| L(s) = 1 | + (1.95 − 2.04i)2-s + 3i·3-s + (−0.332 − 7.99i)4-s + 14.3·5-s + (6.12 + 5.87i)6-s + (4.16 + 18.0i)7-s + (−16.9 − 14.9i)8-s − 9·9-s + (28.1 − 29.3i)10-s + 20.6·11-s + (23.9 − 0.996i)12-s + 55.3·13-s + (44.9 + 26.8i)14-s + 43.1i·15-s + (−63.7 + 5.31i)16-s − 35.0i·17-s + ⋯ |
| L(s) = 1 | + (0.692 − 0.721i)2-s + 0.577i·3-s + (−0.0415 − 0.999i)4-s + 1.28·5-s + (0.416 + 0.399i)6-s + (0.224 + 0.974i)7-s + (−0.749 − 0.661i)8-s − 0.333·9-s + (0.890 − 0.928i)10-s + 0.566·11-s + (0.576 − 0.0239i)12-s + 1.18·13-s + (0.858 + 0.512i)14-s + 0.742i·15-s + (−0.996 + 0.0829i)16-s − 0.500i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.879 + 0.476i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.879 + 0.476i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.96022 - 0.750174i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.96022 - 0.750174i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.95 + 2.04i)T \) |
| 3 | \( 1 - 3iT \) |
| 7 | \( 1 + (-4.16 - 18.0i)T \) |
| good | 5 | \( 1 - 14.3T + 125T^{2} \) |
| 11 | \( 1 - 20.6T + 1.33e3T^{2} \) |
| 13 | \( 1 - 55.3T + 2.19e3T^{2} \) |
| 17 | \( 1 + 35.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 45.4iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 14.3iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 223. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 186.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 57.0iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 29.1iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 461.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 101.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 342. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 621. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 877.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 633.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 28.6iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 575. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 596. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 1.02e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 968. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.57e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.13228062049861836609926646131, −11.36956197664716365812534744494, −10.23699407015134617623930542072, −9.501235737773275564768575331983, −8.625773141322754360644000177911, −6.22788086069959230275714134857, −5.74298347812213507162093615147, −4.46071389958027742431173007418, −2.93333437300379968483143923078, −1.62364057886395288417440205128,
1.55151306304105255191115707389, 3.41890913697744808722004300301, 4.92917634737978157557030801348, 6.22519435375617403524647629980, 6.76283557811561112377193752777, 8.092359432030476376663255832383, 9.111122935070650115508772718661, 10.50794654436495803626153267887, 11.60745684653646550351883241531, 12.89242088591693800425775596107