Properties

Label 169.10
Level 169
Weight 10
Dimension 10419
Nonzero newspaces 8
Sturm bound 23660
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 169 = 13^{2} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(23660\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(169))\).

Total New Old
Modular forms 10761 10624 137
Cusp forms 10533 10419 114
Eisenstein series 228 205 23

Trace form

\( 10419 q - 66 q^{2} - 66 q^{3} - 66 q^{4} - 66 q^{5} - 66 q^{6} + 4038 q^{7} + 73662 q^{8} - 66 q^{9} - 306786 q^{10} + 36774 q^{11} + 829386 q^{12} + 108360 q^{13} - 727806 q^{14} - 1193682 q^{15} - 66 q^{16}+ \cdots - 14821060410 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(169))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
169.10.a \(\chi_{169}(1, \cdot)\) 169.10.a.a 4 1
169.10.a.b 5
169.10.a.c 9
169.10.a.d 9
169.10.a.e 10
169.10.a.f 20
169.10.a.g 27
169.10.a.h 27
169.10.b \(\chi_{169}(168, \cdot)\) n/a 110 1
169.10.c \(\chi_{169}(22, \cdot)\) n/a 222 2
169.10.e \(\chi_{169}(23, \cdot)\) n/a 220 2
169.10.g \(\chi_{169}(14, \cdot)\) n/a 1620 12
169.10.h \(\chi_{169}(12, \cdot)\) n/a 1632 12
169.10.i \(\chi_{169}(3, \cdot)\) n/a 3240 24
169.10.k \(\chi_{169}(4, \cdot)\) n/a 3264 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(169))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(169)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)