Newspace parameters
| Level: | \( N \) | \(=\) | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 168.p (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(9.91232088096\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 139.1 | −2.81425 | − | 0.282796i | − | 3.00000i | 7.84005 | + | 1.59172i | −4.56033 | −0.848389 | + | 8.44276i | 17.6399 | − | 5.64228i | −21.6138 | − | 6.69665i | −9.00000 | 12.8339 | + | 1.28964i | |||||
| 139.2 | −2.81425 | − | 0.282796i | 3.00000i | 7.84005 | + | 1.59172i | 4.56033 | 0.848389 | − | 8.44276i | −17.6399 | − | 5.64228i | −21.6138 | − | 6.69665i | −9.00000 | −12.8339 | − | 1.28964i | ||||||
| 139.3 | −2.81425 | + | 0.282796i | − | 3.00000i | 7.84005 | − | 1.59172i | 4.56033 | 0.848389 | + | 8.44276i | −17.6399 | + | 5.64228i | −21.6138 | + | 6.69665i | −9.00000 | −12.8339 | + | 1.28964i | |||||
| 139.4 | −2.81425 | + | 0.282796i | 3.00000i | 7.84005 | − | 1.59172i | −4.56033 | −0.848389 | − | 8.44276i | 17.6399 | + | 5.64228i | −21.6138 | + | 6.69665i | −9.00000 | 12.8339 | − | 1.28964i | ||||||
| 139.5 | −2.48994 | − | 1.34171i | − | 3.00000i | 4.39965 | + | 6.68155i | −20.8990 | −4.02512 | + | 7.46983i | −18.5132 | − | 0.511483i | −1.99022 | − | 22.5397i | −9.00000 | 52.0374 | + | 28.0403i | |||||
| 139.6 | −2.48994 | − | 1.34171i | 3.00000i | 4.39965 | + | 6.68155i | 20.8990 | 4.02512 | − | 7.46983i | 18.5132 | − | 0.511483i | −1.99022 | − | 22.5397i | −9.00000 | −52.0374 | − | 28.0403i | ||||||
| 139.7 | −2.48994 | + | 1.34171i | − | 3.00000i | 4.39965 | − | 6.68155i | 20.8990 | 4.02512 | + | 7.46983i | 18.5132 | + | 0.511483i | −1.99022 | + | 22.5397i | −9.00000 | −52.0374 | + | 28.0403i | |||||
| 139.8 | −2.48994 | + | 1.34171i | 3.00000i | 4.39965 | − | 6.68155i | −20.8990 | −4.02512 | − | 7.46983i | −18.5132 | + | 0.511483i | −1.99022 | + | 22.5397i | −9.00000 | 52.0374 | − | 28.0403i | ||||||
| 139.9 | −2.20291 | − | 1.77404i | − | 3.00000i | 1.70558 | + | 7.81607i | 4.80791 | −5.32211 | + | 6.60872i | 7.97009 | + | 16.7176i | 10.1088 | − | 20.2438i | −9.00000 | −10.5914 | − | 8.52942i | |||||
| 139.10 | −2.20291 | − | 1.77404i | 3.00000i | 1.70558 | + | 7.81607i | −4.80791 | 5.32211 | − | 6.60872i | −7.97009 | + | 16.7176i | 10.1088 | − | 20.2438i | −9.00000 | 10.5914 | + | 8.52942i | ||||||
| 139.11 | −2.20291 | + | 1.77404i | − | 3.00000i | 1.70558 | − | 7.81607i | −4.80791 | 5.32211 | + | 6.60872i | −7.97009 | − | 16.7176i | 10.1088 | + | 20.2438i | −9.00000 | 10.5914 | − | 8.52942i | |||||
| 139.12 | −2.20291 | + | 1.77404i | 3.00000i | 1.70558 | − | 7.81607i | 4.80791 | −5.32211 | − | 6.60872i | 7.97009 | − | 16.7176i | 10.1088 | + | 20.2438i | −9.00000 | −10.5914 | + | 8.52942i | ||||||
| 139.13 | −1.77579 | − | 2.20149i | − | 3.00000i | −1.69313 | + | 7.81878i | 1.47916 | −6.60448 | + | 5.32737i | 7.43403 | − | 16.9628i | 20.2196 | − | 10.1571i | −9.00000 | −2.62669 | − | 3.25637i | |||||
| 139.14 | −1.77579 | − | 2.20149i | 3.00000i | −1.69313 | + | 7.81878i | −1.47916 | 6.60448 | − | 5.32737i | −7.43403 | − | 16.9628i | 20.2196 | − | 10.1571i | −9.00000 | 2.62669 | + | 3.25637i | ||||||
| 139.15 | −1.77579 | + | 2.20149i | − | 3.00000i | −1.69313 | − | 7.81878i | −1.47916 | 6.60448 | + | 5.32737i | −7.43403 | + | 16.9628i | 20.2196 | + | 10.1571i | −9.00000 | 2.62669 | − | 3.25637i | |||||
| 139.16 | −1.77579 | + | 2.20149i | 3.00000i | −1.69313 | − | 7.81878i | 1.47916 | −6.60448 | − | 5.32737i | 7.43403 | + | 16.9628i | 20.2196 | + | 10.1571i | −9.00000 | −2.62669 | + | 3.25637i | ||||||
| 139.17 | −1.32895 | − | 2.49678i | − | 3.00000i | −4.46779 | + | 6.63618i | 18.1258 | −7.49033 | + | 3.98685i | −17.7395 | + | 5.32058i | 22.5065 | + | 2.33591i | −9.00000 | −24.0883 | − | 45.2561i | |||||
| 139.18 | −1.32895 | − | 2.49678i | 3.00000i | −4.46779 | + | 6.63618i | −18.1258 | 7.49033 | − | 3.98685i | 17.7395 | + | 5.32058i | 22.5065 | + | 2.33591i | −9.00000 | 24.0883 | + | 45.2561i | ||||||
| 139.19 | −1.32895 | + | 2.49678i | − | 3.00000i | −4.46779 | − | 6.63618i | −18.1258 | 7.49033 | + | 3.98685i | 17.7395 | − | 5.32058i | 22.5065 | − | 2.33591i | −9.00000 | 24.0883 | − | 45.2561i | |||||
| 139.20 | −1.32895 | + | 2.49678i | 3.00000i | −4.46779 | − | 6.63618i | 18.1258 | −7.49033 | − | 3.98685i | −17.7395 | − | 5.32058i | 22.5065 | − | 2.33591i | −9.00000 | −24.0883 | + | 45.2561i | ||||||
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.b | odd | 2 | 1 | inner |
| 8.d | odd | 2 | 1 | inner |
| 56.e | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 168.4.p.a | ✓ | 48 |
| 4.b | odd | 2 | 1 | 672.4.p.a | 48 | ||
| 7.b | odd | 2 | 1 | inner | 168.4.p.a | ✓ | 48 |
| 8.b | even | 2 | 1 | 672.4.p.a | 48 | ||
| 8.d | odd | 2 | 1 | inner | 168.4.p.a | ✓ | 48 |
| 28.d | even | 2 | 1 | 672.4.p.a | 48 | ||
| 56.e | even | 2 | 1 | inner | 168.4.p.a | ✓ | 48 |
| 56.h | odd | 2 | 1 | 672.4.p.a | 48 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 168.4.p.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
| 168.4.p.a | ✓ | 48 | 7.b | odd | 2 | 1 | inner |
| 168.4.p.a | ✓ | 48 | 8.d | odd | 2 | 1 | inner |
| 168.4.p.a | ✓ | 48 | 56.e | even | 2 | 1 | inner |
| 672.4.p.a | 48 | 4.b | odd | 2 | 1 | ||
| 672.4.p.a | 48 | 8.b | even | 2 | 1 | ||
| 672.4.p.a | 48 | 28.d | even | 2 | 1 | ||
| 672.4.p.a | 48 | 56.h | odd | 2 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(168, [\chi])\).