.9431i 2.02466i
\(792\) 0 0
\(793\) 25.3175i 0.899052i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.41329 27.6668i 0.262592 0.980007i −0.701116 0.713048i \(-0.747314\pi\)
0.963708 0.266959i \(-0.0860190\pi\)
\(798\) 0 0
\(799\) 17.2554 + 9.96243i 0.610453 + 0.352445i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.182786 + 0.682165i 0.00645036 + 0.0240731i
\(804\) 0 0
\(805\) −12.9598 + 48.3667i −0.456773 + 1.70470i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39.9831 −1.40573 −0.702865 0.711323i \(-0.748096\pi\)
−0.702865 + 0.711323i \(0.748096\pi\)
\(810\) 0 0
\(811\) 33.5121 33.5121i 1.17677 1.17677i 0.196204 0.980563i \(-0.437138\pi\)
0.980563 0.196204i \(-0.0628616\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −11.9123 20.6328i −0.417271 0.722734i
\(816\) 0 0
\(817\) −3.85771 + 6.68176i −0.134964 + 0.233765i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.91908 + 10.8942i 0.101877 + 0.380209i 0.997972 0.0636527i \(-0.0202750\pi\)
−0.896096 + 0.443861i \(0.853608\pi\)
\(822\) 0 0
\(823\) −27.4702 47.5798i −0.957551 1.65853i −0.728420 0.685131i \(-0.759745\pi\)
−0.229131 0.973396i \(-0.573588\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.2104 14.2104i −0.494144 0.494144i 0.415465 0.909609i \(-0.363619\pi\)
−0.909609 + 0.415465i \(0.863619\pi\)
\(828\) 0 0
\(829\) 6.15512 6.15512i 0.213776 0.213776i −0.592093 0.805869i \(-0.701698\pi\)
0.805869 + 0.592093i \(0.201698\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −15.8654 + 9.15989i −0.549704 + 0.317371i
\(834\) 0 0
\(835\) 51.2913 13.7435i 1.77501 0.475612i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21.5384 12.4352i −0.743590 0.429312i 0.0797833 0.996812i \(-0.474577\pi\)
−0.823373 + 0.567500i \(0.807911\pi\)
\(840\) 0 0
\(841\) −21.2658 + 12.2778i −0.733303 + 0.423373i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.9363 + 13.9363i 0.479424 + 0.479424i
\(846\) 0 0
\(847\) 36.8507i 1.26621i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −14.0170 3.75585i −0.480497 0.128749i
\(852\) 0 0
\(853\) 18.8477 5.05023i 0.645334 0.172917i 0.0787157 0.996897i \(-0.474918\pi\)
0.566618 + 0.823980i \(0.308251\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18.6982 + 32.3862i −0.638717 + 1.10629i 0.346998 + 0.937866i \(0.387201\pi\)
−0.985715 + 0.168424i \(0.946132\pi\)
\(858\) 0 0
\(859\) −26.5180 7.10549i −0.904784 0.242436i −0.223714 0.974655i \(-0.571818\pi\)
−0.681070 + 0.732219i \(0.738485\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.1797 0.346520 0.173260 0.984876i \(-0.444570\pi\)
0.173260 + 0.984876i \(0.444570\pi\)
\(864\) 0 0
\(865\) 20.9860 0.713545
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.21723 0.326156i −0.0412918 0.0110641i
\(870\) 0 0
\(871\) 7.53020 13.0427i 0.255151 0.441935i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −62.1414 + 16.6507i −2.10076 + 0.562897i
\(876\) 0 0
\(877\) 25.7779 + 6.90717i 0.870458 + 0.233239i 0.666286 0.745696i \(-0.267883\pi\)
0.204172 + 0.978935i \(0.434550\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.7798i 1.03700i 0.855078 + 0.518499i \(0.173509\pi\)
−0.855078 + 0.518499i \(0.826491\pi\)
\(882\) 0 0
\(883\) 19.8089 + 19.8089i 0.666622 + 0.666622i 0.956933 0.290310i \(-0.0937586\pi\)
−0.290310 + 0.956933i \(0.593759\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21.0940 12.1786i 0.708266 0.408918i −0.102153 0.994769i \(-0.532573\pi\)
0.810419 + 0.585851i \(0.199240\pi\)
\(888\) 0 0
\(889\) 39.0550 + 22.5484i 1.30986 + 0.756249i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.21410 + 1.93301i −0.241411 + 0.0646858i
\(894\) 0 0
\(895\) 1.79985 1.03914i 0.0601624 0.0347348i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.4142 12.4142i 0.414037 0.414037i
\(900\) 0 0
\(901\) 32.1460 + 32.1460i 1.07094 + 1.07094i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.6407 + 23.6264i 0.453433 + 0.785369i
\(906\) 0 0
\(907\) 15.0239 + 56.0698i 0.498859 + 1.86177i 0.507245 + 0.861802i \(0.330664\pi\)
−0.00838605 + 0.999965i \(0.502669\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11.9347 + 20.6715i −0.395414 + 0.684877i −0.993154 0.116813i \(-0.962732\pi\)
0.597740 + 0.801690i \(0.296066\pi\)
\(912\) 0 0
\(913\) 0.510553 + 0.884303i 0.0168968 + 0.0292662i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.55845 1.55845i 0.0514646 0.0514646i
\(918\) 0 0
\(919\) 15.7779 0.520466 0.260233 0.965546i \(-0.416201\pi\)
0.260233 + 0.965546i \(0.416201\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.48292 + 20.4625i −0.180473 + 0.673533i
\(924\) 0 0
\(925\) −9.70397 36.2157i −0.319065 1.19077i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −14.3132 8.26371i −0.469600 0.271123i 0.246472 0.969150i \(-0.420729\pi\)
−0.716072 + 0.698026i \(0.754062\pi\)
\(930\) 0 0
\(931\) 1.77730 6.63296i 0.0582485 0.217387i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.58740i 0.117320i
\(936\) 0 0
\(937\) 5.92940i 0.193705i −0.995299 0.0968526i \(-0.969122\pi\)
0.995299 0.0968526i \(-0.0308775\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.52232 20.6096i 0.180022 0.671853i −0.815619 0.578589i \(-0.803603\pi\)
0.995641 0.0932635i \(-0.0297299\pi\)
\(942\) 0 0
\(943\) −11.3603 6.55886i −0.369941 0.213586i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.57071 31.9863i −0.278511 1.03942i −0.953452 0.301545i \(-0.902498\pi\)
0.674941 0.737871i \(-0.264169\pi\)
\(948\) 0 0
\(949\) 2.34741 8.76066i 0.0762002 0.284383i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.546564 −0.0177049 −0.00885247 0.999961i \(-0.502818\pi\)
−0.00885247 + 0.999961i \(0.502818\pi\)
\(954\) 0 0
\(955\) −29.5538 + 29.5538i −0.956339 + 0.956339i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −35.4068 61.3264i −1.14335 1.98033i
\(960\) 0 0
\(961\) 19.1758 33.2135i 0.618576 1.07140i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5.20393 19.4213i −0.167521 0.625195i
\(966\) 0 0
\(967\) 7.49046 + 12.9739i 0.240877 + 0.417211i 0.960964 0.276672i \(-0.0892316\pi\)
−0.720087 + 0.693883i \(0.755898\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 29.4725 + 29.4725i 0.945816 + 0.945816i 0.998606 0.0527896i \(-0.0168113\pi\)
−0.0527896 + 0.998606i \(0.516811\pi\)
\(972\) 0 0
\(973\) −15.8725 + 15.8725i −0.508849 + 0.508849i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.02199 + 1.16740i −0.0646892 + 0.0373483i −0.531996 0.846747i \(-0.678558\pi\)
0.467307 + 0.884095i \(0.345224\pi\)
\(978\) 0 0
\(979\) −0.626159 + 0.167779i −0.0200121 + 0.00536224i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 21.5089 + 12.4182i 0.686029 + 0.396079i 0.802123 0.597159i \(-0.203704\pi\)
−0.116094 + 0.993238i \(0.537037\pi\)
\(984\) 0 0
\(985\) 13.9464 8.05197i 0.444370 0.256557i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 13.2158 + 13.2158i 0.420240 + 0.420240i
\(990\) 0 0
\(991\) 7.12527i 0.226342i 0.993576 + 0.113171i \(0.0361008\pi\)
−0.993576 + 0.113171i \(0.963899\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.60763 + 2.57436i 0.304582 + 0.0816126i
\(996\) 0 0
\(997\) −47.5897 + 12.7516i −1.50718 + 0.403848i −0.915498 0.402322i \(-0.868203\pi\)
−0.591684 + 0.806170i \(0.701537\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.z.a.143.1 88
3.2 odd 2 576.2.y.a.335.15 88
4.3 odd 2 432.2.v.a.251.16 88
9.4 even 3 576.2.y.a.527.3 88
9.5 odd 6 inner 1728.2.z.a.719.1 88
12.11 even 2 144.2.u.a.11.7 88
16.3 odd 4 inner 1728.2.z.a.1007.1 88
16.13 even 4 432.2.v.a.35.9 88
36.23 even 6 432.2.v.a.395.9 88
36.31 odd 6 144.2.u.a.59.14 yes 88
48.29 odd 4 144.2.u.a.83.14 yes 88
48.35 even 4 576.2.y.a.47.3 88
144.13 even 12 144.2.u.a.131.7 yes 88
144.67 odd 12 576.2.y.a.239.15 88
144.77 odd 12 432.2.v.a.179.16 88
144.131 even 12 inner 1728.2.z.a.1583.1 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.7 88 12.11 even 2
144.2.u.a.59.14 yes 88 36.31 odd 6
144.2.u.a.83.14 yes 88 48.29 odd 4
144.2.u.a.131.7 yes 88 144.13 even 12
432.2.v.a.35.9 88 16.13 even 4
432.2.v.a.179.16 88 144.77 odd 12
432.2.v.a.251.16 88 4.3 odd 2
432.2.v.a.395.9 88 36.23 even 6
576.2.y.a.47.3 88 48.35 even 4
576.2.y.a.239.15 88 144.67 odd 12
576.2.y.a.335.15 88 3.2 odd 2
576.2.y.a.527.3 88 9.4 even 3
1728.2.z.a.143.1 88 1.1 even 1 trivial
1728.2.z.a.719.1 88 9.5 odd 6 inner
1728.2.z.a.1007.1 88 16.3 odd 4 inner
1728.2.z.a.1583.1 88 144.131 even 12 inner