Properties

Label 169.10.a.h.1.12
Level $169$
Weight $10$
Character 169.1
Self dual yes
Analytic conductor $87.041$
Analytic rank $0$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,10,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [27,65] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(87.0410563117\)
Analytic rank: \(0\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.82532 q^{2} -93.8913 q^{3} -488.716 q^{4} +1259.17 q^{5} +453.056 q^{6} -5921.56 q^{7} +4828.78 q^{8} -10867.4 q^{9} -6075.91 q^{10} +20085.5 q^{11} +45886.2 q^{12} +28573.5 q^{14} -118225. q^{15} +226922. q^{16} -89577.2 q^{17} +52438.9 q^{18} -817804. q^{19} -615378. q^{20} +555983. q^{21} -96919.0 q^{22} -1.17564e6 q^{23} -453380. q^{24} -367612. q^{25} +2.86842e6 q^{27} +2.89396e6 q^{28} +4.02987e6 q^{29} +570475. q^{30} -6.85443e6 q^{31} -3.56731e6 q^{32} -1.88585e6 q^{33} +432239. q^{34} -7.45626e6 q^{35} +5.31109e6 q^{36} -1.56577e7 q^{37} +3.94617e6 q^{38} +6.08026e6 q^{40} +6.67447e6 q^{41} -2.68280e6 q^{42} -2.83685e6 q^{43} -9.81611e6 q^{44} -1.36840e7 q^{45} +5.67284e6 q^{46} -4.23495e7 q^{47} -2.13060e7 q^{48} -5.28871e6 q^{49} +1.77385e6 q^{50} +8.41052e6 q^{51} -9.54736e7 q^{53} -1.38411e7 q^{54} +2.52911e7 q^{55} -2.85939e7 q^{56} +7.67846e7 q^{57} -1.94454e7 q^{58} +9.03136e7 q^{59} +5.77786e7 q^{60} -7.48746e7 q^{61} +3.30748e7 q^{62} +6.43521e7 q^{63} -9.89708e7 q^{64} +9.09985e6 q^{66} -6.65968e6 q^{67} +4.37778e7 q^{68} +1.10382e8 q^{69} +3.59789e7 q^{70} +2.26902e8 q^{71} -5.24764e7 q^{72} -1.95234e8 q^{73} +7.55534e7 q^{74} +3.45156e7 q^{75} +3.99674e8 q^{76} -1.18937e8 q^{77} +5.42837e8 q^{79} +2.85734e8 q^{80} -5.54160e7 q^{81} -3.22065e7 q^{82} +4.31319e8 q^{83} -2.71718e8 q^{84} -1.12793e8 q^{85} +1.36887e7 q^{86} -3.78370e8 q^{87} +9.69884e7 q^{88} -2.11702e8 q^{89} +6.60295e7 q^{90} +5.74554e8 q^{92} +6.43571e8 q^{93} +2.04350e8 q^{94} -1.02975e9 q^{95} +3.34939e8 q^{96} +7.77181e8 q^{97} +2.55197e7 q^{98} -2.18278e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q + 65 q^{2} + q^{3} + 7169 q^{4} + 3238 q^{5} + 8490 q^{6} + 17378 q^{7} + 54204 q^{8} + 191118 q^{9} + 11697 q^{10} + 164171 q^{11} - 181941 q^{12} - 77651 q^{14} + 614110 q^{15} + 3012565 q^{16}+ \cdots + 5866875443 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.82532 −0.213251 −0.106626 0.994299i \(-0.534005\pi\)
−0.106626 + 0.994299i \(0.534005\pi\)
\(3\) −93.8913 −0.669237 −0.334618 0.942354i \(-0.608607\pi\)
−0.334618 + 0.942354i \(0.608607\pi\)
\(4\) −488.716 −0.954524
\(5\) 1259.17 0.900990 0.450495 0.892779i \(-0.351248\pi\)
0.450495 + 0.892779i \(0.351248\pi\)
\(6\) 453.056 0.142716
\(7\) −5921.56 −0.932170 −0.466085 0.884740i \(-0.654336\pi\)
−0.466085 + 0.884740i \(0.654336\pi\)
\(8\) 4828.78 0.416805
\(9\) −10867.4 −0.552122
\(10\) −6075.91 −0.192137
\(11\) 20085.5 0.413633 0.206817 0.978380i \(-0.433690\pi\)
0.206817 + 0.978380i \(0.433690\pi\)
\(12\) 45886.2 0.638802
\(13\) 0 0
\(14\) 28573.5 0.198786
\(15\) −118225. −0.602975
\(16\) 226922. 0.865640
\(17\) −89577.2 −0.260122 −0.130061 0.991506i \(-0.541517\pi\)
−0.130061 + 0.991506i \(0.541517\pi\)
\(18\) 52438.9 0.117741
\(19\) −817804. −1.43965 −0.719826 0.694154i \(-0.755779\pi\)
−0.719826 + 0.694154i \(0.755779\pi\)
\(20\) −615378. −0.860016
\(21\) 555983. 0.623842
\(22\) −96919.0 −0.0882078
\(23\) −1.17564e6 −0.875989 −0.437994 0.898978i \(-0.644311\pi\)
−0.437994 + 0.898978i \(0.644311\pi\)
\(24\) −453380. −0.278941
\(25\) −367612. −0.188217
\(26\) 0 0
\(27\) 2.86842e6 1.03874
\(28\) 2.89396e6 0.889779
\(29\) 4.02987e6 1.05804 0.529018 0.848611i \(-0.322561\pi\)
0.529018 + 0.848611i \(0.322561\pi\)
\(30\) 570475. 0.128585
\(31\) −6.85443e6 −1.33304 −0.666521 0.745487i \(-0.732217\pi\)
−0.666521 + 0.745487i \(0.732217\pi\)
\(32\) −3.56731e6 −0.601403
\(33\) −1.88585e6 −0.276818
\(34\) 432239. 0.0554714
\(35\) −7.45626e6 −0.839876
\(36\) 5.31109e6 0.527014
\(37\) −1.56577e7 −1.37347 −0.686736 0.726907i \(-0.740957\pi\)
−0.686736 + 0.726907i \(0.740957\pi\)
\(38\) 3.94617e6 0.307008
\(39\) 0 0
\(40\) 6.08026e6 0.375537
\(41\) 6.67447e6 0.368883 0.184442 0.982843i \(-0.440952\pi\)
0.184442 + 0.982843i \(0.440952\pi\)
\(42\) −2.68280e6 −0.133035
\(43\) −2.83685e6 −0.126540 −0.0632700 0.997996i \(-0.520153\pi\)
−0.0632700 + 0.997996i \(0.520153\pi\)
\(44\) −9.81611e6 −0.394823
\(45\) −1.36840e7 −0.497457
\(46\) 5.67284e6 0.186806
\(47\) −4.23495e7 −1.26593 −0.632963 0.774182i \(-0.718161\pi\)
−0.632963 + 0.774182i \(0.718161\pi\)
\(48\) −2.13060e7 −0.579318
\(49\) −5.28871e6 −0.131059
\(50\) 1.77385e6 0.0401376
\(51\) 8.41052e6 0.174083
\(52\) 0 0
\(53\) −9.54736e7 −1.66204 −0.831020 0.556242i \(-0.812243\pi\)
−0.831020 + 0.556242i \(0.812243\pi\)
\(54\) −1.38411e7 −0.221512
\(55\) 2.52911e7 0.372679
\(56\) −2.85939e7 −0.388533
\(57\) 7.67846e7 0.963468
\(58\) −1.94454e7 −0.225627
\(59\) 9.03136e7 0.970329 0.485164 0.874423i \(-0.338760\pi\)
0.485164 + 0.874423i \(0.338760\pi\)
\(60\) 5.77786e7 0.575554
\(61\) −7.48746e7 −0.692389 −0.346195 0.938163i \(-0.612526\pi\)
−0.346195 + 0.938163i \(0.612526\pi\)
\(62\) 3.30748e7 0.284273
\(63\) 6.43521e7 0.514672
\(64\) −9.89708e7 −0.737390
\(65\) 0 0
\(66\) 9.09985e6 0.0590319
\(67\) −6.65968e6 −0.0403754 −0.0201877 0.999796i \(-0.506426\pi\)
−0.0201877 + 0.999796i \(0.506426\pi\)
\(68\) 4.37778e7 0.248293
\(69\) 1.10382e8 0.586244
\(70\) 3.59789e7 0.179105
\(71\) 2.26902e8 1.05968 0.529841 0.848097i \(-0.322252\pi\)
0.529841 + 0.848097i \(0.322252\pi\)
\(72\) −5.24764e7 −0.230127
\(73\) −1.95234e8 −0.804643 −0.402321 0.915499i \(-0.631797\pi\)
−0.402321 + 0.915499i \(0.631797\pi\)
\(74\) 7.55534e7 0.292894
\(75\) 3.45156e7 0.125962
\(76\) 3.99674e8 1.37418
\(77\) −1.18937e8 −0.385576
\(78\) 0 0
\(79\) 5.42837e8 1.56801 0.784003 0.620757i \(-0.213175\pi\)
0.784003 + 0.620757i \(0.213175\pi\)
\(80\) 2.85734e8 0.779933
\(81\) −5.54160e7 −0.143038
\(82\) −3.22065e7 −0.0786648
\(83\) 4.31319e8 0.997579 0.498789 0.866723i \(-0.333778\pi\)
0.498789 + 0.866723i \(0.333778\pi\)
\(84\) −2.71718e8 −0.595472
\(85\) −1.12793e8 −0.234368
\(86\) 1.36887e7 0.0269848
\(87\) −3.78370e8 −0.708076
\(88\) 9.69884e7 0.172404
\(89\) −2.11702e8 −0.357659 −0.178829 0.983880i \(-0.557231\pi\)
−0.178829 + 0.983880i \(0.557231\pi\)
\(90\) 6.60295e7 0.106083
\(91\) 0 0
\(92\) 5.74554e8 0.836152
\(93\) 6.43571e8 0.892120
\(94\) 2.04350e8 0.269960
\(95\) −1.02975e9 −1.29711
\(96\) 3.34939e8 0.402481
\(97\) 7.77181e8 0.891352 0.445676 0.895194i \(-0.352963\pi\)
0.445676 + 0.895194i \(0.352963\pi\)
\(98\) 2.55197e7 0.0279485
\(99\) −2.18278e8 −0.228376
\(100\) 1.79658e8 0.179658
\(101\) −1.17457e9 −1.12313 −0.561566 0.827432i \(-0.689801\pi\)
−0.561566 + 0.827432i \(0.689801\pi\)
\(102\) −4.05835e7 −0.0371235
\(103\) 1.02324e9 0.895796 0.447898 0.894085i \(-0.352173\pi\)
0.447898 + 0.894085i \(0.352173\pi\)
\(104\) 0 0
\(105\) 7.00078e8 0.562075
\(106\) 4.60691e8 0.354432
\(107\) 1.58126e9 1.16621 0.583104 0.812397i \(-0.301838\pi\)
0.583104 + 0.812397i \(0.301838\pi\)
\(108\) −1.40184e9 −0.991499
\(109\) 2.55758e9 1.73544 0.867721 0.497052i \(-0.165584\pi\)
0.867721 + 0.497052i \(0.165584\pi\)
\(110\) −1.22038e8 −0.0794743
\(111\) 1.47012e9 0.919177
\(112\) −1.34373e9 −0.806923
\(113\) −2.65325e9 −1.53083 −0.765413 0.643539i \(-0.777465\pi\)
−0.765413 + 0.643539i \(0.777465\pi\)
\(114\) −3.70511e8 −0.205461
\(115\) −1.48033e9 −0.789257
\(116\) −1.96946e9 −1.00992
\(117\) 0 0
\(118\) −4.35792e8 −0.206924
\(119\) 5.30437e8 0.242478
\(120\) −5.70884e8 −0.251323
\(121\) −1.95452e9 −0.828908
\(122\) 3.61294e8 0.147653
\(123\) −6.26674e8 −0.246870
\(124\) 3.34987e9 1.27242
\(125\) −2.92221e9 −1.07057
\(126\) −3.10520e8 −0.109754
\(127\) 5.15530e9 1.75848 0.879239 0.476380i \(-0.158052\pi\)
0.879239 + 0.476380i \(0.158052\pi\)
\(128\) 2.30403e9 0.758653
\(129\) 2.66355e8 0.0846852
\(130\) 0 0
\(131\) 6.25888e9 1.85685 0.928423 0.371525i \(-0.121165\pi\)
0.928423 + 0.371525i \(0.121165\pi\)
\(132\) 9.21647e8 0.264230
\(133\) 4.84267e9 1.34200
\(134\) 3.21351e7 0.00861011
\(135\) 3.61183e9 0.935892
\(136\) −4.32549e8 −0.108420
\(137\) 4.50387e9 1.09230 0.546152 0.837686i \(-0.316092\pi\)
0.546152 + 0.837686i \(0.316092\pi\)
\(138\) −5.32630e8 −0.125017
\(139\) −2.91929e9 −0.663302 −0.331651 0.943402i \(-0.607606\pi\)
−0.331651 + 0.943402i \(0.607606\pi\)
\(140\) 3.64400e9 0.801681
\(141\) 3.97625e9 0.847204
\(142\) −1.09487e9 −0.225978
\(143\) 0 0
\(144\) −2.46606e9 −0.477939
\(145\) 5.07430e9 0.953279
\(146\) 9.42068e8 0.171591
\(147\) 4.96564e8 0.0877096
\(148\) 7.65216e9 1.31101
\(149\) −2.24179e9 −0.372612 −0.186306 0.982492i \(-0.559652\pi\)
−0.186306 + 0.982492i \(0.559652\pi\)
\(150\) −1.66549e8 −0.0268615
\(151\) 1.56790e9 0.245427 0.122713 0.992442i \(-0.460840\pi\)
0.122713 + 0.992442i \(0.460840\pi\)
\(152\) −3.94899e9 −0.600054
\(153\) 9.73474e8 0.143619
\(154\) 5.73912e8 0.0822247
\(155\) −8.63090e9 −1.20106
\(156\) 0 0
\(157\) 9.90334e9 1.30087 0.650434 0.759563i \(-0.274587\pi\)
0.650434 + 0.759563i \(0.274587\pi\)
\(158\) −2.61937e9 −0.334379
\(159\) 8.96414e9 1.11230
\(160\) −4.49185e9 −0.541858
\(161\) 6.96162e9 0.816570
\(162\) 2.67400e8 0.0305031
\(163\) 2.05141e9 0.227619 0.113809 0.993503i \(-0.463695\pi\)
0.113809 + 0.993503i \(0.463695\pi\)
\(164\) −3.26192e9 −0.352108
\(165\) −2.37461e9 −0.249411
\(166\) −2.08125e9 −0.212735
\(167\) −4.09006e9 −0.406917 −0.203458 0.979084i \(-0.565218\pi\)
−0.203458 + 0.979084i \(0.565218\pi\)
\(168\) 2.68472e9 0.260020
\(169\) 0 0
\(170\) 5.44263e8 0.0499792
\(171\) 8.88742e9 0.794865
\(172\) 1.38641e9 0.120785
\(173\) −1.45760e10 −1.23718 −0.618588 0.785715i \(-0.712295\pi\)
−0.618588 + 0.785715i \(0.712295\pi\)
\(174\) 1.82576e9 0.150998
\(175\) 2.17684e9 0.175451
\(176\) 4.55785e9 0.358057
\(177\) −8.47966e9 −0.649379
\(178\) 1.02153e9 0.0762712
\(179\) −2.41619e10 −1.75911 −0.879555 0.475798i \(-0.842159\pi\)
−0.879555 + 0.475798i \(0.842159\pi\)
\(180\) 6.68757e9 0.474834
\(181\) 1.63442e10 1.13190 0.565952 0.824438i \(-0.308509\pi\)
0.565952 + 0.824438i \(0.308509\pi\)
\(182\) 0 0
\(183\) 7.03007e9 0.463372
\(184\) −5.67690e9 −0.365116
\(185\) −1.97157e10 −1.23748
\(186\) −3.10544e9 −0.190246
\(187\) −1.79920e9 −0.107595
\(188\) 2.06969e10 1.20836
\(189\) −1.69855e10 −0.968280
\(190\) 4.96890e9 0.276611
\(191\) −4.60576e9 −0.250410 −0.125205 0.992131i \(-0.539959\pi\)
−0.125205 + 0.992131i \(0.539959\pi\)
\(192\) 9.29249e9 0.493488
\(193\) −1.12002e10 −0.581055 −0.290528 0.956867i \(-0.593831\pi\)
−0.290528 + 0.956867i \(0.593831\pi\)
\(194\) −3.75015e9 −0.190082
\(195\) 0 0
\(196\) 2.58468e9 0.125099
\(197\) 2.25309e10 1.06581 0.532907 0.846174i \(-0.321100\pi\)
0.532907 + 0.846174i \(0.321100\pi\)
\(198\) 1.05326e9 0.0487015
\(199\) −3.01489e9 −0.136280 −0.0681402 0.997676i \(-0.521707\pi\)
−0.0681402 + 0.997676i \(0.521707\pi\)
\(200\) −1.77512e9 −0.0784498
\(201\) 6.25286e8 0.0270207
\(202\) 5.66766e9 0.239509
\(203\) −2.38631e10 −0.986269
\(204\) −4.11036e9 −0.166167
\(205\) 8.40430e9 0.332360
\(206\) −4.93745e9 −0.191030
\(207\) 1.27762e10 0.483653
\(208\) 0 0
\(209\) −1.64260e10 −0.595488
\(210\) −3.37810e9 −0.119863
\(211\) −2.38129e9 −0.0827067 −0.0413533 0.999145i \(-0.513167\pi\)
−0.0413533 + 0.999145i \(0.513167\pi\)
\(212\) 4.66595e10 1.58646
\(213\) −2.13041e10 −0.709177
\(214\) −7.63009e9 −0.248695
\(215\) −3.57208e9 −0.114011
\(216\) 1.38510e10 0.432950
\(217\) 4.05889e10 1.24262
\(218\) −1.23412e10 −0.370085
\(219\) 1.83308e10 0.538496
\(220\) −1.23602e10 −0.355731
\(221\) 0 0
\(222\) −7.09380e9 −0.196016
\(223\) −2.79569e10 −0.757037 −0.378518 0.925594i \(-0.623566\pi\)
−0.378518 + 0.925594i \(0.623566\pi\)
\(224\) 2.11240e10 0.560610
\(225\) 3.99500e9 0.103919
\(226\) 1.28028e10 0.326451
\(227\) −2.12282e10 −0.530635 −0.265317 0.964161i \(-0.585477\pi\)
−0.265317 + 0.964161i \(0.585477\pi\)
\(228\) −3.75259e10 −0.919654
\(229\) 6.99418e10 1.68065 0.840324 0.542084i \(-0.182365\pi\)
0.840324 + 0.542084i \(0.182365\pi\)
\(230\) 7.14307e9 0.168310
\(231\) 1.11672e10 0.258042
\(232\) 1.94594e10 0.440994
\(233\) −5.67672e10 −1.26182 −0.630908 0.775857i \(-0.717318\pi\)
−0.630908 + 0.775857i \(0.717318\pi\)
\(234\) 0 0
\(235\) −5.33253e10 −1.14059
\(236\) −4.41377e10 −0.926202
\(237\) −5.09677e10 −1.04937
\(238\) −2.55953e9 −0.0517088
\(239\) −6.89132e10 −1.36619 −0.683096 0.730328i \(-0.739367\pi\)
−0.683096 + 0.730328i \(0.739367\pi\)
\(240\) −2.68279e10 −0.521959
\(241\) 1.83805e10 0.350979 0.175490 0.984481i \(-0.443849\pi\)
0.175490 + 0.984481i \(0.443849\pi\)
\(242\) 9.43120e9 0.176766
\(243\) −5.12560e10 −0.943011
\(244\) 3.65924e10 0.660902
\(245\) −6.65939e9 −0.118083
\(246\) 3.02391e9 0.0526454
\(247\) 0 0
\(248\) −3.30985e10 −0.555618
\(249\) −4.04971e10 −0.667616
\(250\) 1.41006e10 0.228301
\(251\) 1.07167e11 1.70424 0.852119 0.523349i \(-0.175318\pi\)
0.852119 + 0.523349i \(0.175318\pi\)
\(252\) −3.14499e10 −0.491267
\(253\) −2.36133e10 −0.362338
\(254\) −2.48760e10 −0.374998
\(255\) 1.05903e10 0.156847
\(256\) 3.95554e10 0.575606
\(257\) −1.96553e10 −0.281048 −0.140524 0.990077i \(-0.544879\pi\)
−0.140524 + 0.990077i \(0.544879\pi\)
\(258\) −1.28525e9 −0.0180592
\(259\) 9.27179e10 1.28031
\(260\) 0 0
\(261\) −4.37943e10 −0.584165
\(262\) −3.02011e10 −0.395975
\(263\) −2.04545e10 −0.263626 −0.131813 0.991275i \(-0.542080\pi\)
−0.131813 + 0.991275i \(0.542080\pi\)
\(264\) −9.10637e9 −0.115379
\(265\) −1.20218e11 −1.49748
\(266\) −2.33675e10 −0.286183
\(267\) 1.98769e10 0.239358
\(268\) 3.25470e9 0.0385393
\(269\) 1.32223e11 1.53965 0.769827 0.638253i \(-0.220343\pi\)
0.769827 + 0.638253i \(0.220343\pi\)
\(270\) −1.74283e10 −0.199580
\(271\) −1.28886e11 −1.45159 −0.725796 0.687910i \(-0.758528\pi\)
−0.725796 + 0.687910i \(0.758528\pi\)
\(272\) −2.03271e10 −0.225172
\(273\) 0 0
\(274\) −2.17326e10 −0.232935
\(275\) −7.38367e9 −0.0778529
\(276\) −5.39456e10 −0.559584
\(277\) −1.06500e10 −0.108691 −0.0543453 0.998522i \(-0.517307\pi\)
−0.0543453 + 0.998522i \(0.517307\pi\)
\(278\) 1.40865e10 0.141450
\(279\) 7.44900e10 0.736002
\(280\) −3.60047e10 −0.350064
\(281\) −2.51296e10 −0.240440 −0.120220 0.992747i \(-0.538360\pi\)
−0.120220 + 0.992747i \(0.538360\pi\)
\(282\) −1.91867e10 −0.180667
\(283\) 1.19785e10 0.111010 0.0555052 0.998458i \(-0.482323\pi\)
0.0555052 + 0.998458i \(0.482323\pi\)
\(284\) −1.10891e11 −1.01149
\(285\) 9.66850e10 0.868075
\(286\) 0 0
\(287\) −3.95233e10 −0.343862
\(288\) 3.87675e10 0.332048
\(289\) −1.10564e11 −0.932336
\(290\) −2.44851e10 −0.203288
\(291\) −7.29705e10 −0.596525
\(292\) 9.54141e10 0.768051
\(293\) −1.44831e11 −1.14804 −0.574019 0.818842i \(-0.694616\pi\)
−0.574019 + 0.818842i \(0.694616\pi\)
\(294\) −2.39608e9 −0.0187042
\(295\) 1.13720e11 0.874256
\(296\) −7.56075e10 −0.572469
\(297\) 5.76136e10 0.429656
\(298\) 1.08174e10 0.0794599
\(299\) 0 0
\(300\) −1.68683e10 −0.120234
\(301\) 1.67986e10 0.117957
\(302\) −7.56563e9 −0.0523376
\(303\) 1.10281e11 0.751641
\(304\) −1.85578e11 −1.24622
\(305\) −9.42800e10 −0.623835
\(306\) −4.69733e9 −0.0306270
\(307\) 2.22808e11 1.43155 0.715776 0.698330i \(-0.246073\pi\)
0.715776 + 0.698330i \(0.246073\pi\)
\(308\) 5.81267e10 0.368042
\(309\) −9.60731e10 −0.599499
\(310\) 4.16469e10 0.256127
\(311\) 1.75046e10 0.106104 0.0530519 0.998592i \(-0.483105\pi\)
0.0530519 + 0.998592i \(0.483105\pi\)
\(312\) 0 0
\(313\) 9.85218e10 0.580207 0.290104 0.956995i \(-0.406310\pi\)
0.290104 + 0.956995i \(0.406310\pi\)
\(314\) −4.77868e10 −0.277412
\(315\) 8.10304e10 0.463714
\(316\) −2.65293e11 −1.49670
\(317\) 2.42788e11 1.35039 0.675197 0.737637i \(-0.264059\pi\)
0.675197 + 0.737637i \(0.264059\pi\)
\(318\) −4.32549e10 −0.237199
\(319\) 8.09419e10 0.437639
\(320\) −1.24621e11 −0.664381
\(321\) −1.48467e11 −0.780470
\(322\) −3.35921e10 −0.174135
\(323\) 7.32566e10 0.374486
\(324\) 2.70827e10 0.136534
\(325\) 0 0
\(326\) −9.89870e9 −0.0485399
\(327\) −2.40134e11 −1.16142
\(328\) 3.22295e10 0.153752
\(329\) 2.50775e11 1.18006
\(330\) 1.14583e10 0.0531871
\(331\) 1.05646e11 0.483755 0.241878 0.970307i \(-0.422237\pi\)
0.241878 + 0.970307i \(0.422237\pi\)
\(332\) −2.10793e11 −0.952213
\(333\) 1.70159e11 0.758324
\(334\) 1.97359e10 0.0867755
\(335\) −8.38568e9 −0.0363778
\(336\) 1.26165e11 0.540023
\(337\) −3.70603e11 −1.56522 −0.782608 0.622515i \(-0.786111\pi\)
−0.782608 + 0.622515i \(0.786111\pi\)
\(338\) 0 0
\(339\) 2.49118e11 1.02449
\(340\) 5.51238e10 0.223709
\(341\) −1.37675e11 −0.551390
\(342\) −4.28847e10 −0.169506
\(343\) 2.70274e11 1.05434
\(344\) −1.36985e10 −0.0527424
\(345\) 1.38990e11 0.528200
\(346\) 7.03341e10 0.263829
\(347\) 7.47684e10 0.276844 0.138422 0.990373i \(-0.455797\pi\)
0.138422 + 0.990373i \(0.455797\pi\)
\(348\) 1.84915e11 0.675875
\(349\) 2.03456e11 0.734102 0.367051 0.930201i \(-0.380367\pi\)
0.367051 + 0.930201i \(0.380367\pi\)
\(350\) −1.05039e10 −0.0374150
\(351\) 0 0
\(352\) −7.16512e10 −0.248760
\(353\) 3.87575e11 1.32853 0.664263 0.747499i \(-0.268745\pi\)
0.664263 + 0.747499i \(0.268745\pi\)
\(354\) 4.09171e10 0.138481
\(355\) 2.85708e11 0.954762
\(356\) 1.03462e11 0.341394
\(357\) −4.98034e10 −0.162275
\(358\) 1.16589e11 0.375132
\(359\) −4.61401e11 −1.46607 −0.733033 0.680193i \(-0.761896\pi\)
−0.733033 + 0.680193i \(0.761896\pi\)
\(360\) −6.60768e10 −0.207342
\(361\) 3.46115e11 1.07260
\(362\) −7.88660e10 −0.241380
\(363\) 1.83512e11 0.554735
\(364\) 0 0
\(365\) −2.45833e11 −0.724975
\(366\) −3.39224e10 −0.0988147
\(367\) 3.67136e11 1.05640 0.528202 0.849119i \(-0.322866\pi\)
0.528202 + 0.849119i \(0.322866\pi\)
\(368\) −2.66779e11 −0.758291
\(369\) −7.25343e10 −0.203669
\(370\) 9.51347e10 0.263895
\(371\) 5.65353e11 1.54930
\(372\) −3.14524e11 −0.851550
\(373\) −6.37812e11 −1.70609 −0.853047 0.521833i \(-0.825248\pi\)
−0.853047 + 0.521833i \(0.825248\pi\)
\(374\) 8.68174e9 0.0229448
\(375\) 2.74370e11 0.716466
\(376\) −2.04497e11 −0.527644
\(377\) 0 0
\(378\) 8.19606e10 0.206487
\(379\) 4.57826e11 1.13979 0.569894 0.821718i \(-0.306984\pi\)
0.569894 + 0.821718i \(0.306984\pi\)
\(380\) 5.03258e11 1.23812
\(381\) −4.84038e11 −1.17684
\(382\) 2.22243e10 0.0534001
\(383\) −4.94333e10 −0.117388 −0.0586942 0.998276i \(-0.518694\pi\)
−0.0586942 + 0.998276i \(0.518694\pi\)
\(384\) −2.16328e11 −0.507718
\(385\) −1.49763e11 −0.347400
\(386\) 5.40445e10 0.123911
\(387\) 3.08292e10 0.0698656
\(388\) −3.79821e11 −0.850817
\(389\) 9.71174e10 0.215042 0.107521 0.994203i \(-0.465709\pi\)
0.107521 + 0.994203i \(0.465709\pi\)
\(390\) 0 0
\(391\) 1.05310e11 0.227864
\(392\) −2.55380e10 −0.0546260
\(393\) −5.87654e11 −1.24267
\(394\) −1.08719e11 −0.227286
\(395\) 6.83525e11 1.41276
\(396\) 1.06676e11 0.217991
\(397\) 5.03362e11 1.01701 0.508503 0.861060i \(-0.330199\pi\)
0.508503 + 0.861060i \(0.330199\pi\)
\(398\) 1.45478e10 0.0290619
\(399\) −4.54685e11 −0.898116
\(400\) −8.34193e10 −0.162928
\(401\) −4.42201e11 −0.854025 −0.427012 0.904246i \(-0.640434\pi\)
−0.427012 + 0.904246i \(0.640434\pi\)
\(402\) −3.01721e9 −0.00576220
\(403\) 0 0
\(404\) 5.74029e11 1.07206
\(405\) −6.97782e10 −0.128876
\(406\) 1.15147e11 0.210323
\(407\) −3.14492e11 −0.568113
\(408\) 4.06126e10 0.0725587
\(409\) −3.35222e11 −0.592349 −0.296174 0.955134i \(-0.595711\pi\)
−0.296174 + 0.955134i \(0.595711\pi\)
\(410\) −4.05535e10 −0.0708762
\(411\) −4.22874e11 −0.731009
\(412\) −5.00073e11 −0.855059
\(413\) −5.34797e11 −0.904511
\(414\) −6.16491e10 −0.103140
\(415\) 5.43105e11 0.898809
\(416\) 0 0
\(417\) 2.74096e11 0.443906
\(418\) 7.92607e10 0.126989
\(419\) 7.66942e11 1.21562 0.607812 0.794081i \(-0.292047\pi\)
0.607812 + 0.794081i \(0.292047\pi\)
\(420\) −3.42140e11 −0.536515
\(421\) 5.09433e11 0.790347 0.395173 0.918607i \(-0.370684\pi\)
0.395173 + 0.918607i \(0.370684\pi\)
\(422\) 1.14905e10 0.0176373
\(423\) 4.60230e11 0.698946
\(424\) −4.61021e11 −0.692746
\(425\) 3.29297e10 0.0489595
\(426\) 1.02799e11 0.151233
\(427\) 4.43375e11 0.645424
\(428\) −7.72788e11 −1.11317
\(429\) 0 0
\(430\) 1.72364e10 0.0243130
\(431\) 7.64884e11 1.06770 0.533849 0.845580i \(-0.320745\pi\)
0.533849 + 0.845580i \(0.320745\pi\)
\(432\) 6.50908e11 0.899172
\(433\) −2.93420e11 −0.401138 −0.200569 0.979680i \(-0.564279\pi\)
−0.200569 + 0.979680i \(0.564279\pi\)
\(434\) −1.95855e11 −0.264990
\(435\) −4.76432e11 −0.637969
\(436\) −1.24993e12 −1.65652
\(437\) 9.61441e11 1.26112
\(438\) −8.84520e10 −0.114835
\(439\) −8.40043e11 −1.07947 −0.539736 0.841835i \(-0.681476\pi\)
−0.539736 + 0.841835i \(0.681476\pi\)
\(440\) 1.22125e11 0.155334
\(441\) 5.74746e10 0.0723607
\(442\) 0 0
\(443\) 9.03059e11 1.11404 0.557018 0.830500i \(-0.311945\pi\)
0.557018 + 0.830500i \(0.311945\pi\)
\(444\) −7.18471e11 −0.877377
\(445\) −2.66569e11 −0.322247
\(446\) 1.34901e11 0.161439
\(447\) 2.10484e11 0.249365
\(448\) 5.86062e11 0.687373
\(449\) 7.34784e11 0.853201 0.426600 0.904440i \(-0.359711\pi\)
0.426600 + 0.904440i \(0.359711\pi\)
\(450\) −1.92771e10 −0.0221609
\(451\) 1.34060e11 0.152582
\(452\) 1.29669e12 1.46121
\(453\) −1.47212e11 −0.164249
\(454\) 1.02433e11 0.113159
\(455\) 0 0
\(456\) 3.70776e11 0.401578
\(457\) 1.14353e12 1.22638 0.613188 0.789937i \(-0.289887\pi\)
0.613188 + 0.789937i \(0.289887\pi\)
\(458\) −3.37492e11 −0.358400
\(459\) −2.56945e11 −0.270199
\(460\) 7.23461e11 0.753365
\(461\) 4.78349e11 0.493276 0.246638 0.969108i \(-0.420674\pi\)
0.246638 + 0.969108i \(0.420674\pi\)
\(462\) −5.38853e10 −0.0550277
\(463\) 3.62233e11 0.366331 0.183165 0.983082i \(-0.441366\pi\)
0.183165 + 0.983082i \(0.441366\pi\)
\(464\) 9.14467e11 0.915877
\(465\) 8.10366e11 0.803791
\(466\) 2.73920e11 0.269084
\(467\) −4.24688e11 −0.413185 −0.206592 0.978427i \(-0.566237\pi\)
−0.206592 + 0.978427i \(0.566237\pi\)
\(468\) 0 0
\(469\) 3.94357e10 0.0376367
\(470\) 2.57312e11 0.243231
\(471\) −9.29837e11 −0.870588
\(472\) 4.36104e11 0.404437
\(473\) −5.69795e10 −0.0523411
\(474\) 2.45936e11 0.223779
\(475\) 3.00634e11 0.270968
\(476\) −2.59233e11 −0.231451
\(477\) 1.03755e12 0.917650
\(478\) 3.32529e11 0.291342
\(479\) 1.50822e12 1.30904 0.654522 0.756043i \(-0.272870\pi\)
0.654522 + 0.756043i \(0.272870\pi\)
\(480\) 4.21746e11 0.362631
\(481\) 0 0
\(482\) −8.86920e10 −0.0748467
\(483\) −6.53635e11 −0.546479
\(484\) 9.55206e11 0.791212
\(485\) 9.78604e11 0.803099
\(486\) 2.47327e11 0.201098
\(487\) 1.80244e11 0.145205 0.0726023 0.997361i \(-0.476870\pi\)
0.0726023 + 0.997361i \(0.476870\pi\)
\(488\) −3.61553e11 −0.288591
\(489\) −1.92609e11 −0.152331
\(490\) 3.21337e10 0.0251813
\(491\) −1.34172e12 −1.04183 −0.520913 0.853610i \(-0.674409\pi\)
−0.520913 + 0.853610i \(0.674409\pi\)
\(492\) 3.06266e11 0.235644
\(493\) −3.60985e11 −0.275218
\(494\) 0 0
\(495\) −2.74849e11 −0.205765
\(496\) −1.55542e12 −1.15393
\(497\) −1.34361e12 −0.987803
\(498\) 1.95412e11 0.142370
\(499\) −5.70585e11 −0.411972 −0.205986 0.978555i \(-0.566040\pi\)
−0.205986 + 0.978555i \(0.566040\pi\)
\(500\) 1.42813e12 1.02189
\(501\) 3.84021e11 0.272324
\(502\) −5.17116e11 −0.363431
\(503\) −2.77701e11 −0.193429 −0.0967146 0.995312i \(-0.530833\pi\)
−0.0967146 + 0.995312i \(0.530833\pi\)
\(504\) 3.10742e11 0.214518
\(505\) −1.47898e12 −1.01193
\(506\) 1.13942e11 0.0772690
\(507\) 0 0
\(508\) −2.51948e12 −1.67851
\(509\) −2.01748e12 −1.33223 −0.666114 0.745850i \(-0.732043\pi\)
−0.666114 + 0.745850i \(0.732043\pi\)
\(510\) −5.11016e10 −0.0334479
\(511\) 1.15609e12 0.750064
\(512\) −1.37053e12 −0.881401
\(513\) −2.34580e12 −1.49542
\(514\) 9.48430e10 0.0599337
\(515\) 1.28843e12 0.807103
\(516\) −1.30172e11 −0.0808340
\(517\) −8.50611e11 −0.523629
\(518\) −4.47394e11 −0.273027
\(519\) 1.36856e12 0.827964
\(520\) 0 0
\(521\) −1.35040e12 −0.802956 −0.401478 0.915869i \(-0.631503\pi\)
−0.401478 + 0.915869i \(0.631503\pi\)
\(522\) 2.11322e11 0.124574
\(523\) −1.32309e12 −0.773271 −0.386635 0.922233i \(-0.626363\pi\)
−0.386635 + 0.922233i \(0.626363\pi\)
\(524\) −3.05882e12 −1.77240
\(525\) −2.04386e11 −0.117418
\(526\) 9.86997e10 0.0562186
\(527\) 6.14001e11 0.346754
\(528\) −4.27942e11 −0.239625
\(529\) −4.19027e11 −0.232644
\(530\) 5.80089e11 0.319340
\(531\) −9.81476e11 −0.535740
\(532\) −2.36669e12 −1.28097
\(533\) 0 0
\(534\) −9.59127e10 −0.0510435
\(535\) 1.99108e12 1.05074
\(536\) −3.21581e10 −0.0168287
\(537\) 2.26859e12 1.17726
\(538\) −6.38021e11 −0.328333
\(539\) −1.06226e11 −0.0542104
\(540\) −1.76516e12 −0.893331
\(541\) 2.36940e12 1.18919 0.594593 0.804027i \(-0.297313\pi\)
0.594593 + 0.804027i \(0.297313\pi\)
\(542\) 6.21918e11 0.309554
\(543\) −1.53458e12 −0.757511
\(544\) 3.19550e11 0.156438
\(545\) 3.22043e12 1.56361
\(546\) 0 0
\(547\) −7.57609e11 −0.361828 −0.180914 0.983499i \(-0.557906\pi\)
−0.180914 + 0.983499i \(0.557906\pi\)
\(548\) −2.20111e12 −1.04263
\(549\) 8.13694e11 0.382284
\(550\) 3.56286e10 0.0166022
\(551\) −3.29564e12 −1.52320
\(552\) 5.33011e11 0.244349
\(553\) −3.21444e12 −1.46165
\(554\) 5.13899e10 0.0231784
\(555\) 1.85113e12 0.828169
\(556\) 1.42671e12 0.633138
\(557\) −2.09058e12 −0.920276 −0.460138 0.887847i \(-0.652200\pi\)
−0.460138 + 0.887847i \(0.652200\pi\)
\(558\) −3.59438e11 −0.156953
\(559\) 0 0
\(560\) −1.69199e12 −0.727030
\(561\) 1.68929e11 0.0720066
\(562\) 1.21259e11 0.0512742
\(563\) 1.07631e12 0.451493 0.225747 0.974186i \(-0.427518\pi\)
0.225747 + 0.974186i \(0.427518\pi\)
\(564\) −1.94326e12 −0.808676
\(565\) −3.34090e12 −1.37926
\(566\) −5.78001e10 −0.0236731
\(567\) 3.28149e11 0.133336
\(568\) 1.09566e12 0.441680
\(569\) −1.75994e12 −0.703868 −0.351934 0.936025i \(-0.614476\pi\)
−0.351934 + 0.936025i \(0.614476\pi\)
\(570\) −4.66537e11 −0.185118
\(571\) 2.74377e11 0.108015 0.0540077 0.998541i \(-0.482800\pi\)
0.0540077 + 0.998541i \(0.482800\pi\)
\(572\) 0 0
\(573\) 4.32441e11 0.167583
\(574\) 1.90713e11 0.0733290
\(575\) 4.32179e11 0.164876
\(576\) 1.07556e12 0.407129
\(577\) −3.08560e12 −1.15891 −0.579454 0.815005i \(-0.696734\pi\)
−0.579454 + 0.815005i \(0.696734\pi\)
\(578\) 5.33506e11 0.198822
\(579\) 1.05160e12 0.388863
\(580\) −2.47989e12 −0.909928
\(581\) −2.55408e12 −0.929913
\(582\) 3.52106e11 0.127210
\(583\) −1.91763e12 −0.687475
\(584\) −9.42743e11 −0.335379
\(585\) 0 0
\(586\) 6.98855e11 0.244821
\(587\) 1.84717e12 0.642149 0.321074 0.947054i \(-0.395956\pi\)
0.321074 + 0.947054i \(0.395956\pi\)
\(588\) −2.42679e11 −0.0837209
\(589\) 5.60558e12 1.91912
\(590\) −5.48737e11 −0.186436
\(591\) −2.11546e12 −0.713282
\(592\) −3.55308e12 −1.18893
\(593\) 4.09008e12 1.35827 0.679134 0.734015i \(-0.262356\pi\)
0.679134 + 0.734015i \(0.262356\pi\)
\(594\) −2.78004e11 −0.0916247
\(595\) 6.67911e11 0.218470
\(596\) 1.09560e12 0.355667
\(597\) 2.83072e11 0.0912038
\(598\) 0 0
\(599\) 1.58861e12 0.504191 0.252096 0.967702i \(-0.418880\pi\)
0.252096 + 0.967702i \(0.418880\pi\)
\(600\) 1.66668e11 0.0525015
\(601\) −4.24952e12 −1.32863 −0.664316 0.747452i \(-0.731277\pi\)
−0.664316 + 0.747452i \(0.731277\pi\)
\(602\) −8.10585e10 −0.0251544
\(603\) 7.23736e10 0.0222922
\(604\) −7.66258e11 −0.234266
\(605\) −2.46108e12 −0.746837
\(606\) −5.32144e11 −0.160288
\(607\) 9.97768e11 0.298319 0.149159 0.988813i \(-0.452343\pi\)
0.149159 + 0.988813i \(0.452343\pi\)
\(608\) 2.91736e12 0.865812
\(609\) 2.24054e12 0.660047
\(610\) 4.54931e11 0.133034
\(611\) 0 0
\(612\) −4.75753e11 −0.137088
\(613\) −4.36254e12 −1.24786 −0.623932 0.781479i \(-0.714466\pi\)
−0.623932 + 0.781479i \(0.714466\pi\)
\(614\) −1.07512e12 −0.305280
\(615\) −7.89090e11 −0.222428
\(616\) −5.74323e11 −0.160710
\(617\) 6.71209e12 1.86455 0.932276 0.361747i \(-0.117819\pi\)
0.932276 + 0.361747i \(0.117819\pi\)
\(618\) 4.63584e11 0.127844
\(619\) −1.04194e12 −0.285255 −0.142628 0.989776i \(-0.545555\pi\)
−0.142628 + 0.989776i \(0.545555\pi\)
\(620\) 4.21806e12 1.14644
\(621\) −3.37222e12 −0.909922
\(622\) −8.44655e10 −0.0226268
\(623\) 1.25360e12 0.333399
\(624\) 0 0
\(625\) −2.96157e12 −0.776357
\(626\) −4.75400e11 −0.123730
\(627\) 1.54226e12 0.398523
\(628\) −4.83992e12 −1.24171
\(629\) 1.40257e12 0.357270
\(630\) −3.90998e11 −0.0988876
\(631\) 7.49233e12 1.88142 0.940708 0.339216i \(-0.110162\pi\)
0.940708 + 0.339216i \(0.110162\pi\)
\(632\) 2.62124e12 0.653552
\(633\) 2.23582e11 0.0553503
\(634\) −1.17153e12 −0.287973
\(635\) 6.49141e12 1.58437
\(636\) −4.38092e12 −1.06172
\(637\) 0 0
\(638\) −3.90571e11 −0.0933269
\(639\) −2.46584e12 −0.585074
\(640\) 2.90117e12 0.683538
\(641\) 1.47128e12 0.344218 0.172109 0.985078i \(-0.444942\pi\)
0.172109 + 0.985078i \(0.444942\pi\)
\(642\) 7.16399e11 0.166436
\(643\) 2.87216e10 0.00662611 0.00331306 0.999995i \(-0.498945\pi\)
0.00331306 + 0.999995i \(0.498945\pi\)
\(644\) −3.40225e12 −0.779436
\(645\) 3.35387e11 0.0763005
\(646\) −3.53487e11 −0.0798595
\(647\) −2.79660e12 −0.627424 −0.313712 0.949518i \(-0.601573\pi\)
−0.313712 + 0.949518i \(0.601573\pi\)
\(648\) −2.67592e11 −0.0596190
\(649\) 1.81399e12 0.401360
\(650\) 0 0
\(651\) −3.81095e12 −0.831608
\(652\) −1.00256e12 −0.217267
\(653\) −3.09232e12 −0.665542 −0.332771 0.943008i \(-0.607984\pi\)
−0.332771 + 0.943008i \(0.607984\pi\)
\(654\) 1.15873e12 0.247674
\(655\) 7.88101e12 1.67300
\(656\) 1.51459e12 0.319320
\(657\) 2.12169e12 0.444261
\(658\) −1.21007e12 −0.251649
\(659\) −2.13820e12 −0.441636 −0.220818 0.975315i \(-0.570873\pi\)
−0.220818 + 0.975315i \(0.570873\pi\)
\(660\) 1.16051e12 0.238068
\(661\) −2.41601e12 −0.492258 −0.246129 0.969237i \(-0.579159\pi\)
−0.246129 + 0.969237i \(0.579159\pi\)
\(662\) −5.09774e11 −0.103161
\(663\) 0 0
\(664\) 2.08275e12 0.415796
\(665\) 6.09776e12 1.20913
\(666\) −8.21071e11 −0.161714
\(667\) −4.73767e12 −0.926827
\(668\) 1.99888e12 0.388412
\(669\) 2.62491e12 0.506637
\(670\) 4.04636e10 0.00775762
\(671\) −1.50389e12 −0.286395
\(672\) −1.98336e12 −0.375181
\(673\) 3.77066e12 0.708516 0.354258 0.935148i \(-0.384733\pi\)
0.354258 + 0.935148i \(0.384733\pi\)
\(674\) 1.78828e12 0.333784
\(675\) −1.05447e12 −0.195508
\(676\) 0 0
\(677\) −8.47642e11 −0.155083 −0.0775414 0.996989i \(-0.524707\pi\)
−0.0775414 + 0.996989i \(0.524707\pi\)
\(678\) −1.20207e12 −0.218473
\(679\) −4.60212e12 −0.830892
\(680\) −5.44653e11 −0.0976855
\(681\) 1.99314e12 0.355120
\(682\) 6.64325e11 0.117585
\(683\) 1.68006e12 0.295415 0.147707 0.989031i \(-0.452811\pi\)
0.147707 + 0.989031i \(0.452811\pi\)
\(684\) −4.34343e12 −0.758717
\(685\) 5.67114e12 0.984154
\(686\) −1.30416e12 −0.224839
\(687\) −6.56692e12 −1.12475
\(688\) −6.43744e11 −0.109538
\(689\) 0 0
\(690\) −6.70672e11 −0.112639
\(691\) 3.78914e12 0.632250 0.316125 0.948718i \(-0.397618\pi\)
0.316125 + 0.948718i \(0.397618\pi\)
\(692\) 7.12354e12 1.18091
\(693\) 1.29254e12 0.212885
\(694\) −3.60782e11 −0.0590374
\(695\) −3.67589e12 −0.597628
\(696\) −1.82706e12 −0.295129
\(697\) −5.97880e11 −0.0959548
\(698\) −9.81742e11 −0.156548
\(699\) 5.32995e12 0.844454
\(700\) −1.06386e12 −0.167472
\(701\) 6.91499e12 1.08159 0.540793 0.841156i \(-0.318124\pi\)
0.540793 + 0.841156i \(0.318124\pi\)
\(702\) 0 0
\(703\) 1.28049e13 1.97732
\(704\) −1.98788e12 −0.305009
\(705\) 5.00678e12 0.763322
\(706\) −1.87018e12 −0.283310
\(707\) 6.95526e12 1.04695
\(708\) 4.14415e12 0.619848
\(709\) 9.24886e12 1.37461 0.687306 0.726368i \(-0.258793\pi\)
0.687306 + 0.726368i \(0.258793\pi\)
\(710\) −1.37863e12 −0.203604
\(711\) −5.89924e12 −0.865731
\(712\) −1.02226e12 −0.149074
\(713\) 8.05833e12 1.16773
\(714\) 2.40318e11 0.0346054
\(715\) 0 0
\(716\) 1.18083e13 1.67911
\(717\) 6.47035e12 0.914306
\(718\) 2.22641e12 0.312640
\(719\) −6.22992e12 −0.869365 −0.434683 0.900584i \(-0.643139\pi\)
−0.434683 + 0.900584i \(0.643139\pi\)
\(720\) −3.10519e12 −0.430618
\(721\) −6.05917e12 −0.835034
\(722\) −1.67012e12 −0.228733
\(723\) −1.72577e12 −0.234888
\(724\) −7.98767e12 −1.08043
\(725\) −1.48143e12 −0.199141
\(726\) −8.85507e11 −0.118298
\(727\) −9.64911e12 −1.28110 −0.640549 0.767917i \(-0.721293\pi\)
−0.640549 + 0.767917i \(0.721293\pi\)
\(728\) 0 0
\(729\) 5.90325e12 0.774135
\(730\) 1.18623e12 0.154602
\(731\) 2.54117e11 0.0329159
\(732\) −3.43571e12 −0.442300
\(733\) −5.05649e12 −0.646965 −0.323483 0.946234i \(-0.604854\pi\)
−0.323483 + 0.946234i \(0.604854\pi\)
\(734\) −1.77155e12 −0.225279
\(735\) 6.25259e11 0.0790254
\(736\) 4.19387e12 0.526822
\(737\) −1.33763e11 −0.0167006
\(738\) 3.50001e11 0.0434326
\(739\) −2.42102e12 −0.298605 −0.149303 0.988792i \(-0.547703\pi\)
−0.149303 + 0.988792i \(0.547703\pi\)
\(740\) 9.63538e12 1.18121
\(741\) 0 0
\(742\) −2.72801e12 −0.330391
\(743\) 7.51012e12 0.904060 0.452030 0.892003i \(-0.350700\pi\)
0.452030 + 0.892003i \(0.350700\pi\)
\(744\) 3.10766e12 0.371840
\(745\) −2.82280e12 −0.335719
\(746\) 3.07765e12 0.363827
\(747\) −4.68733e12 −0.550786
\(748\) 8.79300e11 0.102702
\(749\) −9.36353e12 −1.08710
\(750\) −1.32392e12 −0.152787
\(751\) 6.27886e12 0.720279 0.360139 0.932898i \(-0.382729\pi\)
0.360139 + 0.932898i \(0.382729\pi\)
\(752\) −9.61005e12 −1.09584
\(753\) −1.00621e13 −1.14054
\(754\) 0 0
\(755\) 1.97426e12 0.221127
\(756\) 8.30110e12 0.924246
\(757\) 1.11936e13 1.23891 0.619455 0.785032i \(-0.287354\pi\)
0.619455 + 0.785032i \(0.287354\pi\)
\(758\) −2.20916e12 −0.243061
\(759\) 2.21708e12 0.242490
\(760\) −4.97246e12 −0.540642
\(761\) 1.51704e12 0.163970 0.0819852 0.996634i \(-0.473874\pi\)
0.0819852 + 0.996634i \(0.473874\pi\)
\(762\) 2.33564e12 0.250962
\(763\) −1.51449e13 −1.61773
\(764\) 2.25091e12 0.239022
\(765\) 1.22577e12 0.129400
\(766\) 2.38532e11 0.0250332
\(767\) 0 0
\(768\) −3.71390e12 −0.385217
\(769\) −1.39392e13 −1.43737 −0.718686 0.695335i \(-0.755256\pi\)
−0.718686 + 0.695335i \(0.755256\pi\)
\(770\) 7.22654e11 0.0740836
\(771\) 1.84546e12 0.188087
\(772\) 5.47371e12 0.554631
\(773\) −7.63028e11 −0.0768657 −0.0384329 0.999261i \(-0.512237\pi\)
−0.0384329 + 0.999261i \(0.512237\pi\)
\(774\) −1.48761e11 −0.0148989
\(775\) 2.51977e12 0.250901
\(776\) 3.75284e12 0.371520
\(777\) −8.70540e12 −0.856829
\(778\) −4.68623e11 −0.0458580
\(779\) −5.45840e12 −0.531064
\(780\) 0 0
\(781\) 4.55743e12 0.438319
\(782\) −5.08157e11 −0.0485923
\(783\) 1.15594e13 1.09902
\(784\) −1.20013e12 −0.113450
\(785\) 1.24700e13 1.17207
\(786\) 2.83562e12 0.265001
\(787\) 6.74913e12 0.627136 0.313568 0.949566i \(-0.398476\pi\)
0.313568 + 0.949566i \(0.398476\pi\)
\(788\) −1.10112e13 −1.01734
\(789\) 1.92050e12 0.176428
\(790\) −3.29823e12 −0.301272
\(791\) 1.57114e13 1.42699
\(792\) −1.05401e12 −0.0951882
\(793\) 0 0
\(794\) −2.42889e12 −0.216878
\(795\) 1.12874e13 1.00217
\(796\) 1.47343e12 0.130083
\(797\) −4.49809e12 −0.394880 −0.197440 0.980315i \(-0.563263\pi\)
−0.197440 + 0.980315i \(0.563263\pi\)
\(798\) 2.19400e12 0.191524
\(799\) 3.79355e12 0.329295
\(800\) 1.31139e12 0.113195
\(801\) 2.30065e12 0.197472
\(802\) 2.13377e12 0.182122
\(803\) −3.92137e12 −0.332827
\(804\) −3.05588e11 −0.0257919
\(805\) 8.76587e12 0.735722
\(806\) 0 0
\(807\) −1.24146e13 −1.03039
\(808\) −5.67172e12 −0.468127
\(809\) −2.23154e13 −1.83162 −0.915811 0.401610i \(-0.868451\pi\)
−0.915811 + 0.401610i \(0.868451\pi\)
\(810\) 3.36703e11 0.0274830
\(811\) 9.05043e12 0.734641 0.367321 0.930094i \(-0.380275\pi\)
0.367321 + 0.930094i \(0.380275\pi\)
\(812\) 1.16623e13 0.941417
\(813\) 1.21013e13 0.971459
\(814\) 1.51753e12 0.121151
\(815\) 2.58307e12 0.205082
\(816\) 1.90853e12 0.150693
\(817\) 2.31998e12 0.182174
\(818\) 1.61755e12 0.126319
\(819\) 0 0
\(820\) −4.10732e12 −0.317246
\(821\) −7.09709e12 −0.545175 −0.272588 0.962131i \(-0.587879\pi\)
−0.272588 + 0.962131i \(0.587879\pi\)
\(822\) 2.04050e12 0.155889
\(823\) 2.20210e12 0.167316 0.0836582 0.996495i \(-0.473340\pi\)
0.0836582 + 0.996495i \(0.473340\pi\)
\(824\) 4.94099e12 0.373372
\(825\) 6.93262e11 0.0521020
\(826\) 2.58057e12 0.192888
\(827\) −4.53701e12 −0.337283 −0.168642 0.985677i \(-0.553938\pi\)
−0.168642 + 0.985677i \(0.553938\pi\)
\(828\) −6.24392e12 −0.461658
\(829\) 2.38397e13 1.75309 0.876546 0.481319i \(-0.159842\pi\)
0.876546 + 0.481319i \(0.159842\pi\)
\(830\) −2.62066e12 −0.191672
\(831\) 9.99945e11 0.0727397
\(832\) 0 0
\(833\) 4.73748e11 0.0340914
\(834\) −1.32260e12 −0.0946635
\(835\) −5.15009e12 −0.366628
\(836\) 8.02765e12 0.568408
\(837\) −1.96614e13 −1.38468
\(838\) −3.70074e12 −0.259233
\(839\) −2.47153e13 −1.72202 −0.861009 0.508590i \(-0.830167\pi\)
−0.861009 + 0.508590i \(0.830167\pi\)
\(840\) 3.38052e12 0.234276
\(841\) 1.73271e12 0.119438
\(842\) −2.45818e12 −0.168542
\(843\) 2.35945e12 0.160912
\(844\) 1.16377e12 0.0789455
\(845\) 0 0
\(846\) −2.22076e12 −0.149051
\(847\) 1.15738e13 0.772683
\(848\) −2.16651e13 −1.43873
\(849\) −1.12468e12 −0.0742922
\(850\) −1.58896e11 −0.0104407
\(851\) 1.84078e13 1.20315
\(852\) 1.04117e13 0.676927
\(853\) −1.14224e13 −0.738732 −0.369366 0.929284i \(-0.620425\pi\)
−0.369366 + 0.929284i \(0.620425\pi\)
\(854\) −2.13943e12 −0.137638
\(855\) 1.11908e13 0.716165
\(856\) 7.63556e12 0.486081
\(857\) −1.57250e13 −0.995811 −0.497906 0.867231i \(-0.665897\pi\)
−0.497906 + 0.867231i \(0.665897\pi\)
\(858\) 0 0
\(859\) −3.30451e11 −0.0207080 −0.0103540 0.999946i \(-0.503296\pi\)
−0.0103540 + 0.999946i \(0.503296\pi\)
\(860\) 1.74573e12 0.108826
\(861\) 3.71089e12 0.230125
\(862\) −3.69082e12 −0.227688
\(863\) 2.92581e12 0.179555 0.0897774 0.995962i \(-0.471384\pi\)
0.0897774 + 0.995962i \(0.471384\pi\)
\(864\) −1.02325e13 −0.624700
\(865\) −1.83537e13 −1.11468
\(866\) 1.41585e12 0.0855432
\(867\) 1.03810e13 0.623954
\(868\) −1.98365e13 −1.18611
\(869\) 1.09032e13 0.648579
\(870\) 2.29894e12 0.136048
\(871\) 0 0
\(872\) 1.23500e13 0.723340
\(873\) −8.44595e12 −0.492135
\(874\) −4.63927e12 −0.268935
\(875\) 1.73040e13 0.997955
\(876\) −8.95855e12 −0.514007
\(877\) 1.03579e13 0.591251 0.295626 0.955304i \(-0.404472\pi\)
0.295626 + 0.955304i \(0.404472\pi\)
\(878\) 4.05348e12 0.230199
\(879\) 1.35983e13 0.768309
\(880\) 5.73911e12 0.322606
\(881\) −3.38326e13 −1.89210 −0.946048 0.324026i \(-0.894963\pi\)
−0.946048 + 0.324026i \(0.894963\pi\)
\(882\) −2.77334e11 −0.0154310
\(883\) 1.58243e13 0.875992 0.437996 0.898977i \(-0.355688\pi\)
0.437996 + 0.898977i \(0.355688\pi\)
\(884\) 0 0
\(885\) −1.06773e13 −0.585084
\(886\) −4.35755e12 −0.237570
\(887\) 9.51456e12 0.516098 0.258049 0.966132i \(-0.416920\pi\)
0.258049 + 0.966132i \(0.416920\pi\)
\(888\) 7.09888e12 0.383117
\(889\) −3.05274e13 −1.63920
\(890\) 1.28628e12 0.0687196
\(891\) −1.11306e12 −0.0591654
\(892\) 1.36630e13 0.722610
\(893\) 3.46336e13 1.82249
\(894\) −1.01566e12 −0.0531775
\(895\) −3.04240e13 −1.58494
\(896\) −1.36434e13 −0.707193
\(897\) 0 0
\(898\) −3.54557e12 −0.181946
\(899\) −2.76225e13 −1.41040
\(900\) −1.95242e12 −0.0991932
\(901\) 8.55226e12 0.432334
\(902\) −6.46883e11 −0.0325384
\(903\) −1.57724e12 −0.0789410
\(904\) −1.28120e13 −0.638056
\(905\) 2.05801e13 1.01983
\(906\) 7.10347e11 0.0350262
\(907\) 1.55462e13 0.762764 0.381382 0.924417i \(-0.375448\pi\)
0.381382 + 0.924417i \(0.375448\pi\)
\(908\) 1.03745e13 0.506504
\(909\) 1.27645e13 0.620107
\(910\) 0 0
\(911\) 2.23975e13 1.07737 0.538687 0.842506i \(-0.318921\pi\)
0.538687 + 0.842506i \(0.318921\pi\)
\(912\) 1.74241e13 0.834017
\(913\) 8.66326e12 0.412632
\(914\) −5.51789e12 −0.261526
\(915\) 8.85207e12 0.417494
\(916\) −3.41817e13 −1.60422
\(917\) −3.70624e13 −1.73090
\(918\) 1.23984e12 0.0576202
\(919\) −2.37718e13 −1.09937 −0.549683 0.835373i \(-0.685252\pi\)
−0.549683 + 0.835373i \(0.685252\pi\)
\(920\) −7.14819e12 −0.328966
\(921\) −2.09197e13 −0.958047
\(922\) −2.30819e12 −0.105192
\(923\) 0 0
\(924\) −5.45759e12 −0.246307
\(925\) 5.75595e12 0.258511
\(926\) −1.74789e12 −0.0781205
\(927\) −1.11200e13 −0.494589
\(928\) −1.43758e13 −0.636306
\(929\) −5.22801e12 −0.230285 −0.115143 0.993349i \(-0.536732\pi\)
−0.115143 + 0.993349i \(0.536732\pi\)
\(930\) −3.91028e12 −0.171409
\(931\) 4.32512e12 0.188680
\(932\) 2.77431e13 1.20443
\(933\) −1.64353e12 −0.0710086
\(934\) 2.04926e12 0.0881121
\(935\) −2.26551e12 −0.0969422
\(936\) 0 0
\(937\) −4.08690e13 −1.73207 −0.866035 0.499983i \(-0.833340\pi\)
−0.866035 + 0.499983i \(0.833340\pi\)
\(938\) −1.90290e11 −0.00802608
\(939\) −9.25034e12 −0.388296
\(940\) 2.60610e13 1.08872
\(941\) −3.10598e13 −1.29136 −0.645678 0.763610i \(-0.723425\pi\)
−0.645678 + 0.763610i \(0.723425\pi\)
\(942\) 4.48677e12 0.185654
\(943\) −7.84676e12 −0.323138
\(944\) 2.04942e13 0.839955
\(945\) −2.13877e13 −0.872410
\(946\) 2.74944e11 0.0111618
\(947\) −3.25313e13 −1.31440 −0.657199 0.753717i \(-0.728259\pi\)
−0.657199 + 0.753717i \(0.728259\pi\)
\(948\) 2.49087e13 1.00165
\(949\) 0 0
\(950\) −1.45066e12 −0.0577842
\(951\) −2.27957e13 −0.903733
\(952\) 2.56136e12 0.101066
\(953\) −5.19426e12 −0.203989 −0.101994 0.994785i \(-0.532522\pi\)
−0.101994 + 0.994785i \(0.532522\pi\)
\(954\) −5.00652e12 −0.195690
\(955\) −5.79944e12 −0.225616
\(956\) 3.36790e13 1.30406
\(957\) −7.59974e12 −0.292884
\(958\) −7.27764e12 −0.279155
\(959\) −2.66699e13 −1.01821
\(960\) 1.17008e13 0.444628
\(961\) 2.05436e13 0.776999
\(962\) 0 0
\(963\) −1.71842e13 −0.643890
\(964\) −8.98286e12 −0.335018
\(965\) −1.41030e13 −0.523525
\(966\) 3.15400e12 0.116537
\(967\) −3.73620e13 −1.37408 −0.687039 0.726620i \(-0.741090\pi\)
−0.687039 + 0.726620i \(0.741090\pi\)
\(968\) −9.43795e12 −0.345492
\(969\) −6.87815e12 −0.250620
\(970\) −4.72208e12 −0.171262
\(971\) 3.68002e13 1.32851 0.664254 0.747507i \(-0.268749\pi\)
0.664254 + 0.747507i \(0.268749\pi\)
\(972\) 2.50496e13 0.900126
\(973\) 1.72868e13 0.618310
\(974\) −8.69735e11 −0.0309650
\(975\) 0 0
\(976\) −1.69907e13 −0.599360
\(977\) −2.41910e13 −0.849430 −0.424715 0.905327i \(-0.639626\pi\)
−0.424715 + 0.905327i \(0.639626\pi\)
\(978\) 9.29402e11 0.0324847
\(979\) −4.25213e12 −0.147940
\(980\) 3.25455e12 0.112713
\(981\) −2.77943e13 −0.958176
\(982\) 6.47424e12 0.222171
\(983\) −1.73443e13 −0.592468 −0.296234 0.955115i \(-0.595731\pi\)
−0.296234 + 0.955115i \(0.595731\pi\)
\(984\) −3.02607e12 −0.102897
\(985\) 2.83703e13 0.960287
\(986\) 1.74187e12 0.0586907
\(987\) −2.35456e13 −0.789738
\(988\) 0 0
\(989\) 3.33511e12 0.110848
\(990\) 1.32624e12 0.0438796
\(991\) −1.10802e13 −0.364936 −0.182468 0.983212i \(-0.558409\pi\)
−0.182468 + 0.983212i \(0.558409\pi\)
\(992\) 2.44519e13 0.801696
\(993\) −9.91920e12 −0.323747
\(994\) 6.48337e12 0.210650
\(995\) −3.79627e12 −0.122787
\(996\) 1.97916e13 0.637256
\(997\) 9.37866e12 0.300616 0.150308 0.988639i \(-0.451973\pi\)
0.150308 + 0.988639i \(0.451973\pi\)
\(998\) 2.75326e12 0.0878536
\(999\) −4.49128e13 −1.42668
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.h.1.12 yes 27
13.12 even 2 169.10.a.g.1.16 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.10.a.g.1.16 27 13.12 even 2
169.10.a.h.1.12 yes 27 1.1 even 1 trivial