| L(s) = 1 | + (2.81 + 0.285i)2-s + 3i·3-s + (7.83 + 1.60i)4-s − 17.9·5-s + (−0.857 + 8.44i)6-s + (−4.95 + 17.8i)7-s + (21.5 + 6.77i)8-s − 9·9-s + (−50.6 − 5.14i)10-s − 49.0·11-s + (−4.82 + 23.5i)12-s + 3.98·13-s + (−19.0 + 48.7i)14-s − 53.9i·15-s + (58.8 + 25.2i)16-s − 25.2i·17-s + ⋯ |
| L(s) = 1 | + (0.994 + 0.101i)2-s + 0.577i·3-s + (0.979 + 0.201i)4-s − 1.60·5-s + (−0.0583 + 0.574i)6-s + (−0.267 + 0.963i)7-s + (0.954 + 0.299i)8-s − 0.333·9-s + (−1.60 − 0.162i)10-s − 1.34·11-s + (−0.116 + 0.565i)12-s + 0.0849·13-s + (−0.363 + 0.931i)14-s − 0.928i·15-s + (0.919 + 0.394i)16-s − 0.360i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.839 - 0.543i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.839 - 0.543i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.444076 + 1.50279i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.444076 + 1.50279i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-2.81 - 0.285i)T \) |
| 3 | \( 1 - 3iT \) |
| 7 | \( 1 + (4.95 - 17.8i)T \) |
| good | 5 | \( 1 + 17.9T + 125T^{2} \) |
| 11 | \( 1 + 49.0T + 1.33e3T^{2} \) |
| 13 | \( 1 - 3.98T + 2.19e3T^{2} \) |
| 17 | \( 1 + 25.2iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 134. iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 79.8iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 210. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 107.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 51.8iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 414. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 186.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 517.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 442. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 225. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 111.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 544.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 942. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 96.0iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 1.22e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 365. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 395. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.07e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.51648277358380770721263499751, −11.89383499068279168760113233847, −11.10710498760336504548458884068, −9.959764213126195194594141071903, −8.230115209739227746526089994504, −7.68512482193288916236941154765, −6.04528981829912204285531675576, −4.96729755224848890200930245465, −3.82813654263175804770353955521, −2.77616489765395803024977279178,
0.50512195614117696828687349252, 2.82030930766183067347903303281, 3.99935019238381371330727596484, 5.09940054661827926001013164472, 6.85823058832562017163197640457, 7.38493551970008866854801574706, 8.409376412567540367614330016208, 10.54807918076771798895209658040, 11.05397731898306812589796998818, 12.14480104693157513447831243127