Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,10,Mod(1,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.1");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(87.0410563117\) |
Analytic rank: | \(0\) |
Dimension: | \(27\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −43.3737 | −225.369 | 1369.27 | 1637.42 | 9775.06 | −1956.78 | −37183.1 | 31108.1 | −71021.0 | ||||||||||||||||||
1.2 | −36.8678 | 240.621 | 847.232 | 1970.86 | −8871.14 | 9117.25 | −12359.3 | 38215.3 | −72661.1 | ||||||||||||||||||
1.3 | −36.1368 | 103.192 | 793.865 | 926.370 | −3729.02 | 4023.64 | −10185.7 | −9034.43 | −33476.0 | ||||||||||||||||||
1.4 | −35.7320 | −157.443 | 764.774 | −2363.03 | 5625.74 | −3406.89 | −9032.12 | 5105.19 | 84435.6 | ||||||||||||||||||
1.5 | −35.3614 | −118.041 | 738.428 | −111.377 | 4174.09 | 884.005 | −8006.80 | −5749.36 | 3938.43 | ||||||||||||||||||
1.6 | −30.3833 | 82.6182 | 411.145 | −433.016 | −2510.21 | 409.354 | 3064.31 | −12857.2 | 13156.5 | ||||||||||||||||||
1.7 | −22.4110 | 83.2634 | −9.74613 | −970.434 | −1866.02 | −11431.9 | 11692.9 | −12750.2 | 21748.4 | ||||||||||||||||||
1.8 | −14.8244 | −139.228 | −292.237 | 1387.80 | 2063.98 | −2985.58 | 11922.3 | −298.471 | −20573.4 | ||||||||||||||||||
1.9 | −12.3426 | −225.156 | −359.660 | −2236.39 | 2779.01 | 11037.4 | 10758.6 | 31012.0 | 27602.8 | ||||||||||||||||||
1.10 | −8.72715 | 168.263 | −435.837 | −932.577 | −1468.46 | −1292.90 | 8271.92 | 8629.37 | 8138.74 | ||||||||||||||||||
1.11 | −6.13624 | −213.333 | −474.347 | 517.983 | 1309.07 | 2961.86 | 6052.46 | 25828.1 | −3178.47 | ||||||||||||||||||
1.12 | −4.82532 | −93.8913 | −488.716 | 1259.17 | 453.056 | −5921.56 | 4828.78 | −10867.4 | −6075.91 | ||||||||||||||||||
1.13 | −4.74730 | 109.518 | −489.463 | −1538.18 | −519.914 | 10378.9 | 4754.24 | −7688.85 | 7302.18 | ||||||||||||||||||
1.14 | −2.76873 | 273.564 | −504.334 | 1902.60 | −757.424 | 4322.02 | 2813.96 | 55154.1 | −5267.78 | ||||||||||||||||||
1.15 | 4.33003 | 54.1364 | −493.251 | 2633.10 | 234.412 | −3591.16 | −4352.76 | −16752.3 | 11401.4 | ||||||||||||||||||
1.16 | 11.1269 | −140.546 | −388.192 | −992.121 | −1563.84 | 10567.0 | −10016.3 | 70.0974 | −11039.2 | ||||||||||||||||||
1.17 | 13.4402 | 117.761 | −331.361 | −2291.59 | 1582.73 | −5059.42 | −11334.9 | −5815.41 | −30799.5 | ||||||||||||||||||
1.18 | 22.4400 | 166.502 | −8.44752 | 2749.81 | 3736.30 | 4995.16 | −11678.8 | 8039.89 | 61705.7 | ||||||||||||||||||
1.19 | 24.5615 | −5.41917 | 91.2697 | −546.263 | −133.103 | −9850.09 | −10333.8 | −19653.6 | −13417.1 | ||||||||||||||||||
1.20 | 25.3541 | −120.880 | 130.831 | −1004.42 | −3064.81 | −3164.79 | −9664.20 | −5071.03 | −25466.3 | ||||||||||||||||||
See all 27 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(13\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.10.a.h | yes | 27 |
13.b | even | 2 | 1 | 169.10.a.g | ✓ | 27 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.10.a.g | ✓ | 27 | 13.b | even | 2 | 1 | |
169.10.a.h | yes | 27 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{27} - 65 T_{2}^{26} - 8384 T_{2}^{25} + 596247 T_{2}^{24} + 29229748 T_{2}^{23} + \cdots - 22\!\cdots\!48 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(169))\).