Properties

Label 169.10.a.h
Level 169169
Weight 1010
Character orbit 169.a
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 00
Dimension 2727
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 00
Dimension: 2727
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 27q+65q2+q3+7169q4+3238q5+8490q6+17378q7+54204q8+191118q9+11697q10+164171q11181941q1277651q14+614110q15+3012565q16++5866875443q99+O(q100) 27 q + 65 q^{2} + q^{3} + 7169 q^{4} + 3238 q^{5} + 8490 q^{6} + 17378 q^{7} + 54204 q^{8} + 191118 q^{9} + 11697 q^{10} + 164171 q^{11} - 181941 q^{12} - 77651 q^{14} + 614110 q^{15} + 3012565 q^{16}+ \cdots + 5866875443 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −43.3737 −225.369 1369.27 1637.42 9775.06 −1956.78 −37183.1 31108.1 −71021.0
1.2 −36.8678 240.621 847.232 1970.86 −8871.14 9117.25 −12359.3 38215.3 −72661.1
1.3 −36.1368 103.192 793.865 926.370 −3729.02 4023.64 −10185.7 −9034.43 −33476.0
1.4 −35.7320 −157.443 764.774 −2363.03 5625.74 −3406.89 −9032.12 5105.19 84435.6
1.5 −35.3614 −118.041 738.428 −111.377 4174.09 884.005 −8006.80 −5749.36 3938.43
1.6 −30.3833 82.6182 411.145 −433.016 −2510.21 409.354 3064.31 −12857.2 13156.5
1.7 −22.4110 83.2634 −9.74613 −970.434 −1866.02 −11431.9 11692.9 −12750.2 21748.4
1.8 −14.8244 −139.228 −292.237 1387.80 2063.98 −2985.58 11922.3 −298.471 −20573.4
1.9 −12.3426 −225.156 −359.660 −2236.39 2779.01 11037.4 10758.6 31012.0 27602.8
1.10 −8.72715 168.263 −435.837 −932.577 −1468.46 −1292.90 8271.92 8629.37 8138.74
1.11 −6.13624 −213.333 −474.347 517.983 1309.07 2961.86 6052.46 25828.1 −3178.47
1.12 −4.82532 −93.8913 −488.716 1259.17 453.056 −5921.56 4828.78 −10867.4 −6075.91
1.13 −4.74730 109.518 −489.463 −1538.18 −519.914 10378.9 4754.24 −7688.85 7302.18
1.14 −2.76873 273.564 −504.334 1902.60 −757.424 4322.02 2813.96 55154.1 −5267.78
1.15 4.33003 54.1364 −493.251 2633.10 234.412 −3591.16 −4352.76 −16752.3 11401.4
1.16 11.1269 −140.546 −388.192 −992.121 −1563.84 10567.0 −10016.3 70.0974 −11039.2
1.17 13.4402 117.761 −331.361 −2291.59 1582.73 −5059.42 −11334.9 −5815.41 −30799.5
1.18 22.4400 166.502 −8.44752 2749.81 3736.30 4995.16 −11678.8 8039.89 61705.7
1.19 24.5615 −5.41917 91.2697 −546.263 −133.103 −9850.09 −10333.8 −19653.6 −13417.1
1.20 25.3541 −120.880 130.831 −1004.42 −3064.81 −3164.79 −9664.20 −5071.03 −25466.3
See all 27 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.27
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.10.a.h yes 27
13.b even 2 1 169.10.a.g 27
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.10.a.g 27 13.b even 2 1
169.10.a.h yes 27 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22765T2268384T225+596247T224+29229748T223+22 ⁣ ⁣48 T_{2}^{27} - 65 T_{2}^{26} - 8384 T_{2}^{25} + 596247 T_{2}^{24} + 29229748 T_{2}^{23} + \cdots - 22\!\cdots\!48 acting on S10new(Γ0(169))S_{10}^{\mathrm{new}}(\Gamma_0(169)). Copy content Toggle raw display