Properties

Label 169.10.a
Level $169$
Weight $10$
Character orbit 169.a
Rep. character $\chi_{169}(1,\cdot)$
Character field $\Q$
Dimension $111$
Newform subspaces $8$
Sturm bound $151$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(151\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(169))\).

Total New Old
Modular forms 143 122 21
Cusp forms 129 111 18
Eisenstein series 14 11 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(13\)Dim
\(+\)\(54\)
\(-\)\(57\)

Trace form

\( 111 q + 18 q^{2} + 2 q^{3} + 27394 q^{4} - 2274 q^{5} - 1164 q^{6} + 1142 q^{7} + 22392 q^{8} + 677481 q^{9} + O(q^{10}) \) \( 111 q + 18 q^{2} + 2 q^{3} + 27394 q^{4} - 2274 q^{5} - 1164 q^{6} + 1142 q^{7} + 22392 q^{8} + 677481 q^{9} - 10950 q^{10} - 81606 q^{11} - 15906 q^{12} + 208526 q^{14} - 189280 q^{15} + 6609170 q^{16} + 387578 q^{17} - 1034798 q^{18} + 631074 q^{19} + 724764 q^{20} + 461036 q^{21} + 1647964 q^{22} + 5181488 q^{23} - 1265916 q^{24} + 37975267 q^{25} - 5326648 q^{27} - 6623136 q^{28} - 8941244 q^{29} - 14014502 q^{30} - 1519294 q^{31} + 26176032 q^{32} - 2865076 q^{33} - 16323580 q^{34} + 9282284 q^{35} + 195558906 q^{36} - 11808714 q^{37} - 16839750 q^{38} + 14056534 q^{40} - 23153550 q^{41} - 14109260 q^{42} + 1720846 q^{43} - 25010148 q^{44} - 8711270 q^{45} - 12049636 q^{46} - 39411210 q^{47} + 60881640 q^{48} + 432087739 q^{49} + 20488518 q^{50} + 37276312 q^{51} + 96819164 q^{53} + 5963196 q^{54} + 17903900 q^{55} + 144744328 q^{56} - 42344352 q^{57} - 230985704 q^{58} - 183106794 q^{59} - 127806048 q^{60} - 58796452 q^{61} - 38455894 q^{62} + 572650678 q^{63} + 603952196 q^{64} + 591982278 q^{66} + 410562606 q^{67} + 328197396 q^{68} - 28897628 q^{69} - 264198964 q^{70} - 464611446 q^{71} - 146804976 q^{72} - 341685262 q^{73} + 350327504 q^{74} + 541220302 q^{75} + 1280673160 q^{76} - 936895652 q^{77} + 1270234060 q^{79} - 391542492 q^{80} + 2478481207 q^{81} + 603689322 q^{82} - 1617316434 q^{83} - 1356883180 q^{84} + 225900296 q^{85} - 2701696572 q^{86} + 995064480 q^{87} + 4062127224 q^{88} + 1906094658 q^{89} - 3550261468 q^{90} + 4652487576 q^{92} - 725481888 q^{93} - 3422444702 q^{94} - 971162964 q^{95} - 4102066876 q^{96} - 1052922690 q^{97} - 1991147070 q^{98} - 5148380898 q^{99} + O(q^{100}) \)

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(169))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 13
169.10.a.a 169.a 1.a $4$ $87.041$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 13.10.a.a \(33\) \(-163\) \(-471\) \(11241\) $+$ $\mathrm{SU}(2)$ \(q+(8+\beta _{1})q^{2}+(-41+2\beta _{1}-\beta _{3})q^{3}+\cdots\)
169.10.a.b 169.a 1.a $5$ $87.041$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 13.10.a.b \(-15\) \(161\) \(-1803\) \(-10099\) $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{2}+(2^{5}+2\beta _{1}-\beta _{2})q^{3}+\cdots\)
169.10.a.c 169.a 1.a $9$ $87.041$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 13.10.c.a \(-15\) \(-161\) \(-1140\) \(1939\) $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}+(-18+\beta _{3})q^{3}+(200+\cdots)q^{4}+\cdots\)
169.10.a.d 169.a 1.a $9$ $87.041$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 13.10.c.a \(15\) \(-161\) \(1140\) \(-1939\) $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}+(-18+\beta _{3})q^{3}+(200+\cdots)q^{4}+\cdots\)
169.10.a.e 169.a 1.a $10$ $87.041$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 13.10.b.a \(0\) \(-2\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(2^{8}+\beta _{2})q^{4}+(-6\beta _{1}+\cdots)q^{5}+\cdots\)
169.10.a.f 169.a 1.a $20$ $87.041$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 13.10.e.a \(0\) \(326\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2^{4}+\beta _{4})q^{3}+(2^{8}+\beta _{3}+\beta _{4}+\cdots)q^{4}+\cdots\)
169.10.a.g 169.a 1.a $27$ $87.041$ None 169.10.a.g \(-65\) \(1\) \(-3238\) \(-17378\) $+$ $\mathrm{SU}(2)$
169.10.a.h 169.a 1.a $27$ $87.041$ None 169.10.a.g \(65\) \(1\) \(3238\) \(17378\) $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(169))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(169)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)