Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,10,Mod(1,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.1");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(87.0410563117\) |
Analytic rank: | \(1\) |
Dimension: | \(27\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −43.2607 | 160.179 | 1359.49 | 2049.68 | −6929.44 | −8578.81 | −36662.9 | 5974.20 | −88670.5 | ||||||||||||||||||
1.2 | −43.1482 | 195.708 | 1349.77 | −457.758 | −8444.48 | 6911.97 | −36148.3 | 18618.8 | 19751.4 | ||||||||||||||||||
1.3 | −43.0325 | −29.4845 | 1339.79 | −1666.12 | 1268.79 | −10498.9 | −35622.0 | −18813.7 | 71697.1 | ||||||||||||||||||
1.4 | −40.6641 | −254.108 | 1141.57 | −1761.73 | 10333.1 | 1279.48 | −25601.0 | 44887.8 | 71639.4 | ||||||||||||||||||
1.5 | −34.8323 | −234.206 | 701.286 | 469.408 | 8157.91 | 9293.31 | −6593.27 | 35169.3 | −16350.5 | ||||||||||||||||||
1.6 | −27.6084 | 218.573 | 250.226 | 409.297 | −6034.47 | 2909.47 | 7227.17 | 28091.3 | −11300.0 | ||||||||||||||||||
1.7 | −25.8386 | −15.7946 | 155.636 | −715.059 | 408.111 | −8658.96 | 9207.97 | −19433.5 | 18476.2 | ||||||||||||||||||
1.8 | −25.3541 | −120.880 | 130.831 | 1004.42 | 3064.81 | 3164.79 | 9664.20 | −5071.03 | −25466.3 | ||||||||||||||||||
1.9 | −24.5615 | −5.41917 | 91.2697 | 546.263 | 133.103 | 9850.09 | 10333.8 | −19653.6 | −13417.1 | ||||||||||||||||||
1.10 | −22.4400 | 166.502 | −8.44752 | −2749.81 | −3736.30 | −4995.16 | 11678.8 | 8039.89 | 61705.7 | ||||||||||||||||||
1.11 | −13.4402 | 117.761 | −331.361 | 2291.59 | −1582.73 | 5059.42 | 11334.9 | −5815.41 | −30799.5 | ||||||||||||||||||
1.12 | −11.1269 | −140.546 | −388.192 | 992.121 | 1563.84 | −10567.0 | 10016.3 | 70.0974 | −11039.2 | ||||||||||||||||||
1.13 | −4.33003 | 54.1364 | −493.251 | −2633.10 | −234.412 | 3591.16 | 4352.76 | −16752.3 | 11401.4 | ||||||||||||||||||
1.14 | 2.76873 | 273.564 | −504.334 | −1902.60 | 757.424 | −4322.02 | −2813.96 | 55154.1 | −5267.78 | ||||||||||||||||||
1.15 | 4.74730 | 109.518 | −489.463 | 1538.18 | 519.914 | −10378.9 | −4754.24 | −7688.85 | 7302.18 | ||||||||||||||||||
1.16 | 4.82532 | −93.8913 | −488.716 | −1259.17 | −453.056 | 5921.56 | −4828.78 | −10867.4 | −6075.91 | ||||||||||||||||||
1.17 | 6.13624 | −213.333 | −474.347 | −517.983 | −1309.07 | −2961.86 | −6052.46 | 25828.1 | −3178.47 | ||||||||||||||||||
1.18 | 8.72715 | 168.263 | −435.837 | 932.577 | 1468.46 | 1292.90 | −8271.92 | 8629.37 | 8138.74 | ||||||||||||||||||
1.19 | 12.3426 | −225.156 | −359.660 | 2236.39 | −2779.01 | −11037.4 | −10758.6 | 31012.0 | 27602.8 | ||||||||||||||||||
1.20 | 14.8244 | −139.228 | −292.237 | −1387.80 | −2063.98 | 2985.58 | −11922.3 | −298.471 | −20573.4 | ||||||||||||||||||
See all 27 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(13\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.10.a.g | ✓ | 27 |
13.b | even | 2 | 1 | 169.10.a.h | yes | 27 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.10.a.g | ✓ | 27 | 1.a | even | 1 | 1 | trivial |
169.10.a.h | yes | 27 | 13.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{27} + 65 T_{2}^{26} - 8384 T_{2}^{25} - 596247 T_{2}^{24} + 29229748 T_{2}^{23} + \cdots + 22\!\cdots\!48 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(169))\).