Properties

Label 2-13e2-1.1-c9-0-13
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $87.0410$
Root an. cond. $9.32957$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.82·2-s − 93.8·3-s − 488.·4-s + 1.25e3·5-s + 453.·6-s − 5.92e3·7-s + 4.82e3·8-s − 1.08e4·9-s − 6.07e3·10-s + 2.00e4·11-s + 4.58e4·12-s + 2.85e4·14-s − 1.18e5·15-s + 2.26e5·16-s − 8.95e4·17-s + 5.24e4·18-s − 8.17e5·19-s − 6.15e5·20-s + 5.55e5·21-s − 9.69e4·22-s − 1.17e6·23-s − 4.53e5·24-s − 3.67e5·25-s + 2.86e6·27-s + 2.89e6·28-s + 4.02e6·29-s + 5.70e5·30-s + ⋯
L(s)  = 1  − 0.213·2-s − 0.669·3-s − 0.954·4-s + 0.900·5-s + 0.142·6-s − 0.932·7-s + 0.416·8-s − 0.552·9-s − 0.192·10-s + 0.413·11-s + 0.638·12-s + 0.198·14-s − 0.602·15-s + 0.865·16-s − 0.260·17-s + 0.117·18-s − 1.43·19-s − 0.860·20-s + 0.623·21-s − 0.0882·22-s − 0.875·23-s − 0.278·24-s − 0.188·25-s + 1.03·27-s + 0.889·28-s + 1.05·29-s + 0.128·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(87.0410\)
Root analytic conductor: \(9.32957\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.4397925320\)
\(L(\frac12)\) \(\approx\) \(0.4397925320\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + 4.82T + 512T^{2} \)
3 \( 1 + 93.8T + 1.96e4T^{2} \)
5 \( 1 - 1.25e3T + 1.95e6T^{2} \)
7 \( 1 + 5.92e3T + 4.03e7T^{2} \)
11 \( 1 - 2.00e4T + 2.35e9T^{2} \)
17 \( 1 + 8.95e4T + 1.18e11T^{2} \)
19 \( 1 + 8.17e5T + 3.22e11T^{2} \)
23 \( 1 + 1.17e6T + 1.80e12T^{2} \)
29 \( 1 - 4.02e6T + 1.45e13T^{2} \)
31 \( 1 + 6.85e6T + 2.64e13T^{2} \)
37 \( 1 + 1.56e7T + 1.29e14T^{2} \)
41 \( 1 - 6.67e6T + 3.27e14T^{2} \)
43 \( 1 + 2.83e6T + 5.02e14T^{2} \)
47 \( 1 + 4.23e7T + 1.11e15T^{2} \)
53 \( 1 + 9.54e7T + 3.29e15T^{2} \)
59 \( 1 - 9.03e7T + 8.66e15T^{2} \)
61 \( 1 + 7.48e7T + 1.16e16T^{2} \)
67 \( 1 + 6.65e6T + 2.72e16T^{2} \)
71 \( 1 - 2.26e8T + 4.58e16T^{2} \)
73 \( 1 + 1.95e8T + 5.88e16T^{2} \)
79 \( 1 - 5.42e8T + 1.19e17T^{2} \)
83 \( 1 - 4.31e8T + 1.86e17T^{2} \)
89 \( 1 + 2.11e8T + 3.50e17T^{2} \)
97 \( 1 - 7.77e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.86195347185550681617397182337, −10.00729177929559867155114990493, −9.205595023986573037861778480440, −8.308815534500516019730632927542, −6.56546406455952793563852519805, −5.90956130722202856178816220991, −4.80364671587985149658426428106, −3.49193683505588953564207401528, −1.89058677250451935453663616616, −0.34460049234107163266200327915, 0.34460049234107163266200327915, 1.89058677250451935453663616616, 3.49193683505588953564207401528, 4.80364671587985149658426428106, 5.90956130722202856178816220991, 6.56546406455952793563852519805, 8.308815534500516019730632927542, 9.205595023986573037861778480440, 10.00729177929559867155114990493, 10.86195347185550681617397182337

Graph of the $Z$-function along the critical line