Properties

Label 432.2.v.a.395.9
Level $432$
Weight $2$
Character 432.395
Analytic conductor $3.450$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,2,Mod(35,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.v (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 395.9
Character \(\chi\) \(=\) 432.395
Dual form 432.2.v.a.35.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.378412 - 1.36265i) q^{2} +(-1.71361 + 1.03128i) q^{4} +(-1.00059 - 3.73424i) q^{5} +(-1.68236 - 2.91393i) q^{7} +(2.05372 + 1.94479i) q^{8} +(-4.70981 + 2.77653i) q^{10} +(-0.0566521 + 0.211428i) q^{11} +(0.727551 + 2.71526i) q^{13} +(-3.33403 + 3.39513i) q^{14} +(1.87291 - 3.53443i) q^{16} +4.23937i q^{17} +(-1.12365 - 1.12365i) q^{19} +(5.56567 + 5.36714i) q^{20} +(0.309540 - 0.00281033i) q^{22} +(-3.33369 - 1.92471i) q^{23} +(-8.61325 + 4.97286i) q^{25} +(3.42462 - 2.01888i) q^{26} +(5.88800 + 3.25835i) q^{28} +(-0.545635 + 2.03634i) q^{29} +(-7.21206 - 4.16388i) q^{31} +(-5.52491 - 1.21464i) q^{32} +(5.77677 - 1.60423i) q^{34} +(-9.19798 + 9.19798i) q^{35} +(-2.66564 - 2.66564i) q^{37} +(-1.10593 + 1.95634i) q^{38} +(5.20739 - 9.61503i) q^{40} +(1.70386 - 2.95117i) q^{41} +(4.68985 + 1.25664i) q^{43} +(-0.120963 - 0.420730i) q^{44} +(-1.36119 + 5.27098i) q^{46} +(-2.34998 - 4.07028i) q^{47} +(-2.16067 + 3.74239i) q^{49} +(10.0356 + 9.85502i) q^{50} +(-4.04693 - 3.90257i) q^{52} +(7.58271 - 7.58271i) q^{53} +0.846209 q^{55} +(2.21189 - 9.25626i) q^{56} +(2.98128 - 0.0270672i) q^{58} +(5.34305 - 1.43167i) q^{59} +(8.69958 + 2.33105i) q^{61} +(-2.94477 + 11.4031i) q^{62} +(0.435568 + 7.98813i) q^{64} +(9.41144 - 5.43370i) q^{65} +(-5.17504 + 1.38665i) q^{67} +(-4.37200 - 7.26463i) q^{68} +(16.0142 + 9.05296i) q^{70} -7.53614i q^{71} +3.22646i q^{73} +(-2.62362 + 4.64104i) q^{74} +(3.08429 + 0.766693i) q^{76} +(0.711397 - 0.190618i) q^{77} +(-4.98587 + 2.87859i) q^{79} +(-15.0724 - 3.45739i) q^{80} +(-4.66616 - 1.20500i) q^{82} +(-4.50604 - 1.20739i) q^{83} +(15.8308 - 4.24186i) q^{85} +(-0.0623381 - 6.86613i) q^{86} +(-0.527532 + 0.324039i) q^{88} +2.96157 q^{89} +(6.68807 - 6.68807i) q^{91} +(7.69756 - 0.139785i) q^{92} +(-4.65709 + 4.74243i) q^{94} +(-3.07166 + 5.32027i) q^{95} +(-7.63883 - 13.2308i) q^{97} +(5.91718 + 1.52806i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{2} - 2 q^{4} + 6 q^{5} - 4 q^{7} - 8 q^{10} + 6 q^{11} - 2 q^{13} + 6 q^{14} - 2 q^{16} - 8 q^{19} + 48 q^{20} - 2 q^{22} + 12 q^{23} + 8 q^{28} + 6 q^{29} + 6 q^{32} + 2 q^{34} - 8 q^{37} + 6 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.378412 1.36265i −0.267578 0.963536i
\(3\) 0 0
\(4\) −1.71361 + 1.03128i −0.856804 + 0.515642i
\(5\) −1.00059 3.73424i −0.447476 1.67000i −0.709315 0.704891i \(-0.750996\pi\)
0.261839 0.965111i \(-0.415671\pi\)
\(6\) 0 0
\(7\) −1.68236 2.91393i −0.635872 1.10136i −0.986330 0.164785i \(-0.947307\pi\)
0.350457 0.936579i \(-0.386026\pi\)
\(8\) 2.05372 + 1.94479i 0.726101 + 0.687588i
\(9\) 0 0
\(10\) −4.70981 + 2.77653i −1.48937 + 0.878015i
\(11\) −0.0566521 + 0.211428i −0.0170812 + 0.0637480i −0.973940 0.226804i \(-0.927172\pi\)
0.956859 + 0.290552i \(0.0938390\pi\)
\(12\) 0 0
\(13\) 0.727551 + 2.71526i 0.201786 + 0.753076i 0.990405 + 0.138194i \(0.0441298\pi\)
−0.788619 + 0.614882i \(0.789204\pi\)
\(14\) −3.33403 + 3.39513i −0.891058 + 0.907386i
\(15\) 0 0
\(16\) 1.87291 3.53443i 0.468227 0.883608i
\(17\) 4.23937i 1.02820i 0.857731 + 0.514100i \(0.171874\pi\)
−0.857731 + 0.514100i \(0.828126\pi\)
\(18\) 0 0
\(19\) −1.12365 1.12365i −0.257782 0.257782i 0.566369 0.824152i \(-0.308348\pi\)
−0.824152 + 0.566369i \(0.808348\pi\)
\(20\) 5.56567 + 5.36714i 1.24452 + 1.20013i
\(21\) 0 0
\(22\) 0.309540 0.00281033i 0.0659941 0.000599165i
\(23\) −3.33369 1.92471i −0.695123 0.401329i 0.110405 0.993887i \(-0.464785\pi\)
−0.805528 + 0.592557i \(0.798118\pi\)
\(24\) 0 0
\(25\) −8.61325 + 4.97286i −1.72265 + 0.994572i
\(26\) 3.42462 2.01888i 0.671623 0.395935i
\(27\) 0 0
\(28\) 5.88800 + 3.25835i 1.11273 + 0.615771i
\(29\) −0.545635 + 2.03634i −0.101322 + 0.378138i −0.997902 0.0647434i \(-0.979377\pi\)
0.896580 + 0.442882i \(0.146044\pi\)
\(30\) 0 0
\(31\) −7.21206 4.16388i −1.29532 0.747856i −0.315731 0.948849i \(-0.602250\pi\)
−0.979593 + 0.200993i \(0.935583\pi\)
\(32\) −5.52491 1.21464i −0.976676 0.214720i
\(33\) 0 0
\(34\) 5.77677 1.60423i 0.990707 0.275123i
\(35\) −9.19798 + 9.19798i −1.55474 + 1.55474i
\(36\) 0 0
\(37\) −2.66564 2.66564i −0.438229 0.438229i 0.453187 0.891416i \(-0.350287\pi\)
−0.891416 + 0.453187i \(0.850287\pi\)
\(38\) −1.10593 + 1.95634i −0.179406 + 0.317359i
\(39\) 0 0
\(40\) 5.20739 9.61503i 0.823361 1.52027i
\(41\) 1.70386 2.95117i 0.266098 0.460895i −0.701753 0.712420i \(-0.747599\pi\)
0.967851 + 0.251526i \(0.0809323\pi\)
\(42\) 0 0
\(43\) 4.68985 + 1.25664i 0.715195 + 0.191636i 0.598027 0.801476i \(-0.295952\pi\)
0.117168 + 0.993112i \(0.462618\pi\)
\(44\) −0.120963 0.420730i −0.0182359 0.0634274i
\(45\) 0 0
\(46\) −1.36119 + 5.27098i −0.200696 + 0.777163i
\(47\) −2.34998 4.07028i −0.342779 0.593711i 0.642168 0.766564i \(-0.278035\pi\)
−0.984948 + 0.172852i \(0.944702\pi\)
\(48\) 0 0
\(49\) −2.16067 + 3.74239i −0.308667 + 0.534628i
\(50\) 10.0356 + 9.85502i 1.41925 + 1.39371i
\(51\) 0 0
\(52\) −4.04693 3.90257i −0.561209 0.541190i
\(53\) 7.58271 7.58271i 1.04157 1.04157i 0.0424680 0.999098i \(-0.486478\pi\)
0.999098 0.0424680i \(-0.0135220\pi\)
\(54\) 0 0
\(55\) 0.846209 0.114103
\(56\) 2.21189 9.25626i 0.295576 1.23692i
\(57\) 0 0
\(58\) 2.98128 0.0270672i 0.391461 0.00355410i
\(59\) 5.34305 1.43167i 0.695605 0.186387i 0.106344 0.994329i \(-0.466085\pi\)
0.589261 + 0.807942i \(0.299419\pi\)
\(60\) 0 0
\(61\) 8.69958 + 2.33105i 1.11387 + 0.298460i 0.768399 0.639971i \(-0.221054\pi\)
0.345468 + 0.938431i \(0.387720\pi\)
\(62\) −2.94477 + 11.4031i −0.373986 + 1.44820i
\(63\) 0 0
\(64\) 0.435568 + 7.98813i 0.0544460 + 0.998517i
\(65\) 9.41144 5.43370i 1.16735 0.673967i
\(66\) 0 0
\(67\) −5.17504 + 1.38665i −0.632231 + 0.169406i −0.560682 0.828031i \(-0.689461\pi\)
−0.0715493 + 0.997437i \(0.522794\pi\)
\(68\) −4.37200 7.26463i −0.530182 0.880965i
\(69\) 0 0
\(70\) 16.0142 + 9.05296i 1.91406 + 1.08204i
\(71\) 7.53614i 0.894375i −0.894440 0.447187i \(-0.852426\pi\)
0.894440 0.447187i \(-0.147574\pi\)
\(72\) 0 0
\(73\) 3.22646i 0.377629i 0.982013 + 0.188814i \(0.0604644\pi\)
−0.982013 + 0.188814i \(0.939536\pi\)
\(74\) −2.62362 + 4.64104i −0.304989 + 0.539510i
\(75\) 0 0
\(76\) 3.08429 + 0.766693i 0.353792 + 0.0879457i
\(77\) 0.711397 0.190618i 0.0810712 0.0217230i
\(78\) 0 0
\(79\) −4.98587 + 2.87859i −0.560954 + 0.323867i −0.753528 0.657415i \(-0.771650\pi\)
0.192574 + 0.981282i \(0.438316\pi\)
\(80\) −15.0724 3.45739i −1.68515 0.386548i
\(81\) 0 0
\(82\) −4.66616 1.20500i −0.515291 0.133070i
\(83\) −4.50604 1.20739i −0.494602 0.132528i 0.00289160 0.999996i \(-0.499080\pi\)
−0.497494 + 0.867468i \(0.665746\pi\)
\(84\) 0 0
\(85\) 15.8308 4.24186i 1.71710 0.460094i
\(86\) −0.0623381 6.86613i −0.00672209 0.740394i
\(87\) 0 0
\(88\) −0.527532 + 0.324039i −0.0562351 + 0.0345427i
\(89\) 2.96157 0.313926 0.156963 0.987605i \(-0.449830\pi\)
0.156963 + 0.987605i \(0.449830\pi\)
\(90\) 0 0
\(91\) 6.68807 6.68807i 0.701100 0.701100i
\(92\) 7.69756 0.139785i 0.802527 0.0145736i
\(93\) 0 0
\(94\) −4.65709 + 4.74243i −0.480342 + 0.489144i
\(95\) −3.07166 + 5.32027i −0.315146 + 0.545849i
\(96\) 0 0
\(97\) −7.63883 13.2308i −0.775606 1.34339i −0.934453 0.356085i \(-0.884111\pi\)
0.158848 0.987303i \(-0.449222\pi\)
\(98\) 5.91718 + 1.52806i 0.597726 + 0.154358i
\(99\) 0 0
\(100\) 9.63131 17.4042i 0.963131 1.74042i
\(101\) −0.129684 0.0347486i −0.0129040 0.00345762i 0.252361 0.967633i \(-0.418793\pi\)
−0.265265 + 0.964175i \(0.585460\pi\)
\(102\) 0 0
\(103\) −4.09117 + 7.08611i −0.403115 + 0.698215i −0.994100 0.108467i \(-0.965406\pi\)
0.590985 + 0.806682i \(0.298739\pi\)
\(104\) −3.78642 + 6.99132i −0.371289 + 0.685555i
\(105\) 0 0
\(106\) −13.2019 7.46316i −1.28229 0.724887i
\(107\) −8.28837 8.28837i −0.801267 0.801267i 0.182027 0.983294i \(-0.441734\pi\)
−0.983294 + 0.182027i \(0.941734\pi\)
\(108\) 0 0
\(109\) 6.31291 6.31291i 0.604667 0.604667i −0.336881 0.941547i \(-0.609372\pi\)
0.941547 + 0.336881i \(0.109372\pi\)
\(110\) −0.320216 1.15308i −0.0305314 0.109942i
\(111\) 0 0
\(112\) −13.4500 + 0.488655i −1.27091 + 0.0461736i
\(113\) −14.6562 8.46178i −1.37874 0.796017i −0.386735 0.922191i \(-0.626397\pi\)
−0.992008 + 0.126174i \(0.959730\pi\)
\(114\) 0 0
\(115\) −3.85167 + 14.3746i −0.359171 + 1.34044i
\(116\) −1.16504 4.05219i −0.108171 0.376236i
\(117\) 0 0
\(118\) −3.97273 6.73892i −0.365719 0.620368i
\(119\) 12.3533 7.13215i 1.13242 0.653803i
\(120\) 0 0
\(121\) 9.48479 + 5.47604i 0.862253 + 0.497822i
\(122\) −0.115636 12.7365i −0.0104692 1.15311i
\(123\) 0 0
\(124\) 16.6528 0.302408i 1.49546 0.0271571i
\(125\) 13.5199 + 13.5199i 1.20926 + 1.20926i
\(126\) 0 0
\(127\) 13.4028i 1.18931i −0.803981 0.594654i \(-0.797289\pi\)
0.803981 0.594654i \(-0.202711\pi\)
\(128\) 10.7202 3.61633i 0.947539 0.319641i
\(129\) 0 0
\(130\) −10.9656 10.7683i −0.961747 0.944441i
\(131\) −0.169534 0.632708i −0.0148122 0.0552800i 0.958124 0.286353i \(-0.0924430\pi\)
−0.972936 + 0.231073i \(0.925776\pi\)
\(132\) 0 0
\(133\) −1.38385 + 5.16461i −0.119995 + 0.447829i
\(134\) 3.84781 + 6.52702i 0.332400 + 0.563849i
\(135\) 0 0
\(136\) −8.24470 + 8.70650i −0.706977 + 0.746577i
\(137\) −10.5230 18.2263i −0.899037 1.55718i −0.828727 0.559652i \(-0.810935\pi\)
−0.0703095 0.997525i \(-0.522399\pi\)
\(138\) 0 0
\(139\) −1.72666 6.44400i −0.146454 0.546573i −0.999686 0.0250423i \(-0.992028\pi\)
0.853233 0.521530i \(-0.174639\pi\)
\(140\) 6.27601 25.2475i 0.530420 2.13380i
\(141\) 0 0
\(142\) −10.2691 + 2.85176i −0.861763 + 0.239315i
\(143\) −0.615299 −0.0514539
\(144\) 0 0
\(145\) 8.15012 0.676831
\(146\) 4.39652 1.22093i 0.363859 0.101045i
\(147\) 0 0
\(148\) 7.31691 + 1.81884i 0.601446 + 0.149507i
\(149\) 5.78161 + 21.5773i 0.473648 + 1.76768i 0.626492 + 0.779428i \(0.284490\pi\)
−0.152844 + 0.988250i \(0.548843\pi\)
\(150\) 0 0
\(151\) −9.97506 17.2773i −0.811759 1.40601i −0.911632 0.411007i \(-0.865177\pi\)
0.0998734 0.995000i \(-0.468156\pi\)
\(152\) −0.122401 4.49292i −0.00992807 0.364424i
\(153\) 0 0
\(154\) −0.528947 0.897250i −0.0426237 0.0723025i
\(155\) −8.33265 + 31.0979i −0.669295 + 2.49784i
\(156\) 0 0
\(157\) 3.85693 + 14.3943i 0.307817 + 1.14879i 0.930494 + 0.366308i \(0.119378\pi\)
−0.622677 + 0.782479i \(0.713955\pi\)
\(158\) 5.80922 + 5.70468i 0.462157 + 0.453840i
\(159\) 0 0
\(160\) 0.992392 + 21.8467i 0.0784555 + 1.72713i
\(161\) 12.9522i 1.02078i
\(162\) 0 0
\(163\) −4.35766 4.35766i −0.341318 0.341318i 0.515545 0.856863i \(-0.327590\pi\)
−0.856863 + 0.515545i \(0.827590\pi\)
\(164\) 0.123745 + 6.81430i 0.00966288 + 0.532108i
\(165\) 0 0
\(166\) 0.0598948 + 6.59703i 0.00464874 + 0.512029i
\(167\) 11.8952 + 6.86770i 0.920479 + 0.531439i 0.883788 0.467888i \(-0.154985\pi\)
0.0366910 + 0.999327i \(0.488318\pi\)
\(168\) 0 0
\(169\) 4.41505 2.54903i 0.339619 0.196079i
\(170\) −11.7707 19.9667i −0.902774 1.53137i
\(171\) 0 0
\(172\) −9.33252 + 2.68317i −0.711598 + 0.204590i
\(173\) −1.40497 + 5.24342i −0.106818 + 0.398650i −0.998545 0.0539235i \(-0.982827\pi\)
0.891727 + 0.452573i \(0.149494\pi\)
\(174\) 0 0
\(175\) 28.9812 + 16.7323i 2.19077 + 1.26484i
\(176\) 0.641175 + 0.596219i 0.0483304 + 0.0449417i
\(177\) 0 0
\(178\) −1.12069 4.03557i −0.0839995 0.302479i
\(179\) −0.380130 + 0.380130i −0.0284123 + 0.0284123i −0.721170 0.692758i \(-0.756395\pi\)
0.692758 + 0.721170i \(0.256395\pi\)
\(180\) 0 0
\(181\) −4.98992 4.98992i −0.370898 0.370898i 0.496906 0.867804i \(-0.334469\pi\)
−0.867804 + 0.496906i \(0.834469\pi\)
\(182\) −11.6443 6.58263i −0.863134 0.487937i
\(183\) 0 0
\(184\) −3.10333 10.4362i −0.228780 0.769364i
\(185\) −7.28695 + 12.6214i −0.535747 + 0.927941i
\(186\) 0 0
\(187\) −0.896324 0.240169i −0.0655457 0.0175629i
\(188\) 8.22455 + 4.55137i 0.599837 + 0.331943i
\(189\) 0 0
\(190\) 8.41200 + 2.17233i 0.610271 + 0.157598i
\(191\) 5.40555 + 9.36269i 0.391132 + 0.677461i 0.992599 0.121437i \(-0.0387502\pi\)
−0.601467 + 0.798898i \(0.705417\pi\)
\(192\) 0 0
\(193\) 2.60044 4.50410i 0.187184 0.324212i −0.757126 0.653268i \(-0.773397\pi\)
0.944310 + 0.329056i \(0.106731\pi\)
\(194\) −15.1383 + 15.4157i −1.08687 + 1.10679i
\(195\) 0 0
\(196\) −0.156922 8.64126i −0.0112087 0.617233i
\(197\) 2.94550 2.94550i 0.209858 0.209858i −0.594349 0.804207i \(-0.702590\pi\)
0.804207 + 0.594349i \(0.202590\pi\)
\(198\) 0 0
\(199\) 2.57285 0.182384 0.0911921 0.995833i \(-0.470932\pi\)
0.0911921 + 0.995833i \(0.470932\pi\)
\(200\) −27.3604 6.53809i −1.93467 0.462313i
\(201\) 0 0
\(202\) 0.00172377 + 0.189862i 0.000121284 + 0.0133587i
\(203\) 6.85170 1.83591i 0.480895 0.128856i
\(204\) 0 0
\(205\) −12.7252 3.40971i −0.888768 0.238145i
\(206\) 11.2040 + 2.89334i 0.780620 + 0.201589i
\(207\) 0 0
\(208\) 10.9595 + 2.51395i 0.759906 + 0.174311i
\(209\) 0.301228 0.173914i 0.0208364 0.0120299i
\(210\) 0 0
\(211\) 17.5700 4.70786i 1.20957 0.324103i 0.402975 0.915211i \(-0.367976\pi\)
0.806592 + 0.591108i \(0.201309\pi\)
\(212\) −5.17388 + 20.8137i −0.355343 + 1.42949i
\(213\) 0 0
\(214\) −8.15769 + 14.4305i −0.557648 + 0.986451i
\(215\) 18.7704i 1.28013i
\(216\) 0 0
\(217\) 28.0206i 1.90216i
\(218\) −10.9911 6.21338i −0.744414 0.420823i
\(219\) 0 0
\(220\) −1.45007 + 0.872682i −0.0977638 + 0.0588362i
\(221\) −11.5110 + 3.08436i −0.774312 + 0.207476i
\(222\) 0 0
\(223\) 2.82059 1.62847i 0.188881 0.109050i −0.402578 0.915386i \(-0.631886\pi\)
0.591458 + 0.806336i \(0.298552\pi\)
\(224\) 5.75551 + 18.1427i 0.384556 + 1.21221i
\(225\) 0 0
\(226\) −5.98432 + 23.1733i −0.398071 + 1.54147i
\(227\) 8.83238 + 2.36663i 0.586226 + 0.157079i 0.539728 0.841840i \(-0.318527\pi\)
0.0464979 + 0.998918i \(0.485194\pi\)
\(228\) 0 0
\(229\) −5.07755 + 1.36053i −0.335534 + 0.0899061i −0.422652 0.906292i \(-0.638901\pi\)
0.0871183 + 0.996198i \(0.472234\pi\)
\(230\) 21.0451 0.191070i 1.38767 0.0125988i
\(231\) 0 0
\(232\) −5.08083 + 3.12093i −0.333573 + 0.204899i
\(233\) −14.1506 −0.927034 −0.463517 0.886088i \(-0.653413\pi\)
−0.463517 + 0.886088i \(0.653413\pi\)
\(234\) 0 0
\(235\) −12.8480 + 12.8480i −0.838114 + 0.838114i
\(236\) −7.67944 + 7.96351i −0.499889 + 0.518380i
\(237\) 0 0
\(238\) −14.3932 14.1342i −0.932974 0.916185i
\(239\) 7.51536 13.0170i 0.486128 0.841999i −0.513745 0.857943i \(-0.671742\pi\)
0.999873 + 0.0159444i \(0.00507546\pi\)
\(240\) 0 0
\(241\) 7.18920 + 12.4521i 0.463097 + 0.802108i 0.999113 0.0420996i \(-0.0134047\pi\)
−0.536016 + 0.844208i \(0.680071\pi\)
\(242\) 3.87275 14.9966i 0.248950 0.964019i
\(243\) 0 0
\(244\) −17.3116 + 4.97723i −1.10826 + 0.318635i
\(245\) 16.1369 + 4.32388i 1.03095 + 0.276242i
\(246\) 0 0
\(247\) 2.23348 3.86850i 0.142113 0.246147i
\(248\) −6.71369 22.5774i −0.426320 1.43367i
\(249\) 0 0
\(250\) 13.3067 23.5389i 0.841592 1.48873i
\(251\) 3.59758 + 3.59758i 0.227077 + 0.227077i 0.811471 0.584393i \(-0.198667\pi\)
−0.584393 + 0.811471i \(0.698667\pi\)
\(252\) 0 0
\(253\) 0.595798 0.595798i 0.0374575 0.0374575i
\(254\) −18.2633 + 5.07179i −1.14594 + 0.318233i
\(255\) 0 0
\(256\) −8.98442 13.2393i −0.561526 0.827459i
\(257\) 4.92640 + 2.84426i 0.307300 + 0.177420i 0.645718 0.763576i \(-0.276558\pi\)
−0.338418 + 0.940996i \(0.609892\pi\)
\(258\) 0 0
\(259\) −3.28294 + 12.2521i −0.203992 + 0.761307i
\(260\) −10.5238 + 19.0171i −0.652661 + 1.17939i
\(261\) 0 0
\(262\) −0.798004 + 0.470439i −0.0493008 + 0.0290638i
\(263\) −18.8392 + 10.8768i −1.16167 + 0.670693i −0.951705 0.307015i \(-0.900670\pi\)
−0.209970 + 0.977708i \(0.567337\pi\)
\(264\) 0 0
\(265\) −35.9028 20.7285i −2.20549 1.27334i
\(266\) 7.56121 0.0686487i 0.463607 0.00420912i
\(267\) 0 0
\(268\) 7.43796 7.71310i 0.454346 0.471153i
\(269\) 7.43467 + 7.43467i 0.453300 + 0.453300i 0.896448 0.443148i \(-0.146139\pi\)
−0.443148 + 0.896448i \(0.646139\pi\)
\(270\) 0 0
\(271\) 11.8875i 0.722111i −0.932544 0.361056i \(-0.882416\pi\)
0.932544 0.361056i \(-0.117584\pi\)
\(272\) 14.9838 + 7.93996i 0.908525 + 0.481431i
\(273\) 0 0
\(274\) −20.8540 + 21.2361i −1.25983 + 1.28292i
\(275\) −0.563445 2.10281i −0.0339770 0.126804i
\(276\) 0 0
\(277\) 2.68166 10.0081i 0.161126 0.601329i −0.837377 0.546626i \(-0.815912\pi\)
0.998503 0.0547032i \(-0.0174213\pi\)
\(278\) −8.12750 + 4.79132i −0.487455 + 0.287364i
\(279\) 0 0
\(280\) −36.7783 + 1.00196i −2.19792 + 0.0598784i
\(281\) 7.05630 + 12.2219i 0.420944 + 0.729096i 0.996032 0.0889955i \(-0.0283657\pi\)
−0.575088 + 0.818091i \(0.695032\pi\)
\(282\) 0 0
\(283\) 3.42843 + 12.7951i 0.203799 + 0.760588i 0.989812 + 0.142378i \(0.0454749\pi\)
−0.786013 + 0.618209i \(0.787858\pi\)
\(284\) 7.77189 + 12.9140i 0.461177 + 0.766304i
\(285\) 0 0
\(286\) 0.232837 + 0.838435i 0.0137679 + 0.0495777i
\(287\) −11.4660 −0.676817
\(288\) 0 0
\(289\) −0.972286 −0.0571933
\(290\) −3.08411 11.1057i −0.181105 0.652151i
\(291\) 0 0
\(292\) −3.32739 5.52889i −0.194721 0.323554i
\(293\) −7.96005 29.7073i −0.465031 1.73552i −0.656787 0.754077i \(-0.728085\pi\)
0.191756 0.981443i \(-0.438582\pi\)
\(294\) 0 0
\(295\) −10.6924 18.5197i −0.622533 1.07826i
\(296\) −0.290375 10.6586i −0.0168777 0.619520i
\(297\) 0 0
\(298\) 27.2143 16.0434i 1.57648 0.929368i
\(299\) 2.80065 10.4522i 0.161965 0.604463i
\(300\) 0 0
\(301\) −4.22825 15.7800i −0.243712 0.909546i
\(302\) −19.7682 + 20.1304i −1.13753 + 1.15838i
\(303\) 0 0
\(304\) −6.07594 + 1.86697i −0.348479 + 0.107078i
\(305\) 34.8187i 1.99371i
\(306\) 0 0
\(307\) 23.8109 + 23.8109i 1.35896 + 1.35896i 0.875202 + 0.483758i \(0.160728\pi\)
0.483758 + 0.875202i \(0.339272\pi\)
\(308\) −1.02247 + 1.06030i −0.0582609 + 0.0604160i
\(309\) 0 0
\(310\) 45.5286 0.413357i 2.58585 0.0234771i
\(311\) 9.20941 + 5.31706i 0.522218 + 0.301503i 0.737842 0.674974i \(-0.235845\pi\)
−0.215624 + 0.976477i \(0.569178\pi\)
\(312\) 0 0
\(313\) 16.4634 9.50514i 0.930565 0.537262i 0.0435750 0.999050i \(-0.486125\pi\)
0.886990 + 0.461788i \(0.152792\pi\)
\(314\) 18.1548 10.7026i 1.02453 0.603982i
\(315\) 0 0
\(316\) 5.57519 10.0746i 0.313629 0.566742i
\(317\) 3.18193 11.8751i 0.178715 0.666972i −0.817174 0.576391i \(-0.804461\pi\)
0.995889 0.0905818i \(-0.0288727\pi\)
\(318\) 0 0
\(319\) −0.399628 0.230725i −0.0223749 0.0129181i
\(320\) 29.3938 9.61933i 1.64316 0.537737i
\(321\) 0 0
\(322\) 17.6493 4.90127i 0.983556 0.273137i
\(323\) 4.76356 4.76356i 0.265052 0.265052i
\(324\) 0 0
\(325\) −19.7692 19.7692i −1.09660 1.09660i
\(326\) −4.28896 + 7.58694i −0.237543 + 0.420202i
\(327\) 0 0
\(328\) 9.23866 2.74724i 0.510119 0.151691i
\(329\) −7.90701 + 13.6953i −0.435928 + 0.755049i
\(330\) 0 0
\(331\) 33.3960 + 8.94844i 1.83561 + 0.491851i 0.998478 0.0551468i \(-0.0175627\pi\)
0.837134 + 0.546998i \(0.184229\pi\)
\(332\) 8.96675 2.57801i 0.492114 0.141487i
\(333\) 0 0
\(334\) 4.85696 18.8078i 0.265761 1.02912i
\(335\) 10.3561 + 17.9374i 0.565817 + 0.980023i
\(336\) 0 0
\(337\) −14.3693 + 24.8884i −0.782746 + 1.35576i 0.147591 + 0.989049i \(0.452848\pi\)
−0.930336 + 0.366707i \(0.880485\pi\)
\(338\) −5.14413 5.05156i −0.279804 0.274769i
\(339\) 0 0
\(340\) −22.7533 + 23.5950i −1.23397 + 1.27962i
\(341\) 1.28894 1.28894i 0.0698001 0.0698001i
\(342\) 0 0
\(343\) −9.01293 −0.486653
\(344\) 7.18775 + 11.7016i 0.387538 + 0.630907i
\(345\) 0 0
\(346\) 7.67659 0.0696962i 0.412696 0.00374689i
\(347\) 10.9346 2.92992i 0.587002 0.157287i 0.0469191 0.998899i \(-0.485060\pi\)
0.540082 + 0.841612i \(0.318393\pi\)
\(348\) 0 0
\(349\) 10.8496 + 2.90715i 0.580767 + 0.155616i 0.537230 0.843436i \(-0.319471\pi\)
0.0435372 + 0.999052i \(0.486137\pi\)
\(350\) 11.8334 45.8228i 0.632520 2.44933i
\(351\) 0 0
\(352\) 0.569807 1.09931i 0.0303708 0.0585935i
\(353\) −1.85946 + 1.07356i −0.0989689 + 0.0571397i −0.548668 0.836041i \(-0.684865\pi\)
0.449699 + 0.893180i \(0.351531\pi\)
\(354\) 0 0
\(355\) −28.1417 + 7.54056i −1.49361 + 0.400211i
\(356\) −5.07497 + 3.05422i −0.268973 + 0.161873i
\(357\) 0 0
\(358\) 0.661829 + 0.374137i 0.0349787 + 0.0197738i
\(359\) 11.0166i 0.581435i 0.956809 + 0.290718i \(0.0938941\pi\)
−0.956809 + 0.290718i \(0.906106\pi\)
\(360\) 0 0
\(361\) 16.4748i 0.867097i
\(362\) −4.91125 + 8.68775i −0.258130 + 0.456618i
\(363\) 0 0
\(364\) −4.56344 + 18.3580i −0.239189 + 0.962222i
\(365\) 12.0484 3.22835i 0.630641 0.168980i
\(366\) 0 0
\(367\) −20.1365 + 11.6258i −1.05112 + 0.606863i −0.922962 0.384891i \(-0.874239\pi\)
−0.128156 + 0.991754i \(0.540906\pi\)
\(368\) −13.0465 + 8.17791i −0.680094 + 0.426303i
\(369\) 0 0
\(370\) 19.9559 + 5.15345i 1.03746 + 0.267915i
\(371\) −34.8524 9.33867i −1.80945 0.484839i
\(372\) 0 0
\(373\) 9.93021 2.66079i 0.514167 0.137771i 0.00759967 0.999971i \(-0.497581\pi\)
0.506567 + 0.862201i \(0.330914\pi\)
\(374\) 0.0119140 + 1.31225i 0.000616061 + 0.0678551i
\(375\) 0 0
\(376\) 3.08964 12.9294i 0.159336 0.666785i
\(377\) −5.92615 −0.305212
\(378\) 0 0
\(379\) −6.14819 + 6.14819i −0.315811 + 0.315811i −0.847156 0.531345i \(-0.821687\pi\)
0.531345 + 0.847156i \(0.321687\pi\)
\(380\) −0.223084 12.2846i −0.0114440 0.630188i
\(381\) 0 0
\(382\) 10.7125 10.9088i 0.548100 0.558143i
\(383\) 1.40170 2.42782i 0.0716238 0.124056i −0.827989 0.560744i \(-0.810515\pi\)
0.899613 + 0.436688i \(0.143849\pi\)
\(384\) 0 0
\(385\) −1.42363 2.46580i −0.0725548 0.125669i
\(386\) −7.12153 1.83908i −0.362476 0.0936066i
\(387\) 0 0
\(388\) 26.7347 + 14.7947i 1.35725 + 0.751086i
\(389\) −29.1977 7.82350i −1.48038 0.396667i −0.573905 0.818922i \(-0.694572\pi\)
−0.906477 + 0.422255i \(0.861239\pi\)
\(390\) 0 0
\(391\) 8.15956 14.1328i 0.412647 0.714725i
\(392\) −11.7156 + 3.48379i −0.591727 + 0.175958i
\(393\) 0 0
\(394\) −5.12828 2.89906i −0.258359 0.146052i
\(395\) 15.7382 + 15.7382i 0.791873 + 0.791873i
\(396\) 0 0
\(397\) 1.95789 1.95789i 0.0982636 0.0982636i −0.656266 0.754530i \(-0.727865\pi\)
0.754530 + 0.656266i \(0.227865\pi\)
\(398\) −0.973596 3.50588i −0.0488020 0.175734i
\(399\) 0 0
\(400\) 1.44441 + 39.7567i 0.0722204 + 1.98783i
\(401\) 28.7356 + 16.5905i 1.43499 + 0.828489i 0.997495 0.0707337i \(-0.0225340\pi\)
0.437490 + 0.899223i \(0.355867\pi\)
\(402\) 0 0
\(403\) 6.05887 22.6120i 0.301814 1.12638i
\(404\) 0.258063 0.0741950i 0.0128391 0.00369134i
\(405\) 0 0
\(406\) −5.09446 8.64172i −0.252834 0.428881i
\(407\) 0.714607 0.412578i 0.0354217 0.0204508i
\(408\) 0 0
\(409\) −22.8959 13.2190i −1.13213 0.653636i −0.187660 0.982234i \(-0.560090\pi\)
−0.944470 + 0.328598i \(0.893424\pi\)
\(410\) 0.169145 + 18.6302i 0.00835349 + 0.920082i
\(411\) 0 0
\(412\) −0.297127 16.3620i −0.0146384 0.806097i
\(413\) −13.1607 13.1607i −0.647596 0.647596i
\(414\) 0 0
\(415\) 18.0347i 0.885290i
\(416\) −0.721592 15.8853i −0.0353790 0.778839i
\(417\) 0 0
\(418\) −0.350971 0.344656i −0.0171666 0.0168577i
\(419\) 0.133835 + 0.499479i 0.00653827 + 0.0244012i 0.969118 0.246598i \(-0.0793127\pi\)
−0.962580 + 0.270999i \(0.912646\pi\)
\(420\) 0 0
\(421\) −3.44352 + 12.8514i −0.167827 + 0.626339i 0.829836 + 0.558008i \(0.188434\pi\)
−0.997663 + 0.0683313i \(0.978233\pi\)
\(422\) −13.0638 22.1601i −0.635938 1.07874i
\(423\) 0 0
\(424\) 30.3196 0.826002i 1.47245 0.0401142i
\(425\) −21.0818 36.5148i −1.02262 1.77123i
\(426\) 0 0
\(427\) −7.84332 29.2717i −0.379565 1.41655i
\(428\) 22.7507 + 5.65536i 1.09970 + 0.273362i
\(429\) 0 0
\(430\) −25.5774 + 7.10295i −1.23345 + 0.342534i
\(431\) −8.61129 −0.414791 −0.207396 0.978257i \(-0.566499\pi\)
−0.207396 + 0.978257i \(0.566499\pi\)
\(432\) 0 0
\(433\) 6.43973 0.309474 0.154737 0.987956i \(-0.450547\pi\)
0.154737 + 0.987956i \(0.450547\pi\)
\(434\) 38.1822 10.6033i 1.83280 0.508976i
\(435\) 0 0
\(436\) −4.30746 + 17.3282i −0.206290 + 0.829873i
\(437\) 1.58320 + 5.90859i 0.0757348 + 0.282646i
\(438\) 0 0
\(439\) 14.4510 + 25.0298i 0.689707 + 1.19461i 0.971933 + 0.235260i \(0.0755941\pi\)
−0.282225 + 0.959348i \(0.591073\pi\)
\(440\) 1.73788 + 1.64570i 0.0828502 + 0.0784557i
\(441\) 0 0
\(442\) 8.55878 + 14.5182i 0.407100 + 0.690562i
\(443\) 8.35627 31.1860i 0.397018 1.48169i −0.421297 0.906923i \(-0.638425\pi\)
0.818315 0.574770i \(-0.194908\pi\)
\(444\) 0 0
\(445\) −2.96330 11.0592i −0.140474 0.524257i
\(446\) −3.28637 3.22723i −0.155614 0.152814i
\(447\) 0 0
\(448\) 22.5441 14.7081i 1.06511 0.694894i
\(449\) 10.7097i 0.505423i 0.967542 + 0.252711i \(0.0813223\pi\)
−0.967542 + 0.252711i \(0.918678\pi\)
\(450\) 0 0
\(451\) 0.527433 + 0.527433i 0.0248359 + 0.0248359i
\(452\) 33.8415 0.614550i 1.59177 0.0289060i
\(453\) 0 0
\(454\) −0.117401 12.9310i −0.00550991 0.606880i
\(455\) −31.6669 18.2829i −1.48457 0.857114i
\(456\) 0 0
\(457\) −13.1358 + 7.58393i −0.614465 + 0.354761i −0.774711 0.632316i \(-0.782105\pi\)
0.160246 + 0.987077i \(0.448771\pi\)
\(458\) 3.77532 + 6.40406i 0.176409 + 0.299242i
\(459\) 0 0
\(460\) −8.22407 28.6047i −0.383449 1.33370i
\(461\) 3.10006 11.5696i 0.144384 0.538849i −0.855398 0.517971i \(-0.826687\pi\)
0.999782 0.0208774i \(-0.00664596\pi\)
\(462\) 0 0
\(463\) 2.03363 + 1.17412i 0.0945107 + 0.0545658i 0.546510 0.837452i \(-0.315956\pi\)
−0.452000 + 0.892018i \(0.649289\pi\)
\(464\) 6.17537 + 5.74238i 0.286684 + 0.266583i
\(465\) 0 0
\(466\) 5.35474 + 19.2822i 0.248054 + 0.893231i
\(467\) 24.1509 24.1509i 1.11757 1.11757i 0.125473 0.992097i \(-0.459955\pi\)
0.992097 0.125473i \(-0.0400449\pi\)
\(468\) 0 0
\(469\) 12.7469 + 12.7469i 0.588596 + 0.588596i
\(470\) 22.3692 + 12.6455i 1.03181 + 0.583292i
\(471\) 0 0
\(472\) 13.7574 + 7.45087i 0.633237 + 0.342954i
\(473\) −0.531379 + 0.920376i −0.0244328 + 0.0423189i
\(474\) 0 0
\(475\) 15.2660 + 4.09051i 0.700452 + 0.187685i
\(476\) −13.8134 + 24.9614i −0.633135 + 1.14410i
\(477\) 0 0
\(478\) −20.5814 5.31499i −0.941373 0.243102i
\(479\) −2.40917 4.17281i −0.110078 0.190660i 0.805724 0.592292i \(-0.201777\pi\)
−0.915801 + 0.401631i \(0.868443\pi\)
\(480\) 0 0
\(481\) 5.29851 9.17730i 0.241591 0.418449i
\(482\) 14.2473 14.5084i 0.648946 0.660837i
\(483\) 0 0
\(484\) −21.9006 + 0.397706i −0.995480 + 0.0180775i
\(485\) −41.7638 + 41.7638i −1.89640 + 1.89640i
\(486\) 0 0
\(487\) 37.5042 1.69948 0.849739 0.527204i \(-0.176760\pi\)
0.849739 + 0.527204i \(0.176760\pi\)
\(488\) 13.3331 + 21.7062i 0.603563 + 0.982593i
\(489\) 0 0
\(490\) −0.214494 23.6251i −0.00968986 1.06727i
\(491\) 1.88310 0.504576i 0.0849832 0.0227712i −0.216077 0.976376i \(-0.569326\pi\)
0.301060 + 0.953605i \(0.402660\pi\)
\(492\) 0 0
\(493\) −8.63279 2.31315i −0.388801 0.104179i
\(494\) −6.11657 1.57955i −0.275198 0.0710675i
\(495\) 0 0
\(496\) −28.2245 + 17.6920i −1.26732 + 0.794392i
\(497\) −21.9598 + 12.6785i −0.985032 + 0.568708i
\(498\) 0 0
\(499\) 10.8793 2.91509i 0.487023 0.130497i −0.00694794 0.999976i \(-0.502212\pi\)
0.493971 + 0.869478i \(0.335545\pi\)
\(500\) −37.1106 9.22496i −1.65964 0.412553i
\(501\) 0 0
\(502\) 3.54086 6.26360i 0.158036 0.279558i
\(503\) 15.3339i 0.683706i −0.939753 0.341853i \(-0.888945\pi\)
0.939753 0.341853i \(-0.111055\pi\)
\(504\) 0 0
\(505\) 0.519039i 0.0230969i
\(506\) −1.03732 0.586405i −0.0461145 0.0260689i
\(507\) 0 0
\(508\) 13.8221 + 22.9672i 0.613257 + 1.01900i
\(509\) −32.0866 + 8.59758i −1.42221 + 0.381081i −0.886269 0.463172i \(-0.846711\pi\)
−0.535945 + 0.844253i \(0.680045\pi\)
\(510\) 0 0
\(511\) 9.40169 5.42807i 0.415906 0.240124i
\(512\) −14.6407 + 17.2525i −0.647035 + 0.762461i
\(513\) 0 0
\(514\) 2.01151 7.78924i 0.0887238 0.343568i
\(515\) 30.5548 + 8.18713i 1.34641 + 0.360768i
\(516\) 0 0
\(517\) 0.993703 0.266262i 0.0437030 0.0117102i
\(518\) 17.9376 0.162856i 0.788131 0.00715549i
\(519\) 0 0
\(520\) 29.8959 + 7.14398i 1.31102 + 0.313284i
\(521\) 20.5032 0.898262 0.449131 0.893466i \(-0.351734\pi\)
0.449131 + 0.893466i \(0.351734\pi\)
\(522\) 0 0
\(523\) −29.2406 + 29.2406i −1.27860 + 1.27860i −0.337151 + 0.941451i \(0.609463\pi\)
−0.941451 + 0.337151i \(0.890537\pi\)
\(524\) 0.943016 + 0.909377i 0.0411958 + 0.0397263i
\(525\) 0 0
\(526\) 21.9502 + 21.5552i 0.957076 + 0.939853i
\(527\) 17.6523 30.5746i 0.768944 1.33185i
\(528\) 0 0
\(529\) −4.09099 7.08581i −0.177869 0.308079i
\(530\) −14.6596 + 56.7668i −0.636771 + 2.46579i
\(531\) 0 0
\(532\) −2.95479 10.2773i −0.128107 0.445576i
\(533\) 9.25281 + 2.47928i 0.400784 + 0.107390i
\(534\) 0 0
\(535\) −22.6575 + 39.2440i −0.979570 + 1.69667i
\(536\) −13.3248 7.21658i −0.575545 0.311709i
\(537\) 0 0
\(538\) 7.31746 12.9442i 0.315478 0.558064i
\(539\) −0.668841 0.668841i −0.0288090 0.0288090i
\(540\) 0 0
\(541\) 20.5836 20.5836i 0.884956 0.884956i −0.109077 0.994033i \(-0.534790\pi\)
0.994033 + 0.109077i \(0.0347895\pi\)
\(542\) −16.1984 + 4.49836i −0.695780 + 0.193221i
\(543\) 0 0
\(544\) 5.14932 23.4222i 0.220775 1.00422i
\(545\) −29.8905 17.2573i −1.28037 0.739221i
\(546\) 0 0
\(547\) 10.2029 38.0779i 0.436246 1.62809i −0.301821 0.953365i \(-0.597594\pi\)
0.738067 0.674728i \(-0.235739\pi\)
\(548\) 36.8287 + 20.3806i 1.57324 + 0.870616i
\(549\) 0 0
\(550\) −2.65217 + 1.56350i −0.113089 + 0.0666680i
\(551\) 2.90122 1.67502i 0.123596 0.0713584i
\(552\) 0 0
\(553\) 16.7761 + 9.68566i 0.713391 + 0.411876i
\(554\) −14.6523 + 0.133029i −0.622516 + 0.00565186i
\(555\) 0 0
\(556\) 9.60441 + 9.26181i 0.407318 + 0.392788i
\(557\) 1.52288 + 1.52288i 0.0645265 + 0.0645265i 0.738634 0.674107i \(-0.235471\pi\)
−0.674107 + 0.738634i \(0.735471\pi\)
\(558\) 0 0
\(559\) 13.6484i 0.577266i
\(560\) 15.2827 + 49.7366i 0.645810 + 2.10176i
\(561\) 0 0
\(562\) 13.9839 14.2401i 0.589875 0.600684i
\(563\) 1.30147 + 4.85715i 0.0548504 + 0.204705i 0.987913 0.155010i \(-0.0495409\pi\)
−0.933063 + 0.359714i \(0.882874\pi\)
\(564\) 0 0
\(565\) −16.9335 + 63.1966i −0.712397 + 2.65870i
\(566\) 16.1378 9.51354i 0.678322 0.399884i
\(567\) 0 0
\(568\) 14.6562 15.4771i 0.614961 0.649407i
\(569\) 17.4710 + 30.2606i 0.732421 + 1.26859i 0.955846 + 0.293869i \(0.0949430\pi\)
−0.223425 + 0.974721i \(0.571724\pi\)
\(570\) 0 0
\(571\) −9.16034 34.1869i −0.383348 1.43068i −0.840754 0.541417i \(-0.817888\pi\)
0.457406 0.889258i \(-0.348779\pi\)
\(572\) 1.05438 0.634548i 0.0440859 0.0265318i
\(573\) 0 0
\(574\) 4.33887 + 15.6241i 0.181101 + 0.652137i
\(575\) 38.2852 1.59660
\(576\) 0 0
\(577\) −17.4865 −0.727972 −0.363986 0.931404i \(-0.618584\pi\)
−0.363986 + 0.931404i \(0.618584\pi\)
\(578\) 0.367925 + 1.32488i 0.0153037 + 0.0551078i
\(579\) 0 0
\(580\) −13.9661 + 8.40509i −0.579912 + 0.349002i
\(581\) 4.06253 + 15.1616i 0.168542 + 0.629008i
\(582\) 0 0
\(583\) 1.17362 + 2.03278i 0.0486065 + 0.0841890i
\(584\) −6.27479 + 6.62626i −0.259653 + 0.274197i
\(585\) 0 0
\(586\) −37.4684 + 22.0883i −1.54780 + 0.912461i
\(587\) −3.31081 + 12.3561i −0.136652 + 0.509991i 0.863334 + 0.504633i \(0.168372\pi\)
−0.999986 + 0.00535825i \(0.998294\pi\)
\(588\) 0 0
\(589\) 3.42507 + 12.7825i 0.141128 + 0.526696i
\(590\) −21.1897 + 21.5780i −0.872366 + 0.888352i
\(591\) 0 0
\(592\) −14.4140 + 4.42903i −0.592414 + 0.182032i
\(593\) 25.7816i 1.05872i 0.848397 + 0.529361i \(0.177568\pi\)
−0.848397 + 0.529361i \(0.822432\pi\)
\(594\) 0 0
\(595\) −38.9937 38.9937i −1.59858 1.59858i
\(596\) −32.1597 31.0125i −1.31731 1.27032i
\(597\) 0 0
\(598\) −15.3024 + 0.138931i −0.625761 + 0.00568132i
\(599\) 27.3647 + 15.7990i 1.11809 + 0.645531i 0.940913 0.338647i \(-0.109969\pi\)
0.177180 + 0.984179i \(0.443303\pi\)
\(600\) 0 0
\(601\) 23.3729 13.4944i 0.953401 0.550447i 0.0592656 0.998242i \(-0.481124\pi\)
0.894136 + 0.447796i \(0.147791\pi\)
\(602\) −19.9026 + 11.7330i −0.811169 + 0.478200i
\(603\) 0 0
\(604\) 34.9111 + 19.3194i 1.42051 + 0.786097i
\(605\) 10.9585 40.8977i 0.445527 1.66273i
\(606\) 0 0
\(607\) −21.2314 12.2579i −0.861755 0.497534i 0.00284471 0.999996i \(-0.499095\pi\)
−0.864600 + 0.502462i \(0.832428\pi\)
\(608\) 4.84322 + 7.57288i 0.196419 + 0.307121i
\(609\) 0 0
\(610\) −47.4456 + 13.1758i −1.92102 + 0.533474i
\(611\) 9.34212 9.34212i 0.377942 0.377942i
\(612\) 0 0
\(613\) −30.3894 30.3894i −1.22742 1.22742i −0.964937 0.262481i \(-0.915459\pi\)
−0.262481 0.964937i \(-0.584541\pi\)
\(614\) 23.4355 41.4562i 0.945780 1.67303i
\(615\) 0 0
\(616\) 1.83173 + 0.992042i 0.0738024 + 0.0399705i
\(617\) 15.8393 27.4345i 0.637668 1.10447i −0.348275 0.937392i \(-0.613233\pi\)
0.985943 0.167081i \(-0.0534341\pi\)
\(618\) 0 0
\(619\) −20.1312 5.39413i −0.809141 0.216809i −0.169547 0.985522i \(-0.554231\pi\)
−0.639593 + 0.768713i \(0.720897\pi\)
\(620\) −17.7918 61.8829i −0.714537 2.48528i
\(621\) 0 0
\(622\) 3.76031 14.5612i 0.150775 0.583851i
\(623\) −4.98242 8.62981i −0.199617 0.345746i
\(624\) 0 0
\(625\) 12.0944 20.9481i 0.483775 0.837923i
\(626\) −19.1821 18.8369i −0.766670 0.752874i
\(627\) 0 0
\(628\) −21.4538 20.6885i −0.856101 0.825563i
\(629\) 11.3007 11.3007i 0.450587 0.450587i
\(630\) 0 0
\(631\) −19.9953 −0.796002 −0.398001 0.917385i \(-0.630296\pi\)
−0.398001 + 0.917385i \(0.630296\pi\)
\(632\) −15.8379 3.78464i −0.629997 0.150545i
\(633\) 0 0
\(634\) −17.3856 + 0.157845i −0.690472 + 0.00626884i
\(635\) −50.0494 + 13.4107i −1.98615 + 0.532187i
\(636\) 0 0
\(637\) −11.7335 3.14400i −0.464900 0.124570i
\(638\) −0.163173 + 0.631861i −0.00646008 + 0.0250156i
\(639\) 0 0
\(640\) −24.2307 36.4133i −0.957803 1.43936i
\(641\) −12.6976 + 7.33098i −0.501526 + 0.289556i −0.729344 0.684148i \(-0.760174\pi\)
0.227818 + 0.973704i \(0.426841\pi\)
\(642\) 0 0
\(643\) 12.8777 3.45056i 0.507846 0.136077i 0.00420705 0.999991i \(-0.498661\pi\)
0.503639 + 0.863914i \(0.331994\pi\)
\(644\) −13.3574 22.1950i −0.526355 0.874606i
\(645\) 0 0
\(646\) −8.29363 4.68846i −0.326309 0.184465i
\(647\) 30.5078i 1.19939i 0.800231 + 0.599693i \(0.204710\pi\)
−0.800231 + 0.599693i \(0.795290\pi\)
\(648\) 0 0
\(649\) 1.21078i 0.0475272i
\(650\) −19.4575 + 34.4193i −0.763185 + 1.35003i
\(651\) 0 0
\(652\) 11.9613 + 2.97334i 0.468441 + 0.116445i
\(653\) −20.1465 + 5.39824i −0.788394 + 0.211249i −0.630482 0.776204i \(-0.717143\pi\)
−0.157912 + 0.987453i \(0.550476\pi\)
\(654\) 0 0
\(655\) −2.19305 + 1.26616i −0.0856896 + 0.0494729i
\(656\) −7.23953 11.5494i −0.282656 0.450930i
\(657\) 0 0
\(658\) 21.6540 + 5.59198i 0.844162 + 0.217998i
\(659\) 14.5728 + 3.90477i 0.567676 + 0.152108i 0.531230 0.847227i \(-0.321730\pi\)
0.0364452 + 0.999336i \(0.488397\pi\)
\(660\) 0 0
\(661\) −9.11835 + 2.44325i −0.354663 + 0.0950316i −0.431751 0.901993i \(-0.642104\pi\)
0.0770887 + 0.997024i \(0.475438\pi\)
\(662\) −0.443904 48.8932i −0.0172528 1.90029i
\(663\) 0 0
\(664\) −6.90604 11.2430i −0.268006 0.436311i
\(665\) 20.6706 0.801570
\(666\) 0 0
\(667\) 5.73833 5.73833i 0.222189 0.222189i
\(668\) −27.4663 + 0.498777i −1.06270 + 0.0192983i
\(669\) 0 0
\(670\) 20.5234 20.8995i 0.792888 0.807417i
\(671\) −0.985698 + 1.70728i −0.0380525 + 0.0659088i
\(672\) 0 0
\(673\) −16.1140 27.9103i −0.621149 1.07586i −0.989272 0.146085i \(-0.953333\pi\)
0.368123 0.929777i \(-0.380001\pi\)
\(674\) 39.3516 + 10.1622i 1.51577 + 0.391434i
\(675\) 0 0
\(676\) −4.93689 + 8.92120i −0.189880 + 0.343123i
\(677\) 15.5364 + 4.16296i 0.597111 + 0.159996i 0.544701 0.838630i \(-0.316643\pi\)
0.0524101 + 0.998626i \(0.483310\pi\)
\(678\) 0 0
\(679\) −25.7025 + 44.5181i −0.986372 + 1.70845i
\(680\) 40.7617 + 22.0761i 1.56314 + 0.846579i
\(681\) 0 0
\(682\) −2.24412 1.26862i −0.0859318 0.0485779i
\(683\) −28.6734 28.6734i −1.09716 1.09716i −0.994742 0.102416i \(-0.967343\pi\)
−0.102416 0.994742i \(-0.532657\pi\)
\(684\) 0 0
\(685\) −57.5322 + 57.5322i −2.19819 + 2.19819i
\(686\) 3.41060 + 12.2814i 0.130217 + 0.468907i
\(687\) 0 0
\(688\) 13.2252 14.2224i 0.504205 0.542223i
\(689\) 26.1058 + 15.0722i 0.994552 + 0.574205i
\(690\) 0 0
\(691\) −11.8033 + 44.0504i −0.449017 + 1.67575i 0.256089 + 0.966653i \(0.417566\pi\)
−0.705106 + 0.709102i \(0.749101\pi\)
\(692\) −2.99988 10.4341i −0.114038 0.396645i
\(693\) 0 0
\(694\) −8.13025 13.7913i −0.308620 0.523511i
\(695\) −22.3358 + 12.8956i −0.847243 + 0.489156i
\(696\) 0 0
\(697\) 12.5111 + 7.22328i 0.473892 + 0.273601i
\(698\) −0.144215 15.8843i −0.00545861 0.601230i
\(699\) 0 0
\(700\) −66.9181 + 1.21521i −2.52927 + 0.0459305i
\(701\) −13.0178 13.0178i −0.491676 0.491676i 0.417158 0.908834i \(-0.363026\pi\)
−0.908834 + 0.417158i \(0.863026\pi\)
\(702\) 0 0
\(703\) 5.99049i 0.225935i
\(704\) −1.71359 0.360453i −0.0645835 0.0135851i
\(705\) 0 0
\(706\) 2.16652 + 2.12753i 0.0815380 + 0.0800708i
\(707\) 0.116919 + 0.436349i 0.00439721 + 0.0164106i
\(708\) 0 0
\(709\) 4.39011 16.3841i 0.164874 0.615319i −0.833182 0.552999i \(-0.813483\pi\)
0.998056 0.0623199i \(-0.0198499\pi\)
\(710\) 20.9243 + 35.4938i 0.785274 + 1.33206i
\(711\) 0 0
\(712\) 6.08224 + 5.75963i 0.227942 + 0.215851i
\(713\) 16.0285 + 27.7622i 0.600273 + 1.03970i
\(714\) 0 0
\(715\) 0.615660 + 2.29767i 0.0230244 + 0.0859282i
\(716\) 0.259372 1.04342i 0.00969320 0.0389943i
\(717\) 0 0
\(718\) 15.0118 4.16883i 0.560234 0.155579i
\(719\) −43.0731 −1.60635 −0.803177 0.595740i \(-0.796859\pi\)
−0.803177 + 0.595740i \(0.796859\pi\)
\(720\) 0 0
\(721\) 27.5313 1.02532
\(722\) −22.4494 + 6.23428i −0.835479 + 0.232016i
\(723\) 0 0
\(724\) 13.6968 + 3.40475i 0.509038 + 0.126537i
\(725\) −5.42673 20.2528i −0.201544 0.752171i
\(726\) 0 0
\(727\) 15.3101 + 26.5179i 0.567821 + 0.983495i 0.996781 + 0.0801716i \(0.0255468\pi\)
−0.428960 + 0.903324i \(0.641120\pi\)
\(728\) 26.7424 0.728547i 0.991138 0.0270017i
\(729\) 0 0
\(730\) −8.95835 15.1960i −0.331563 0.562430i
\(731\) −5.32737 + 19.8820i −0.197040 + 0.735363i
\(732\) 0 0
\(733\) 0.679676 + 2.53658i 0.0251044 + 0.0936909i 0.977341 0.211669i \(-0.0678899\pi\)
−0.952237 + 0.305360i \(0.901223\pi\)
\(734\) 23.4618 + 23.0396i 0.865990 + 0.850407i
\(735\) 0 0
\(736\) 16.0805 + 14.6831i 0.592736 + 0.541226i
\(737\) 1.17271i 0.0431972i
\(738\) 0 0
\(739\) 13.1402 + 13.1402i 0.483370 + 0.483370i 0.906206 0.422836i \(-0.138965\pi\)
−0.422836 + 0.906206i \(0.638965\pi\)
\(740\) −0.529226 29.1430i −0.0194547 1.07132i
\(741\) 0 0
\(742\) 0.463262 + 51.0253i 0.0170069 + 1.87320i
\(743\) 1.79055 + 1.03378i 0.0656890 + 0.0379255i 0.532485 0.846440i \(-0.321258\pi\)
−0.466796 + 0.884365i \(0.654592\pi\)
\(744\) 0 0
\(745\) 74.7897 43.1798i 2.74008 1.58199i
\(746\) −7.38343 12.5245i −0.270327 0.458554i
\(747\) 0 0
\(748\) 1.78363 0.512808i 0.0652160 0.0187501i
\(749\) −10.2077 + 38.0958i −0.372982 + 1.39199i
\(750\) 0 0
\(751\) −7.86676 4.54188i −0.287062 0.165735i 0.349554 0.936916i \(-0.386333\pi\)
−0.636616 + 0.771181i \(0.719666\pi\)
\(752\) −18.7874 + 0.682570i −0.685107 + 0.0248908i
\(753\) 0 0
\(754\) 2.24253 + 8.07525i 0.0816680 + 0.294083i
\(755\) −54.5367 + 54.5367i −1.98479 + 1.98479i
\(756\) 0 0
\(757\) 18.3910 + 18.3910i 0.668433 + 0.668433i 0.957353 0.288920i \(-0.0932961\pi\)
−0.288920 + 0.957353i \(0.593296\pi\)
\(758\) 10.7043 + 6.05125i 0.388799 + 0.219791i
\(759\) 0 0
\(760\) −16.6552 + 4.95263i −0.604147 + 0.179651i
\(761\) 14.1080 24.4358i 0.511415 0.885797i −0.488497 0.872565i \(-0.662455\pi\)
0.999912 0.0132318i \(-0.00421194\pi\)
\(762\) 0 0
\(763\) −29.0160 7.77481i −1.05045 0.281467i
\(764\) −18.9186 10.4693i −0.684451 0.378767i
\(765\) 0 0
\(766\) −3.83869 0.991310i −0.138697 0.0358175i
\(767\) 7.77467 + 13.4661i 0.280727 + 0.486234i
\(768\) 0 0
\(769\) −14.6064 + 25.2991i −0.526722 + 0.912309i 0.472794 + 0.881173i \(0.343246\pi\)
−0.999515 + 0.0311354i \(0.990088\pi\)
\(770\) −2.82129 + 2.87299i −0.101672 + 0.103535i
\(771\) 0 0
\(772\) 0.188861 + 10.4001i 0.00679726 + 0.374306i
\(773\) 10.5491 10.5491i 0.379425 0.379425i −0.491470 0.870895i \(-0.663540\pi\)
0.870895 + 0.491470i \(0.163540\pi\)
\(774\) 0 0
\(775\) 82.8256 2.97518
\(776\) 10.0432 42.0284i 0.360529 1.50873i
\(777\) 0 0
\(778\) 0.388099 + 42.7466i 0.0139140 + 1.53254i
\(779\) −5.23060 + 1.40154i −0.187406 + 0.0502152i
\(780\) 0 0
\(781\) 1.59335 + 0.426938i 0.0570146 + 0.0152770i
\(782\) −22.3456 5.77058i −0.799078 0.206356i
\(783\) 0 0
\(784\) 9.18049 + 14.6459i 0.327875 + 0.523068i
\(785\) 49.8924 28.8054i 1.78074 1.02811i
\(786\) 0 0
\(787\) 33.8023 9.05729i 1.20492 0.322857i 0.400153 0.916448i \(-0.368957\pi\)
0.804767 + 0.593591i \(0.202290\pi\)
\(788\) −2.00979 + 8.08507i −0.0715957 + 0.288019i
\(789\) 0 0
\(790\) 15.4900 27.4010i 0.551110 0.974885i
\(791\) 56.9431i 2.02466i
\(792\) 0 0
\(793\) 25.3175i 0.899052i
\(794\) −3.40880 1.92702i −0.120974 0.0683874i
\(795\) 0 0
\(796\) −4.40885 + 2.65333i −0.156268 + 0.0940449i
\(797\) 27.6668 7.41329i 0.980007 0.262592i 0.266959 0.963708i \(-0.413981\pi\)
0.713048 + 0.701116i \(0.247314\pi\)
\(798\) 0 0
\(799\) 17.2554 9.96243i 0.610453 0.352445i
\(800\) 53.6277 17.0126i 1.89602 0.601487i
\(801\) 0 0
\(802\) 11.7331 45.4344i 0.414309 1.60435i
\(803\) −0.682165 0.182786i −0.0240731 0.00645036i
\(804\) 0 0
\(805\) 48.3667 12.9598i 1.70470 0.456773i
\(806\) −33.1049 + 0.300562i −1.16607 + 0.0105868i
\(807\) 0 0
\(808\) −0.198756 0.323572i −0.00699220 0.0113832i
\(809\) 39.9831 1.40573 0.702865 0.711323i \(-0.251904\pi\)
0.702865 + 0.711323i \(0.251904\pi\)
\(810\) 0 0
\(811\) −33.5121 + 33.5121i −1.17677 + 1.17677i −0.196204 + 0.980563i \(0.562862\pi\)
−0.980563 + 0.196204i \(0.937138\pi\)
\(812\) −9.84780 + 10.2121i −0.345590 + 0.358374i
\(813\) 0 0
\(814\) −0.832614 0.817632i −0.0291831 0.0286580i
\(815\) −11.9123 + 20.6328i −0.417271 + 0.722734i
\(816\) 0 0
\(817\) −3.85771 6.68176i −0.134964 0.233765i
\(818\) −9.34868 + 36.2012i −0.326869 + 1.26575i
\(819\) 0 0
\(820\) 25.3224 7.28039i 0.884297 0.254242i
\(821\) 10.8942 + 2.91908i 0.380209 + 0.101877i 0.443861 0.896096i \(-0.353608\pi\)
−0.0636527 + 0.997972i \(0.520275\pi\)
\(822\) 0 0
\(823\) 27.4702 47.5798i 0.957551 1.65853i 0.229131 0.973396i \(-0.426412\pi\)
0.728420 0.685131i \(-0.240255\pi\)
\(824\) −22.1831 + 6.59645i −0.772786 + 0.229798i
\(825\) 0 0
\(826\) −12.9532 + 22.9136i −0.450700 + 0.797265i
\(827\) −14.2104 14.2104i −0.494144 0.494144i 0.415465 0.909609i \(-0.363619\pi\)
−0.909609 + 0.415465i \(0.863619\pi\)
\(828\) 0 0
\(829\) 6.15512 6.15512i 0.213776 0.213776i −0.592093 0.805869i \(-0.701698\pi\)
0.805869 + 0.592093i \(0.201698\pi\)
\(830\) 24.5750 6.82456i 0.853009 0.236884i
\(831\) 0 0
\(832\) −21.3729 + 6.99445i −0.740973 + 0.242489i
\(833\) −15.8654 9.15989i −0.549704 0.317371i
\(834\) 0 0
\(835\) 13.7435 51.2913i 0.475612 1.77501i
\(836\) −0.336832 + 0.608672i −0.0116496 + 0.0210513i
\(837\) 0 0
\(838\) 0.629969 0.371379i 0.0217619 0.0128291i
\(839\) 21.5384 12.4352i 0.743590 0.429312i −0.0797833 0.996812i \(-0.525423\pi\)
0.823373 + 0.567500i \(0.192089\pi\)
\(840\) 0 0
\(841\) 21.2658 + 12.2778i 0.733303 + 0.423373i
\(842\) 18.8150 0.170822i 0.648407 0.00588693i
\(843\) 0 0
\(844\) −25.2529 + 26.1871i −0.869242 + 0.901396i
\(845\) −13.9363 13.9363i −0.479424 0.479424i
\(846\) 0 0
\(847\) 36.8507i 1.26621i
\(848\) −12.5989 41.0023i −0.432646 1.40803i
\(849\) 0 0
\(850\) −41.7791 + 42.5447i −1.43301 + 1.45927i
\(851\) 3.75585 + 14.0170i 0.128749 + 0.480497i
\(852\) 0 0
\(853\) −5.05023 + 18.8477i −0.172917 + 0.645334i 0.823980 + 0.566618i \(0.191749\pi\)
−0.996897 + 0.0787157i \(0.974918\pi\)
\(854\) −36.9189 + 21.7644i −1.26334 + 0.744763i
\(855\) 0 0
\(856\) −0.902871 33.1412i −0.0308595 1.13274i
\(857\) 18.6982 + 32.3862i 0.638717 + 1.10629i 0.985715 + 0.168424i \(0.0538679\pi\)
−0.346998 + 0.937866i \(0.612799\pi\)
\(858\) 0 0
\(859\) −7.10549 26.5180i −0.242436 0.904784i −0.974655 0.223714i \(-0.928182\pi\)
0.732219 0.681070i \(-0.238485\pi\)
\(860\) 19.3576 + 32.1651i 0.660089 + 1.09682i
\(861\) 0 0
\(862\) 3.25862 + 11.7341i 0.110989 + 0.399667i
\(863\) 10.1797 0.346520 0.173260 0.984876i \(-0.444570\pi\)
0.173260 + 0.984876i \(0.444570\pi\)
\(864\) 0 0
\(865\) 20.9860 0.713545
\(866\) −2.43687 8.77507i −0.0828082 0.298189i
\(867\) 0 0
\(868\) −28.8972 48.0164i −0.980834 1.62978i
\(869\) −0.326156 1.21723i −0.0110641 0.0412918i
\(870\) 0 0
\(871\) −7.53020 13.0427i −0.255151 0.441935i
\(872\) 25.2423 0.687680i 0.854811 0.0232878i
\(873\) 0 0
\(874\) 7.45221 4.39322i 0.252075 0.148603i
\(875\) 16.6507 62.1414i 0.562897 2.10076i
\(876\) 0 0
\(877\) −6.90717 25.7779i −0.233239 0.870458i −0.978935 0.204172i \(-0.934550\pi\)
0.745696 0.666286i \(-0.232117\pi\)
\(878\) 28.6384 29.1631i 0.966498 0.984208i
\(879\) 0 0
\(880\) 1.58487 2.99087i 0.0534261 0.100822i
\(881\) 30.7798i 1.03700i −0.855078 0.518499i \(-0.826491\pi\)
0.855078 0.518499i \(-0.173509\pi\)
\(882\) 0 0
\(883\) −19.8089 19.8089i −0.666622 0.666622i 0.290310 0.956933i \(-0.406241\pi\)
−0.956933 + 0.290310i \(0.906241\pi\)
\(884\) 16.5445 17.1565i 0.556451 0.577034i
\(885\) 0 0
\(886\) −45.6576 + 0.414528i −1.53390 + 0.0139264i
\(887\) −21.0940 12.1786i −0.708266 0.408918i 0.102153 0.994769i \(-0.467427\pi\)
−0.810419 + 0.585851i \(0.800760\pi\)
\(888\) 0 0
\(889\) −39.0550 + 22.5484i −1.30986 + 0.756249i
\(890\) −13.9484 + 8.22287i −0.467552 + 0.275631i
\(891\) 0 0
\(892\) −3.15397 + 5.69938i −0.105603 + 0.190829i
\(893\) −1.93301 + 7.21410i −0.0646858 + 0.241411i
\(894\) 0 0
\(895\) 1.79985 + 1.03914i 0.0601624 + 0.0347348i
\(896\) −28.5729 25.1539i −0.954555 0.840333i
\(897\) 0 0
\(898\) 14.5935 4.05268i 0.486993 0.135240i
\(899\) 12.4142 12.4142i 0.414037 0.414037i
\(900\) 0 0
\(901\) 32.1460 + 32.1460i 1.07094 + 1.07094i
\(902\) 0.519118 0.918292i 0.0172847 0.0305758i
\(903\) 0 0
\(904\) −13.6435 45.8815i −0.453775 1.52600i
\(905\) −13.6407 + 23.6264i −0.453433 + 0.785369i
\(906\) 0 0
\(907\) 56.0698 + 15.0239i 1.86177 + 0.498859i 0.999965 0.00838605i \(-0.00266939\pi\)
0.861802 + 0.507245i \(0.169336\pi\)
\(908\) −17.5759 + 5.05321i −0.583277 + 0.167697i
\(909\) 0 0
\(910\) −12.9300 + 50.0692i −0.428624 + 1.65978i
\(911\) −11.9347 20.6715i −0.395414 0.684877i 0.597740 0.801690i \(-0.296066\pi\)
−0.993154 + 0.116813i \(0.962732\pi\)
\(912\) 0 0
\(913\) 0.510553 0.884303i 0.0168968 0.0292662i
\(914\) 15.3049 + 15.0295i 0.506242 + 0.497133i
\(915\) 0 0
\(916\) 7.29785 7.56780i 0.241128 0.250047i
\(917\) −1.55845 + 1.55845i −0.0514646 + 0.0514646i
\(918\) 0 0
\(919\) −15.7779 −0.520466 −0.260233 0.965546i \(-0.583799\pi\)
−0.260233 + 0.965546i \(0.583799\pi\)
\(920\) −35.8660 + 22.0309i −1.18247 + 0.726336i
\(921\) 0 0
\(922\) −16.9383 + 0.153784i −0.557834 + 0.00506461i
\(923\) 20.4625 5.48292i 0.673533 0.180473i
\(924\) 0 0
\(925\) 36.2157 + 9.70397i 1.19077 + 0.319065i
\(926\) 0.830355 3.21541i 0.0272872 0.105665i
\(927\) 0 0
\(928\) 5.48800 10.5878i 0.180152 0.347563i
\(929\) −14.3132 + 8.26371i −0.469600 + 0.271123i −0.716072 0.698026i \(-0.754062\pi\)
0.246472 + 0.969150i \(0.420729\pi\)
\(930\) 0 0
\(931\) 6.63296 1.77730i 0.217387 0.0582485i
\(932\) 24.2485 14.5932i 0.794287 0.478017i
\(933\) 0 0
\(934\) −42.0481 23.7701i −1.37586 0.777783i
\(935\) 3.58740i 0.117320i
\(936\) 0 0
\(937\) 5.92940i 0.193705i −0.995299 0.0968526i \(-0.969122\pi\)
0.995299 0.0968526i \(-0.0308775\pi\)
\(938\) 12.5459 22.1930i 0.409638 0.724629i
\(939\) 0 0
\(940\) 8.76654 35.2665i 0.285933 1.15027i
\(941\) 20.6096 5.52232i 0.671853 0.180022i 0.0932635 0.995641i \(-0.470270\pi\)
0.578589 + 0.815619i \(0.303603\pi\)
\(942\) 0 0
\(943\) −11.3603 + 6.55886i −0.369941 + 0.213586i
\(944\) 4.94692 21.5660i 0.161008 0.701914i
\(945\) 0 0
\(946\) 1.45523 + 0.375800i 0.0473135 + 0.0122183i
\(947\) 31.9863 + 8.57071i 1.03942 + 0.278511i 0.737871 0.674941i \(-0.235831\pi\)
0.301545 + 0.953452i \(0.402498\pi\)
\(948\) 0 0
\(949\) −8.76066 + 2.34741i −0.284383 + 0.0762002i
\(950\) −0.202917 22.3500i −0.00658351 0.725131i
\(951\) 0 0
\(952\) 39.2407 + 9.37703i 1.27180 + 0.303911i
\(953\) 0.546564 0.0177049 0.00885247 0.999961i \(-0.497182\pi\)
0.00885247 + 0.999961i \(0.497182\pi\)
\(954\) 0 0
\(955\) 29.5538 29.5538i 0.956339 0.956339i
\(956\) 0.545814 + 30.0565i 0.0176529 + 0.972096i
\(957\) 0 0
\(958\) −4.77440 + 4.86189i −0.154254 + 0.157080i
\(959\) −35.4068 + 61.3264i −1.14335 + 1.98033i
\(960\) 0 0
\(961\) 19.1758 + 33.2135i 0.618576 + 1.07140i
\(962\) −14.5104 3.74720i −0.467835 0.120815i
\(963\) 0 0
\(964\) −25.1611 13.9239i −0.810384 0.448457i
\(965\) −19.4213 5.20393i −0.625195 0.167521i
\(966\) 0 0
\(967\) −7.49046 + 12.9739i −0.240877 + 0.417211i −0.960964 0.276672i \(-0.910768\pi\)
0.720087 + 0.693883i \(0.244102\pi\)
\(968\) 8.82937 + 29.6922i 0.283787 + 0.954344i
\(969\) 0 0
\(970\) 72.7133 + 41.1054i 2.33468 + 1.31981i
\(971\) 29.4725 + 29.4725i 0.945816 + 0.945816i 0.998606 0.0527896i \(-0.0168113\pi\)
−0.0527896 + 0.998606i \(0.516811\pi\)
\(972\) 0 0
\(973\) −15.8725 + 15.8725i −0.508849 + 0.508849i
\(974\) −14.1920 51.1049i −0.454742 1.63751i
\(975\) 0 0
\(976\) 24.5324 26.3822i 0.785264 0.844475i
\(977\) −2.02199 1.16740i −0.0646892 0.0373483i 0.467307 0.884095i \(-0.345224\pi\)
−0.531996 + 0.846747i \(0.678558\pi\)
\(978\) 0 0
\(979\) −0.167779 + 0.626159i −0.00536224 + 0.0200121i
\(980\) −32.1115 + 9.23231i −1.02577 + 0.294915i
\(981\) 0 0
\(982\) −1.40015 2.37506i −0.0446805 0.0757913i
\(983\) −21.5089 + 12.4182i −0.686029 + 0.396079i −0.802123 0.597159i \(-0.796296\pi\)
0.116094 + 0.993238i \(0.462963\pi\)
\(984\) 0 0
\(985\) −13.9464 8.05197i −0.444370 0.256557i
\(986\) 0.114748 + 12.6388i 0.00365433 + 0.402500i
\(987\) 0 0
\(988\) 0.162210 + 8.93244i 0.00516058 + 0.284179i
\(989\) −13.2158 13.2158i −0.420240 0.420240i
\(990\) 0 0
\(991\) 7.12527i 0.226342i −0.993576 0.113171i \(-0.963899\pi\)
0.993576 0.113171i \(-0.0361008\pi\)
\(992\) 34.7884 + 31.7651i 1.10453 + 1.00854i
\(993\) 0 0
\(994\) 25.5862 + 25.1257i 0.811544 + 0.796940i
\(995\) −2.57436 9.60763i −0.0816126 0.304582i
\(996\) 0 0
\(997\) 12.7516 47.5897i 0.403848 1.50718i −0.402322 0.915498i \(-0.631797\pi\)
0.806170 0.591684i \(-0.201537\pi\)
\(998\) −8.08908 13.7215i −0.256055 0.434346i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.v.a.395.9 88
3.2 odd 2 144.2.u.a.59.14 yes 88
4.3 odd 2 1728.2.z.a.719.1 88
9.2 odd 6 inner 432.2.v.a.251.16 88
9.7 even 3 144.2.u.a.11.7 88
12.11 even 2 576.2.y.a.527.3 88
16.3 odd 4 inner 432.2.v.a.179.16 88
16.13 even 4 1728.2.z.a.1583.1 88
36.7 odd 6 576.2.y.a.335.15 88
36.11 even 6 1728.2.z.a.143.1 88
48.29 odd 4 576.2.y.a.239.15 88
48.35 even 4 144.2.u.a.131.7 yes 88
144.29 odd 12 1728.2.z.a.1007.1 88
144.61 even 12 576.2.y.a.47.3 88
144.83 even 12 inner 432.2.v.a.35.9 88
144.115 odd 12 144.2.u.a.83.14 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.7 88 9.7 even 3
144.2.u.a.59.14 yes 88 3.2 odd 2
144.2.u.a.83.14 yes 88 144.115 odd 12
144.2.u.a.131.7 yes 88 48.35 even 4
432.2.v.a.35.9 88 144.83 even 12 inner
432.2.v.a.179.16 88 16.3 odd 4 inner
432.2.v.a.251.16 88 9.2 odd 6 inner
432.2.v.a.395.9 88 1.1 even 1 trivial
576.2.y.a.47.3 88 144.61 even 12
576.2.y.a.239.15 88 48.29 odd 4
576.2.y.a.335.15 88 36.7 odd 6
576.2.y.a.527.3 88 12.11 even 2
1728.2.z.a.143.1 88 36.11 even 6
1728.2.z.a.719.1 88 4.3 odd 2
1728.2.z.a.1007.1 88 144.29 odd 12
1728.2.z.a.1583.1 88 16.13 even 4