Defining parameters
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(151\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(169))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 143 | 122 | 21 |
Cusp forms | 129 | 111 | 18 |
Eisenstein series | 14 | 11 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(13\) | Dim |
---|---|
\(+\) | \(54\) |
\(-\) | \(57\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(169))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(169))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(169)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)