| L(s) = 1 | + (2.14 − 1.84i)2-s + 3i·3-s + (1.17 − 7.91i)4-s − 7.57·5-s + (5.54 + 6.42i)6-s + (−16.3 − 8.64i)7-s + (−12.1 − 19.1i)8-s − 9·9-s + (−16.2 + 13.9i)10-s − 13.4·11-s + (23.7 + 3.52i)12-s − 27.1·13-s + (−51.0 + 11.7i)14-s − 22.7i·15-s + (−61.2 − 18.5i)16-s − 35.4i·17-s + ⋯ |
| L(s) = 1 | + (0.757 − 0.653i)2-s + 0.577i·3-s + (0.146 − 0.989i)4-s − 0.677·5-s + (0.377 + 0.437i)6-s + (−0.884 − 0.466i)7-s + (−0.534 − 0.844i)8-s − 0.333·9-s + (−0.513 + 0.442i)10-s − 0.367·11-s + (0.571 + 0.0847i)12-s − 0.579·13-s + (−0.974 + 0.224i)14-s − 0.391i·15-s + (−0.956 − 0.290i)16-s − 0.505i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 + 0.0787i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.996 + 0.0787i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.0332084 - 0.842519i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0332084 - 0.842519i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-2.14 + 1.84i)T \) |
| 3 | \( 1 - 3iT \) |
| 7 | \( 1 + (16.3 + 8.64i)T \) |
| good | 5 | \( 1 + 7.57T + 125T^{2} \) |
| 11 | \( 1 + 13.4T + 1.33e3T^{2} \) |
| 13 | \( 1 + 27.1T + 2.19e3T^{2} \) |
| 17 | \( 1 + 35.4iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 3.51iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 84.3iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 32.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 82.5T + 2.97e4T^{2} \) |
| 37 | \( 1 - 71.5iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 236. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 539.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 375.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 407. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 424. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 246.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 527.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 780. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 353. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 522. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 1.32e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 626. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 313. iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92642761921045697116792296197, −10.86685622841063657255050430770, −10.08773711989384908400359250491, −9.167137880349901528231048927518, −7.51538236731843131205327488031, −6.25617500635825446393590156208, −4.88005069145590541863597051044, −3.87518852603549113485284356297, −2.75091982895330550539333883136, −0.28533154036469836428198314806,
2.63307491570714345989375842176, 3.90680410704846573425606545505, 5.43071501273006431290662526821, 6.45511356327898445529729305522, 7.49138680217879239058605112530, 8.309494593266263233226939569386, 9.617171144619887892576525882704, 11.26972477655018701457094571499, 12.17804343206530355655767192920, 12.81123575627819253918854052169