Properties

Label 2-13e2-1.1-c9-0-93
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $87.0410$
Root an. cond. $9.32957$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 43.1·2-s + 195.·3-s + 1.34e3·4-s + 457.·5-s + 8.44e3·6-s − 6.91e3·7-s + 3.61e4·8-s + 1.86e4·9-s + 1.97e4·10-s + 8.57e4·11-s + 2.64e5·12-s − 2.98e5·14-s + 8.95e4·15-s + 8.68e5·16-s + 3.66e5·17-s + 8.03e5·18-s − 6.20e5·19-s + 6.17e5·20-s − 1.35e6·21-s + 3.69e6·22-s − 7.34e5·23-s + 7.07e6·24-s − 1.74e6·25-s − 2.08e5·27-s − 9.32e6·28-s − 1.77e6·29-s + 3.86e6·30-s + ⋯
L(s)  = 1  + 1.90·2-s + 1.39·3-s + 2.63·4-s + 0.327·5-s + 2.66·6-s − 1.08·7-s + 3.12·8-s + 0.945·9-s + 0.624·10-s + 1.76·11-s + 3.67·12-s − 2.07·14-s + 0.456·15-s + 3.31·16-s + 1.06·17-s + 1.80·18-s − 1.09·19-s + 0.863·20-s − 1.51·21-s + 3.36·22-s − 0.547·23-s + 4.35·24-s − 0.892·25-s − 0.0754·27-s − 2.86·28-s − 0.465·29-s + 0.871·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(87.0410\)
Root analytic conductor: \(9.32957\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(13.42431558\)
\(L(\frac12)\) \(\approx\) \(13.42431558\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 - 43.1T + 512T^{2} \)
3 \( 1 - 195.T + 1.96e4T^{2} \)
5 \( 1 - 457.T + 1.95e6T^{2} \)
7 \( 1 + 6.91e3T + 4.03e7T^{2} \)
11 \( 1 - 8.57e4T + 2.35e9T^{2} \)
17 \( 1 - 3.66e5T + 1.18e11T^{2} \)
19 \( 1 + 6.20e5T + 3.22e11T^{2} \)
23 \( 1 + 7.34e5T + 1.80e12T^{2} \)
29 \( 1 + 1.77e6T + 1.45e13T^{2} \)
31 \( 1 + 1.44e6T + 2.64e13T^{2} \)
37 \( 1 - 1.41e7T + 1.29e14T^{2} \)
41 \( 1 + 4.75e6T + 3.27e14T^{2} \)
43 \( 1 - 1.49e6T + 5.02e14T^{2} \)
47 \( 1 - 2.44e7T + 1.11e15T^{2} \)
53 \( 1 - 8.17e6T + 3.29e15T^{2} \)
59 \( 1 - 8.34e7T + 8.66e15T^{2} \)
61 \( 1 + 4.23e7T + 1.16e16T^{2} \)
67 \( 1 + 3.16e8T + 2.72e16T^{2} \)
71 \( 1 - 3.21e8T + 4.58e16T^{2} \)
73 \( 1 + 1.58e8T + 5.88e16T^{2} \)
79 \( 1 - 5.13e7T + 1.19e17T^{2} \)
83 \( 1 + 1.52e8T + 1.86e17T^{2} \)
89 \( 1 - 2.74e7T + 3.50e17T^{2} \)
97 \( 1 - 9.88e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.58186988600338413341996122358, −10.08987475114887998091616009904, −9.148110447920724160187991894977, −7.68532359744006531526567046565, −6.56032882680550978187844713594, −5.85982474616447159849407807279, −4.07978769937658459607947029046, −3.62904363312926441995394012327, −2.61270960969382257867799492446, −1.60919672769291290400601981386, 1.60919672769291290400601981386, 2.61270960969382257867799492446, 3.62904363312926441995394012327, 4.07978769937658459607947029046, 5.85982474616447159849407807279, 6.56032882680550978187844713594, 7.68532359744006531526567046565, 9.148110447920724160187991894977, 10.08987475114887998091616009904, 11.58186988600338413341996122358

Graph of the $Z$-function along the critical line