Properties

Label 168.4.i.c.125.76
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.76
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.74

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.65881 + 0.964755i) q^{2} +(5.10794 - 0.953394i) q^{3} +(6.13849 + 5.13019i) q^{4} +17.0023i q^{5} +(14.5008 + 2.39302i) q^{6} +(-5.04990 - 17.8185i) q^{7} +(11.3717 + 19.5623i) q^{8} +(25.1821 - 9.73975i) q^{9} +(-16.4031 + 45.2059i) q^{10} +37.8286 q^{11} +(36.2462 + 20.3523i) q^{12} -77.9029 q^{13} +(3.76378 - 52.2478i) q^{14} +(16.2099 + 86.8468i) q^{15} +(11.3622 + 62.9833i) q^{16} -34.6479 q^{17} +(76.3507 - 1.60157i) q^{18} +37.7811 q^{19} +(-87.2252 + 104.369i) q^{20} +(-42.7826 - 86.2012i) q^{21} +(100.579 + 36.4954i) q^{22} -47.8900i q^{23} +(76.7365 + 89.0815i) q^{24} -164.079 q^{25} +(-207.129 - 75.1572i) q^{26} +(119.343 - 73.7585i) q^{27} +(60.4135 - 135.286i) q^{28} +180.790 q^{29} +(-40.6869 + 246.547i) q^{30} -163.846i q^{31} +(-30.5535 + 178.422i) q^{32} +(193.226 - 36.0656i) q^{33} +(-92.1220 - 33.4267i) q^{34} +(302.956 - 85.8600i) q^{35} +(204.547 + 69.4015i) q^{36} -159.677i q^{37} +(100.453 + 36.4496i) q^{38} +(-397.923 + 74.2721i) q^{39} +(-332.605 + 193.345i) q^{40} +81.5544 q^{41} +(-30.5876 - 270.467i) q^{42} -241.294i q^{43} +(232.211 + 194.068i) q^{44} +(165.598 + 428.154i) q^{45} +(46.2021 - 127.330i) q^{46} -356.246 q^{47} +(118.086 + 310.882i) q^{48} +(-291.997 + 179.963i) q^{49} +(-436.254 - 158.296i) q^{50} +(-176.979 + 33.0331i) q^{51} +(-478.207 - 399.657i) q^{52} -585.689 q^{53} +(388.468 - 80.9730i) q^{54} +643.174i q^{55} +(291.145 - 301.414i) q^{56} +(192.984 - 36.0203i) q^{57} +(480.686 + 174.418i) q^{58} +172.591i q^{59} +(-346.037 + 616.269i) q^{60} +572.943 q^{61} +(158.072 - 435.636i) q^{62} +(-300.715 - 399.522i) q^{63} +(-253.370 + 444.913i) q^{64} -1324.53i q^{65} +(548.545 + 90.5247i) q^{66} -765.089i q^{67} +(-212.686 - 177.750i) q^{68} +(-45.6580 - 244.619i) q^{69} +(888.334 + 63.9930i) q^{70} +925.379i q^{71} +(476.895 + 381.863i) q^{72} -590.913i q^{73} +(154.050 - 424.551i) q^{74} +(-838.105 + 156.432i) q^{75} +(231.919 + 193.825i) q^{76} +(-191.031 - 674.049i) q^{77} +(-1129.66 - 186.423i) q^{78} -28.4235 q^{79} +(-1070.86 + 193.184i) q^{80} +(539.274 - 490.534i) q^{81} +(216.837 + 78.6800i) q^{82} +2.66288i q^{83} +(179.608 - 748.629i) q^{84} -589.094i q^{85} +(232.790 - 641.555i) q^{86} +(923.466 - 172.364i) q^{87} +(430.175 + 740.016i) q^{88} -600.037 q^{89} +(27.2303 + 1298.14i) q^{90} +(393.402 + 1388.11i) q^{91} +(245.685 - 293.972i) q^{92} +(-156.210 - 836.917i) q^{93} +(-947.190 - 343.691i) q^{94} +642.367i q^{95} +(14.0411 + 940.499i) q^{96} +703.593i q^{97} +(-949.984 + 196.781i) q^{98} +(952.603 - 368.441i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.65881 + 0.964755i 0.940030 + 0.341092i
\(3\) 5.10794 0.953394i 0.983023 0.183481i
\(4\) 6.13849 + 5.13019i 0.767312 + 0.641274i
\(5\) 17.0023i 1.52073i 0.649494 + 0.760367i \(0.274981\pi\)
−0.649494 + 0.760367i \(0.725019\pi\)
\(6\) 14.5008 + 2.39302i 0.986655 + 0.162825i
\(7\) −5.04990 17.8185i −0.272669 0.962108i
\(8\) 11.3717 + 19.5623i 0.502562 + 0.864541i
\(9\) 25.1821 9.73975i 0.932670 0.360732i
\(10\) −16.4031 + 45.2059i −0.518711 + 1.42954i
\(11\) 37.8286 1.03689 0.518443 0.855112i \(-0.326512\pi\)
0.518443 + 0.855112i \(0.326512\pi\)
\(12\) 36.2462 + 20.3523i 0.871947 + 0.489601i
\(13\) −77.9029 −1.66203 −0.831015 0.556250i \(-0.812240\pi\)
−0.831015 + 0.556250i \(0.812240\pi\)
\(14\) 3.76378 52.2478i 0.0718508 0.997415i
\(15\) 16.2099 + 86.8468i 0.279025 + 1.49492i
\(16\) 11.3622 + 62.9833i 0.177535 + 0.984114i
\(17\) −34.6479 −0.494314 −0.247157 0.968975i \(-0.579496\pi\)
−0.247157 + 0.968975i \(0.579496\pi\)
\(18\) 76.3507 1.60157i 0.999780 0.0209718i
\(19\) 37.7811 0.456189 0.228094 0.973639i \(-0.426751\pi\)
0.228094 + 0.973639i \(0.426751\pi\)
\(20\) −87.2252 + 104.369i −0.975207 + 1.16688i
\(21\) −42.7826 86.2012i −0.444568 0.895745i
\(22\) 100.579 + 36.4954i 0.974705 + 0.353674i
\(23\) 47.8900i 0.434163i −0.976153 0.217081i \(-0.930346\pi\)
0.976153 0.217081i \(-0.0696537\pi\)
\(24\) 76.7365 + 89.0815i 0.652657 + 0.757654i
\(25\) −164.079 −1.31263
\(26\) −207.129 75.1572i −1.56236 0.566906i
\(27\) 119.343 73.7585i 0.850649 0.525734i
\(28\) 60.4135 135.286i 0.407753 0.913092i
\(29\) 180.790 1.15765 0.578826 0.815451i \(-0.303511\pi\)
0.578826 + 0.815451i \(0.303511\pi\)
\(30\) −40.6869 + 246.547i −0.247613 + 1.50044i
\(31\) 163.846i 0.949280i −0.880180 0.474640i \(-0.842578\pi\)
0.880180 0.474640i \(-0.157422\pi\)
\(32\) −30.5535 + 178.422i −0.168786 + 0.985653i
\(33\) 193.226 36.0656i 1.01928 0.190249i
\(34\) −92.1220 33.4267i −0.464670 0.168607i
\(35\) 302.956 85.8600i 1.46311 0.414657i
\(36\) 204.547 + 69.4015i 0.946976 + 0.321303i
\(37\) 159.677i 0.709481i −0.934965 0.354741i \(-0.884569\pi\)
0.934965 0.354741i \(-0.115431\pi\)
\(38\) 100.453 + 36.4496i 0.428831 + 0.155603i
\(39\) −397.923 + 74.2721i −1.63381 + 0.304950i
\(40\) −332.605 + 193.345i −1.31474 + 0.764263i
\(41\) 81.5544 0.310650 0.155325 0.987863i \(-0.450358\pi\)
0.155325 + 0.987863i \(0.450358\pi\)
\(42\) −30.5876 270.467i −0.112375 0.993666i
\(43\) 241.294i 0.855745i −0.903839 0.427873i \(-0.859263\pi\)
0.903839 0.427873i \(-0.140737\pi\)
\(44\) 232.211 + 194.068i 0.795616 + 0.664929i
\(45\) 165.598 + 428.154i 0.548577 + 1.41834i
\(46\) 46.2021 127.330i 0.148090 0.408126i
\(47\) −356.246 −1.10561 −0.552807 0.833309i \(-0.686443\pi\)
−0.552807 + 0.833309i \(0.686443\pi\)
\(48\) 118.086 + 310.882i 0.355087 + 0.934833i
\(49\) −291.997 + 179.963i −0.851303 + 0.524674i
\(50\) −436.254 158.296i −1.23391 0.447729i
\(51\) −176.979 + 33.0331i −0.485923 + 0.0906971i
\(52\) −478.207 399.657i −1.27529 1.06582i
\(53\) −585.689 −1.51794 −0.758968 0.651128i \(-0.774296\pi\)
−0.758968 + 0.651128i \(0.774296\pi\)
\(54\) 388.468 80.9730i 0.978959 0.204056i
\(55\) 643.174i 1.57683i
\(56\) 291.145 301.414i 0.694749 0.719253i
\(57\) 192.984 36.0203i 0.448444 0.0837018i
\(58\) 480.686 + 174.418i 1.08823 + 0.394867i
\(59\) 172.591i 0.380839i 0.981703 + 0.190419i \(0.0609848\pi\)
−0.981703 + 0.190419i \(0.939015\pi\)
\(60\) −346.037 + 616.269i −0.744552 + 1.32600i
\(61\) 572.943 1.20259 0.601294 0.799028i \(-0.294652\pi\)
0.601294 + 0.799028i \(0.294652\pi\)
\(62\) 158.072 435.636i 0.323792 0.892351i
\(63\) −300.715 399.522i −0.601373 0.798969i
\(64\) −253.370 + 444.913i −0.494862 + 0.868971i
\(65\) 1324.53i 2.52750i
\(66\) 548.545 + 90.5247i 1.02305 + 0.168831i
\(67\) 765.089i 1.39508i −0.716545 0.697541i \(-0.754277\pi\)
0.716545 0.697541i \(-0.245723\pi\)
\(68\) −212.686 177.750i −0.379293 0.316991i
\(69\) −45.6580 244.619i −0.0796605 0.426792i
\(70\) 888.334 + 63.9930i 1.51680 + 0.109266i
\(71\) 925.379i 1.54679i 0.633923 + 0.773396i \(0.281444\pi\)
−0.633923 + 0.773396i \(0.718556\pi\)
\(72\) 476.895 + 381.863i 0.780592 + 0.625041i
\(73\) 590.913i 0.947413i −0.880683 0.473706i \(-0.842916\pi\)
0.880683 0.473706i \(-0.157084\pi\)
\(74\) 154.050 424.551i 0.241999 0.666933i
\(75\) −838.105 + 156.432i −1.29035 + 0.240843i
\(76\) 231.919 + 193.825i 0.350039 + 0.292542i
\(77\) −191.031 674.049i −0.282727 0.997597i
\(78\) −1129.66 186.423i −1.63985 0.270619i
\(79\) −28.4235 −0.0404797 −0.0202399 0.999795i \(-0.506443\pi\)
−0.0202399 + 0.999795i \(0.506443\pi\)
\(80\) −1070.86 + 193.184i −1.49658 + 0.269983i
\(81\) 539.274 490.534i 0.739745 0.672887i
\(82\) 216.837 + 78.6800i 0.292020 + 0.105960i
\(83\) 2.66288i 0.00352155i 0.999998 + 0.00176077i \(0.000560472\pi\)
−0.999998 + 0.00176077i \(0.999440\pi\)
\(84\) 179.608 748.629i 0.233296 0.972406i
\(85\) 589.094i 0.751721i
\(86\) 232.790 641.555i 0.291888 0.804426i
\(87\) 923.466 172.364i 1.13800 0.212407i
\(88\) 430.175 + 740.016i 0.521100 + 0.896431i
\(89\) −600.037 −0.714649 −0.357324 0.933980i \(-0.616311\pi\)
−0.357324 + 0.933980i \(0.616311\pi\)
\(90\) 27.2303 + 1298.14i 0.0318925 + 1.52040i
\(91\) 393.402 + 1388.11i 0.453184 + 1.59905i
\(92\) 245.685 293.972i 0.278417 0.333138i
\(93\) −156.210 836.917i −0.174175 0.933164i
\(94\) −947.190 343.691i −1.03931 0.377117i
\(95\) 642.367i 0.693742i
\(96\) 14.0411 + 940.499i 0.0149278 + 0.999889i
\(97\) 703.593i 0.736485i 0.929730 + 0.368243i \(0.120040\pi\)
−0.929730 + 0.368243i \(0.879960\pi\)
\(98\) −949.984 + 196.781i −0.979213 + 0.202836i
\(99\) 952.603 368.441i 0.967073 0.374038i
\(100\) −1007.20 841.757i −1.00720 0.841757i
\(101\) 1007.27i 0.992350i −0.868223 0.496175i \(-0.834737\pi\)
0.868223 0.496175i \(-0.165263\pi\)
\(102\) −502.422 82.9131i −0.487718 0.0804865i
\(103\) 274.314i 0.262417i 0.991355 + 0.131209i \(0.0418857\pi\)
−0.991355 + 0.131209i \(0.958114\pi\)
\(104\) −885.887 1523.96i −0.835273 1.43689i
\(105\) 1465.62 727.404i 1.36219 0.676070i
\(106\) −1557.23 565.047i −1.42690 0.517756i
\(107\) −1132.06 −1.02281 −0.511405 0.859340i \(-0.670875\pi\)
−0.511405 + 0.859340i \(0.670875\pi\)
\(108\) 1110.98 + 159.485i 0.989853 + 0.142097i
\(109\) 2168.32i 1.90539i 0.303934 + 0.952693i \(0.401700\pi\)
−0.303934 + 0.952693i \(0.598300\pi\)
\(110\) −620.506 + 1710.08i −0.537845 + 1.48227i
\(111\) −152.235 815.622i −0.130176 0.697436i
\(112\) 1064.89 520.517i 0.898416 0.439145i
\(113\) 42.7131i 0.0355585i −0.999842 0.0177793i \(-0.994340\pi\)
0.999842 0.0177793i \(-0.00565961\pi\)
\(114\) 547.857 + 90.4111i 0.450101 + 0.0742788i
\(115\) 814.240 0.660246
\(116\) 1109.78 + 927.489i 0.888280 + 0.742373i
\(117\) −1961.76 + 758.755i −1.55012 + 0.599546i
\(118\) −166.508 + 458.887i −0.129901 + 0.358000i
\(119\) 174.968 + 617.373i 0.134784 + 0.475584i
\(120\) −1514.59 + 1304.70i −1.15219 + 0.992518i
\(121\) 100.004 0.0751345
\(122\) 1523.34 + 552.750i 1.13047 + 0.410194i
\(123\) 416.575 77.7534i 0.305376 0.0569983i
\(124\) 840.564 1005.77i 0.608749 0.728394i
\(125\) 664.433i 0.475430i
\(126\) −414.101 1352.37i −0.292786 0.956178i
\(127\) −57.0406 −0.0398546 −0.0199273 0.999801i \(-0.506343\pi\)
−0.0199273 + 0.999801i \(0.506343\pi\)
\(128\) −1102.89 + 938.498i −0.761585 + 0.648065i
\(129\) −230.048 1232.52i −0.157013 0.841217i
\(130\) 1277.85 3521.67i 0.862113 2.37593i
\(131\) 2244.81i 1.49717i 0.663036 + 0.748587i \(0.269268\pi\)
−0.663036 + 0.748587i \(0.730732\pi\)
\(132\) 1371.14 + 769.900i 0.904110 + 0.507660i
\(133\) −190.791 673.203i −0.124389 0.438903i
\(134\) 738.124 2034.22i 0.475852 1.31142i
\(135\) 1254.07 + 2029.10i 0.799502 + 1.29361i
\(136\) −394.005 677.793i −0.248424 0.427355i
\(137\) 1244.36i 0.776003i −0.921659 0.388002i \(-0.873165\pi\)
0.921659 0.388002i \(-0.126835\pi\)
\(138\) 114.602 694.443i 0.0706924 0.428369i
\(139\) 502.246 0.306475 0.153237 0.988189i \(-0.451030\pi\)
0.153237 + 0.988189i \(0.451030\pi\)
\(140\) 2300.17 + 1027.17i 1.38857 + 0.620084i
\(141\) −1819.69 + 339.643i −1.08684 + 0.202859i
\(142\) −892.764 + 2460.40i −0.527599 + 1.45403i
\(143\) −2946.96 −1.72334
\(144\) 899.567 + 1475.39i 0.520583 + 0.853811i
\(145\) 3073.86i 1.76048i
\(146\) 570.086 1571.12i 0.323155 0.890596i
\(147\) −1319.93 + 1197.63i −0.740583 + 0.671964i
\(148\) 819.176 980.179i 0.454972 0.544393i
\(149\) 2671.10 1.46863 0.734313 0.678811i \(-0.237504\pi\)
0.734313 + 0.678811i \(0.237504\pi\)
\(150\) −2379.28 392.645i −1.29511 0.213729i
\(151\) −1518.45 −0.818345 −0.409172 0.912457i \(-0.634183\pi\)
−0.409172 + 0.912457i \(0.634183\pi\)
\(152\) 429.635 + 739.087i 0.229263 + 0.394394i
\(153\) −872.506 + 337.462i −0.461032 + 0.178315i
\(154\) 142.378 1976.46i 0.0745012 1.03421i
\(155\) 2785.77 1.44360
\(156\) −2823.68 1585.50i −1.44920 0.813730i
\(157\) 1311.73 0.666800 0.333400 0.942785i \(-0.391804\pi\)
0.333400 + 0.942785i \(0.391804\pi\)
\(158\) −75.5727 27.4218i −0.0380521 0.0138073i
\(159\) −2991.66 + 558.392i −1.49217 + 0.278512i
\(160\) −3033.59 519.481i −1.49892 0.256678i
\(161\) −853.327 + 241.839i −0.417712 + 0.118383i
\(162\) 1907.07 783.968i 0.924899 0.380212i
\(163\) 3119.89i 1.49920i 0.661894 + 0.749598i \(0.269753\pi\)
−0.661894 + 0.749598i \(0.730247\pi\)
\(164\) 500.621 + 418.390i 0.238366 + 0.199212i
\(165\) 613.198 + 3285.29i 0.289318 + 1.55006i
\(166\) −2.56902 + 7.08007i −0.00120117 + 0.00331036i
\(167\) 3622.79 1.67868 0.839342 0.543604i \(-0.182941\pi\)
0.839342 + 0.543604i \(0.182941\pi\)
\(168\) 1199.79 1817.18i 0.550985 0.834515i
\(169\) 3871.87 1.76234
\(170\) 568.332 1566.29i 0.256406 0.706640i
\(171\) 951.408 367.979i 0.425474 0.164562i
\(172\) 1237.89 1481.18i 0.548767 0.656623i
\(173\) 1901.49i 0.835653i 0.908527 + 0.417826i \(0.137208\pi\)
−0.908527 + 0.417826i \(0.862792\pi\)
\(174\) 2621.61 + 432.635i 1.14220 + 0.188494i
\(175\) 828.582 + 2923.64i 0.357914 + 1.26289i
\(176\) 429.818 + 2382.57i 0.184084 + 1.02042i
\(177\) 164.548 + 881.586i 0.0698766 + 0.374373i
\(178\) −1595.38 578.888i −0.671791 0.243761i
\(179\) −1329.17 −0.555010 −0.277505 0.960724i \(-0.589507\pi\)
−0.277505 + 0.960724i \(0.589507\pi\)
\(180\) −1179.99 + 3477.77i −0.488617 + 1.44010i
\(181\) 2346.73 0.963709 0.481855 0.876251i \(-0.339963\pi\)
0.481855 + 0.876251i \(0.339963\pi\)
\(182\) −293.209 + 4070.26i −0.119418 + 1.65773i
\(183\) 2926.56 546.240i 1.18217 0.220652i
\(184\) 936.839 544.589i 0.375352 0.218194i
\(185\) 2714.89 1.07893
\(186\) 392.088 2375.91i 0.154566 0.936612i
\(187\) −1310.68 −0.512548
\(188\) −2186.82 1827.61i −0.848351 0.709002i
\(189\) −1916.93 1754.03i −0.737759 0.675064i
\(190\) −619.727 + 1707.93i −0.236630 + 0.652138i
\(191\) 2129.66i 0.806791i 0.915026 + 0.403395i \(0.132170\pi\)
−0.915026 + 0.403395i \(0.867830\pi\)
\(192\) −870.019 + 2514.15i −0.327022 + 0.945017i
\(193\) 878.502 0.327647 0.163824 0.986490i \(-0.447617\pi\)
0.163824 + 0.986490i \(0.447617\pi\)
\(194\) −678.795 + 1870.72i −0.251210 + 0.692318i
\(195\) −1262.80 6765.62i −0.463748 2.48460i
\(196\) −2715.67 393.298i −0.989675 0.143330i
\(197\) −3405.38 −1.23159 −0.615796 0.787906i \(-0.711165\pi\)
−0.615796 + 0.787906i \(0.711165\pi\)
\(198\) 2888.24 60.5850i 1.03666 0.0217454i
\(199\) 2603.72i 0.927503i −0.885965 0.463752i \(-0.846503\pi\)
0.885965 0.463752i \(-0.153497\pi\)
\(200\) −1865.85 3209.77i −0.659679 1.13482i
\(201\) −729.431 3908.03i −0.255971 1.37140i
\(202\) 971.771 2678.14i 0.338483 0.932838i
\(203\) −912.973 3221.41i −0.315656 1.11379i
\(204\) −1255.85 705.164i −0.431016 0.242017i
\(205\) 1386.61i 0.472416i
\(206\) −264.646 + 729.348i −0.0895085 + 0.246680i
\(207\) −466.436 1205.97i −0.156616 0.404931i
\(208\) −885.152 4906.59i −0.295068 1.63563i
\(209\) 1429.21 0.473016
\(210\) 4598.57 520.060i 1.51110 0.170893i
\(211\) 987.223i 0.322101i 0.986946 + 0.161050i \(0.0514881\pi\)
−0.986946 + 0.161050i \(0.948512\pi\)
\(212\) −3595.25 3004.70i −1.16473 0.973413i
\(213\) 882.250 + 4726.78i 0.283807 + 1.52053i
\(214\) −3009.93 1092.16i −0.961471 0.348873i
\(215\) 4102.56 1.30136
\(216\) 2800.02 + 1495.86i 0.882023 + 0.471207i
\(217\) −2919.50 + 827.408i −0.913310 + 0.258839i
\(218\) −2091.90 + 5765.13i −0.649913 + 1.79112i
\(219\) −563.373 3018.35i −0.173832 0.931329i
\(220\) −3299.61 + 3948.12i −1.01118 + 1.20992i
\(221\) 2699.17 0.821565
\(222\) 382.112 2315.45i 0.115521 0.700013i
\(223\) 1430.30i 0.429507i 0.976668 + 0.214754i \(0.0688949\pi\)
−0.976668 + 0.214754i \(0.931105\pi\)
\(224\) 3333.51 356.597i 0.994327 0.106367i
\(225\) −4131.85 + 1598.09i −1.22425 + 0.473508i
\(226\) 41.2077 113.566i 0.0121287 0.0334261i
\(227\) 5026.34i 1.46965i 0.678258 + 0.734824i \(0.262735\pi\)
−0.678258 + 0.734824i \(0.737265\pi\)
\(228\) 1369.42 + 768.934i 0.397772 + 0.223350i
\(229\) −4464.57 −1.28833 −0.644164 0.764887i \(-0.722795\pi\)
−0.644164 + 0.764887i \(0.722795\pi\)
\(230\) 2164.91 + 785.543i 0.620651 + 0.225205i
\(231\) −1618.41 3260.87i −0.460967 0.928786i
\(232\) 2055.89 + 3536.68i 0.581792 + 1.00084i
\(233\) 2131.34i 0.599265i 0.954055 + 0.299632i \(0.0968641\pi\)
−0.954055 + 0.299632i \(0.903136\pi\)
\(234\) −5947.95 + 124.767i −1.66166 + 0.0348558i
\(235\) 6057.02i 1.68135i
\(236\) −885.427 + 1059.45i −0.244222 + 0.292222i
\(237\) −145.186 + 27.0988i −0.0397925 + 0.00742725i
\(238\) −130.407 + 1810.28i −0.0355169 + 0.493037i
\(239\) 6763.79i 1.83060i −0.402774 0.915299i \(-0.631954\pi\)
0.402774 0.915299i \(-0.368046\pi\)
\(240\) −5285.72 + 2007.73i −1.42163 + 0.539993i
\(241\) 2721.77i 0.727489i 0.931499 + 0.363744i \(0.118502\pi\)
−0.931499 + 0.363744i \(0.881498\pi\)
\(242\) 265.891 + 96.4794i 0.0706287 + 0.0256278i
\(243\) 2286.91 3019.76i 0.603725 0.797192i
\(244\) 3517.01 + 2939.31i 0.922760 + 0.771189i
\(245\) −3059.79 4964.63i −0.797889 1.29461i
\(246\) 1182.60 + 195.161i 0.306505 + 0.0505815i
\(247\) −2943.26 −0.758199
\(248\) 3205.22 1863.21i 0.820692 0.477072i
\(249\) 2.53877 + 13.6018i 0.000646136 + 0.00346177i
\(250\) 641.015 1766.60i 0.162165 0.446918i
\(251\) 5463.02i 1.37380i 0.726754 + 0.686898i \(0.241028\pi\)
−0.726754 + 0.686898i \(0.758972\pi\)
\(252\) 203.689 3995.19i 0.0509174 0.998703i
\(253\) 1811.61i 0.450178i
\(254\) −151.660 55.0302i −0.0374645 0.0135941i
\(255\) −561.639 3009.06i −0.137926 0.738959i
\(256\) −3837.80 + 1431.26i −0.936963 + 0.349430i
\(257\) −6828.16 −1.65731 −0.828655 0.559760i \(-0.810893\pi\)
−0.828655 + 0.559760i \(0.810893\pi\)
\(258\) 577.423 3498.96i 0.139336 0.844325i
\(259\) −2845.21 + 806.355i −0.682597 + 0.193453i
\(260\) 6795.10 8130.62i 1.62082 1.93938i
\(261\) 4552.68 1760.85i 1.07971 0.417602i
\(262\) −2165.69 + 5968.51i −0.510675 + 1.40739i
\(263\) 665.207i 0.155964i −0.996955 0.0779818i \(-0.975152\pi\)
0.996955 0.0779818i \(-0.0248476\pi\)
\(264\) 2902.83 + 3369.83i 0.676731 + 0.785601i
\(265\) 9958.08i 2.30838i
\(266\) 142.200 1973.98i 0.0327776 0.455010i
\(267\) −3064.95 + 572.071i −0.702517 + 0.131124i
\(268\) 3925.06 4696.50i 0.894630 1.07046i
\(269\) 4857.98i 1.10110i −0.834802 0.550550i \(-0.814418\pi\)
0.834802 0.550550i \(-0.185582\pi\)
\(270\) 1376.73 + 6604.86i 0.310315 + 1.48874i
\(271\) 1075.74i 0.241131i −0.992705 0.120566i \(-0.961529\pi\)
0.992705 0.120566i \(-0.0384709\pi\)
\(272\) −393.677 2182.24i −0.0877581 0.486462i
\(273\) 3332.89 + 6715.33i 0.738885 + 1.48875i
\(274\) 1200.50 3308.50i 0.264689 0.729466i
\(275\) −6206.88 −1.36105
\(276\) 974.671 1735.83i 0.212566 0.378567i
\(277\) 6119.99i 1.32749i −0.747959 0.663745i \(-0.768966\pi\)
0.747959 0.663745i \(-0.231034\pi\)
\(278\) 1335.38 + 484.545i 0.288095 + 0.104536i
\(279\) −1595.82 4125.99i −0.342435 0.885365i
\(280\) 5124.74 + 4950.15i 1.09379 + 1.05653i
\(281\) 580.494i 0.123236i −0.998100 0.0616181i \(-0.980374\pi\)
0.998100 0.0616181i \(-0.0196261\pi\)
\(282\) −5165.86 852.506i −1.09086 0.180021i
\(283\) 5973.23 1.25467 0.627335 0.778750i \(-0.284146\pi\)
0.627335 + 0.778750i \(0.284146\pi\)
\(284\) −4747.37 + 5680.43i −0.991918 + 1.18687i
\(285\) 612.429 + 3281.17i 0.127288 + 0.681964i
\(286\) −7835.39 2843.09i −1.61999 0.587817i
\(287\) −411.841 1453.18i −0.0847046 0.298879i
\(288\) 968.387 + 4790.63i 0.198135 + 0.980175i
\(289\) −3712.52 −0.755653
\(290\) −2965.52 + 8172.78i −0.600487 + 1.65490i
\(291\) 670.801 + 3593.91i 0.135131 + 0.723982i
\(292\) 3031.50 3627.32i 0.607551 0.726961i
\(293\) 522.434i 0.104167i 0.998643 + 0.0520835i \(0.0165862\pi\)
−0.998643 + 0.0520835i \(0.983414\pi\)
\(294\) −4664.85 + 1910.86i −0.925372 + 0.379059i
\(295\) −2934.45 −0.579154
\(296\) 3123.66 1815.80i 0.613376 0.356558i
\(297\) 4514.57 2790.18i 0.882027 0.545127i
\(298\) 7101.95 + 2576.96i 1.38055 + 0.500937i
\(299\) 3730.77i 0.721591i
\(300\) −5947.23 3339.39i −1.14455 0.642665i
\(301\) −4299.50 + 1218.51i −0.823319 + 0.233335i
\(302\) −4037.28 1464.94i −0.769269 0.279131i
\(303\) −960.327 5145.08i −0.182077 0.975503i
\(304\) 429.278 + 2379.58i 0.0809895 + 0.448942i
\(305\) 9741.37i 1.82882i
\(306\) −2645.39 + 55.4908i −0.494206 + 0.0103667i
\(307\) 7907.97 1.47014 0.735068 0.677994i \(-0.237150\pi\)
0.735068 + 0.677994i \(0.237150\pi\)
\(308\) 2285.36 5117.67i 0.422794 0.946774i
\(309\) 261.529 + 1401.18i 0.0481485 + 0.257962i
\(310\) 7406.82 + 2687.59i 1.35703 + 0.492402i
\(311\) −1459.26 −0.266068 −0.133034 0.991111i \(-0.542472\pi\)
−0.133034 + 0.991111i \(0.542472\pi\)
\(312\) −5978.00 6939.71i −1.08474 1.25924i
\(313\) 5437.91i 0.982008i 0.871157 + 0.491004i \(0.163370\pi\)
−0.871157 + 0.491004i \(0.836630\pi\)
\(314\) 3487.64 + 1265.50i 0.626812 + 0.227440i
\(315\) 6792.80 5112.85i 1.21502 0.914528i
\(316\) −174.478 145.818i −0.0310606 0.0259586i
\(317\) 7991.76 1.41597 0.707984 0.706228i \(-0.249605\pi\)
0.707984 + 0.706228i \(0.249605\pi\)
\(318\) −8492.97 1401.57i −1.49768 0.247157i
\(319\) 6839.05 1.20035
\(320\) −7564.56 4307.87i −1.32147 0.752554i
\(321\) −5782.51 + 1079.30i −1.00545 + 0.187666i
\(322\) −2502.15 180.247i −0.433041 0.0311950i
\(323\) −1309.04 −0.225501
\(324\) 5826.87 244.561i 0.999120 0.0419344i
\(325\) 12782.2 2.18163
\(326\) −3009.93 + 8295.19i −0.511364 + 1.40929i
\(327\) 2067.26 + 11075.6i 0.349602 + 1.87304i
\(328\) 927.411 + 1595.39i 0.156121 + 0.268570i
\(329\) 1799.01 + 6347.77i 0.301467 + 1.06372i
\(330\) −1539.13 + 9326.55i −0.256746 + 1.55579i
\(331\) 5913.18i 0.981927i −0.871180 0.490963i \(-0.836645\pi\)
0.871180 0.490963i \(-0.163355\pi\)
\(332\) −13.6611 + 16.3461i −0.00225828 + 0.00270213i
\(333\) −1555.22 4021.01i −0.255932 0.661712i
\(334\) 9632.31 + 3495.11i 1.57801 + 0.572586i
\(335\) 13008.3 2.12155
\(336\) 4943.13 3674.03i 0.802589 0.596532i
\(337\) −10946.5 −1.76942 −0.884712 0.466138i \(-0.845645\pi\)
−0.884712 + 0.466138i \(0.845645\pi\)
\(338\) 10294.5 + 3735.40i 1.65665 + 0.601122i
\(339\) −40.7224 218.176i −0.00652430 0.0349549i
\(340\) 3022.17 3616.15i 0.482059 0.576804i
\(341\) 6198.08i 0.984296i
\(342\) 2884.62 60.5090i 0.456089 0.00956711i
\(343\) 4681.23 + 4294.15i 0.736917 + 0.675983i
\(344\) 4720.28 2743.92i 0.739827 0.430065i
\(345\) 4159.09 776.292i 0.649037 0.121142i
\(346\) −1834.48 + 5055.70i −0.285035 + 0.785538i
\(347\) −1637.21 −0.253285 −0.126643 0.991948i \(-0.540420\pi\)
−0.126643 + 0.991948i \(0.540420\pi\)
\(348\) 6552.95 + 3679.50i 1.00941 + 0.566787i
\(349\) −4492.59 −0.689062 −0.344531 0.938775i \(-0.611962\pi\)
−0.344531 + 0.938775i \(0.611962\pi\)
\(350\) −617.557 + 8572.77i −0.0943137 + 1.30924i
\(351\) −9297.15 + 5746.00i −1.41380 + 0.873786i
\(352\) −1155.80 + 6749.46i −0.175012 + 1.02201i
\(353\) −1372.22 −0.206901 −0.103451 0.994635i \(-0.532988\pi\)
−0.103451 + 0.994635i \(0.532988\pi\)
\(354\) −413.015 + 2502.71i −0.0620099 + 0.375756i
\(355\) −15733.6 −2.35226
\(356\) −3683.32 3078.30i −0.548359 0.458286i
\(357\) 1482.33 + 2986.69i 0.219756 + 0.442780i
\(358\) −3534.00 1282.32i −0.521725 0.189310i
\(359\) 5118.09i 0.752430i −0.926532 0.376215i \(-0.877225\pi\)
0.926532 0.376215i \(-0.122775\pi\)
\(360\) −6492.55 + 8108.32i −0.950521 + 1.18707i
\(361\) −5431.59 −0.791892
\(362\) 6239.51 + 2264.02i 0.905915 + 0.328714i
\(363\) 510.814 95.3432i 0.0738590 0.0137857i
\(364\) −4706.39 + 10539.1i −0.677697 + 1.51759i
\(365\) 10046.9 1.44076
\(366\) 8308.14 + 1371.07i 1.18654 + 0.195811i
\(367\) 6151.73i 0.874980i −0.899223 0.437490i \(-0.855867\pi\)
0.899223 0.437490i \(-0.144133\pi\)
\(368\) 3016.27 544.137i 0.427266 0.0770791i
\(369\) 2053.71 794.320i 0.289734 0.112061i
\(370\) 7218.36 + 2619.20i 1.01423 + 0.368016i
\(371\) 2957.67 + 10436.1i 0.413894 + 1.46042i
\(372\) 3334.65 5938.80i 0.464768 0.827722i
\(373\) 12854.7i 1.78443i 0.451614 + 0.892213i \(0.350848\pi\)
−0.451614 + 0.892213i \(0.649152\pi\)
\(374\) −3484.85 1264.49i −0.481810 0.174826i
\(375\) −633.466 3393.88i −0.0872321 0.467358i
\(376\) −4051.12 6969.01i −0.555640 0.955849i
\(377\) −14084.1 −1.92405
\(378\) −3404.54 6513.01i −0.463256 0.886225i
\(379\) 2284.79i 0.309662i −0.987941 0.154831i \(-0.950517\pi\)
0.987941 0.154831i \(-0.0494832\pi\)
\(380\) −3295.47 + 3943.17i −0.444879 + 0.532316i
\(381\) −291.360 + 54.3821i −0.0391780 + 0.00731255i
\(382\) −2054.60 + 5662.36i −0.275190 + 0.758407i
\(383\) −3061.90 −0.408501 −0.204251 0.978919i \(-0.565476\pi\)
−0.204251 + 0.978919i \(0.565476\pi\)
\(384\) −4738.75 + 5845.28i −0.629748 + 0.776799i
\(385\) 11460.4 3247.97i 1.51708 0.429952i
\(386\) 2335.77 + 847.539i 0.307998 + 0.111758i
\(387\) −2350.15 6076.29i −0.308694 0.798128i
\(388\) −3609.57 + 4319.00i −0.472289 + 0.565114i
\(389\) −2350.30 −0.306336 −0.153168 0.988200i \(-0.548948\pi\)
−0.153168 + 0.988200i \(0.548948\pi\)
\(390\) 3169.63 19206.8i 0.411540 2.49378i
\(391\) 1659.29i 0.214613i
\(392\) −6841.00 3665.66i −0.881435 0.472305i
\(393\) 2140.19 + 11466.3i 0.274703 + 1.47176i
\(394\) −9054.25 3285.36i −1.15773 0.420086i
\(395\) 483.266i 0.0615589i
\(396\) 7737.73 + 2625.36i 0.981907 + 0.333155i
\(397\) 1338.92 0.169266 0.0846329 0.996412i \(-0.473028\pi\)
0.0846329 + 0.996412i \(0.473028\pi\)
\(398\) 2511.96 6922.80i 0.316364 0.871880i
\(399\) −1616.38 3256.78i −0.202807 0.408629i
\(400\) −1864.30 10334.2i −0.233038 1.29178i
\(401\) 7728.45i 0.962444i −0.876599 0.481222i \(-0.840193\pi\)
0.876599 0.481222i \(-0.159807\pi\)
\(402\) 1830.88 11094.4i 0.227154 1.37647i
\(403\) 12764.1i 1.57773i
\(404\) 5167.50 6183.14i 0.636368 0.761442i
\(405\) 8340.23 + 9168.92i 1.02328 + 1.12496i
\(406\) 680.455 9445.90i 0.0831783 1.15466i
\(407\) 6040.37i 0.735652i
\(408\) −2658.76 3086.48i −0.322618 0.374519i
\(409\) 13294.9i 1.60731i −0.595093 0.803657i \(-0.702885\pi\)
0.595093 0.803657i \(-0.297115\pi\)
\(410\) −1337.74 + 3686.74i −0.161138 + 0.444085i
\(411\) −1186.36 6356.09i −0.142382 0.762829i
\(412\) −1407.28 + 1683.87i −0.168281 + 0.201356i
\(413\) 3075.32 871.569i 0.366408 0.103843i
\(414\) −76.6989 3656.43i −0.00910518 0.434067i
\(415\) −45.2751 −0.00535534
\(416\) 2380.21 13899.6i 0.280527 1.63818i
\(417\) 2565.44 478.838i 0.301272 0.0562322i
\(418\) 3799.99 + 1378.84i 0.444649 + 0.161342i
\(419\) 8465.25i 0.987003i −0.869745 0.493502i \(-0.835717\pi\)
0.869745 0.493502i \(-0.164283\pi\)
\(420\) 12728.4 + 3053.75i 1.47877 + 0.354781i
\(421\) 1141.45i 0.132140i −0.997815 0.0660701i \(-0.978954\pi\)
0.997815 0.0660701i \(-0.0210461\pi\)
\(422\) −952.429 + 2624.83i −0.109866 + 0.302784i
\(423\) −8971.03 + 3469.75i −1.03117 + 0.398830i
\(424\) −6660.27 11457.4i −0.762857 1.31232i
\(425\) 5684.99 0.648853
\(426\) −2214.45 + 13418.7i −0.251856 + 1.52615i
\(427\) −2893.31 10209.0i −0.327908 1.15702i
\(428\) −6949.16 5807.70i −0.784814 0.655901i
\(429\) −15052.9 + 2809.61i −1.69408 + 0.316199i
\(430\) 10907.9 + 3957.97i 1.22332 + 0.443884i
\(431\) 6623.29i 0.740215i 0.928989 + 0.370108i \(0.120679\pi\)
−0.928989 + 0.370108i \(0.879321\pi\)
\(432\) 6001.56 + 6678.54i 0.668403 + 0.743800i
\(433\) 151.928i 0.0168619i −0.999964 0.00843095i \(-0.997316\pi\)
0.999964 0.00843095i \(-0.00268369\pi\)
\(434\) −8560.62 616.681i −0.946827 0.0682066i
\(435\) 2930.59 + 15701.1i 0.323014 + 1.73059i
\(436\) −11123.9 + 13310.2i −1.22187 + 1.46203i
\(437\) 1809.34i 0.198060i
\(438\) 1414.07 8568.71i 0.154262 0.934769i
\(439\) 9828.43i 1.06853i −0.845317 0.534266i \(-0.820588\pi\)
0.845317 0.534266i \(-0.179412\pi\)
\(440\) −12582.0 + 7313.98i −1.36323 + 0.792455i
\(441\) −5600.30 + 7375.83i −0.604718 + 0.796439i
\(442\) 7176.57 + 2604.04i 0.772296 + 0.280230i
\(443\) −2207.57 −0.236760 −0.118380 0.992968i \(-0.537770\pi\)
−0.118380 + 0.992968i \(0.537770\pi\)
\(444\) 3249.80 5787.69i 0.347362 0.618630i
\(445\) 10202.0i 1.08679i
\(446\) −1379.89 + 3802.90i −0.146502 + 0.403750i
\(447\) 13643.8 2546.61i 1.44369 0.269465i
\(448\) 9207.17 + 2267.90i 0.970978 + 0.239170i
\(449\) 7960.02i 0.836651i −0.908297 0.418326i \(-0.862617\pi\)
0.908297 0.418326i \(-0.137383\pi\)
\(450\) −12527.5 + 262.783i −1.31234 + 0.0275283i
\(451\) 3085.09 0.322109
\(452\) 219.127 262.194i 0.0228028 0.0272845i
\(453\) −7756.17 + 1447.68i −0.804452 + 0.150150i
\(454\) −4849.19 + 13364.1i −0.501286 + 1.38151i
\(455\) −23601.1 + 6688.75i −2.43173 + 0.689172i
\(456\) 2899.19 + 3365.60i 0.297735 + 0.345633i
\(457\) 3624.43 0.370993 0.185496 0.982645i \(-0.440611\pi\)
0.185496 + 0.982645i \(0.440611\pi\)
\(458\) −11870.4 4307.22i −1.21107 0.439439i
\(459\) −4134.97 + 2555.58i −0.420488 + 0.259878i
\(460\) 4998.21 + 4177.21i 0.506615 + 0.423399i
\(461\) 5885.29i 0.594589i 0.954786 + 0.297294i \(0.0960843\pi\)
−0.954786 + 0.297294i \(0.903916\pi\)
\(462\) −1157.09 10231.4i −0.116521 1.03032i
\(463\) 13856.2 1.39083 0.695415 0.718609i \(-0.255221\pi\)
0.695415 + 0.718609i \(0.255221\pi\)
\(464\) 2054.18 + 11386.8i 0.205524 + 1.13926i
\(465\) 14229.5 2655.93i 1.41909 0.264873i
\(466\) −2056.22 + 5666.82i −0.204405 + 0.563327i
\(467\) 12318.9i 1.22066i −0.792147 0.610330i \(-0.791037\pi\)
0.792147 0.610330i \(-0.208963\pi\)
\(468\) −15934.8 5406.58i −1.57390 0.534016i
\(469\) −13632.7 + 3863.62i −1.34222 + 0.380396i
\(470\) 5843.54 16104.4i 0.573494 1.58051i
\(471\) 6700.24 1250.60i 0.655480 0.122345i
\(472\) −3376.29 + 1962.65i −0.329251 + 0.191395i
\(473\) 9127.83i 0.887311i
\(474\) −412.164 68.0182i −0.0399395 0.00659109i
\(475\) −6199.09 −0.598808
\(476\) −2093.20 + 4687.36i −0.201558 + 0.451355i
\(477\) −14748.9 + 5704.47i −1.41573 + 0.547567i
\(478\) 6525.40 17983.6i 0.624403 1.72082i
\(479\) 5683.40 0.542132 0.271066 0.962561i \(-0.412624\pi\)
0.271066 + 0.962561i \(0.412624\pi\)
\(480\) −15990.7 + 238.732i −1.52056 + 0.0227012i
\(481\) 12439.3i 1.17918i
\(482\) −2625.84 + 7236.67i −0.248141 + 0.683861i
\(483\) −4128.17 + 2048.86i −0.388899 + 0.193015i
\(484\) 613.874 + 513.040i 0.0576516 + 0.0481818i
\(485\) −11962.7 −1.12000
\(486\) 8993.78 5822.65i 0.839436 0.543458i
\(487\) 3252.77 0.302663 0.151332 0.988483i \(-0.451644\pi\)
0.151332 + 0.988483i \(0.451644\pi\)
\(488\) 6515.33 + 11208.1i 0.604375 + 1.03969i
\(489\) 2974.49 + 15936.2i 0.275073 + 1.47374i
\(490\) −3345.74 16151.9i −0.308459 1.48912i
\(491\) 8991.73 0.826459 0.413229 0.910627i \(-0.364401\pi\)
0.413229 + 0.910627i \(0.364401\pi\)
\(492\) 2956.03 + 1659.82i 0.270870 + 0.152094i
\(493\) −6264.00 −0.572244
\(494\) −7825.56 2839.53i −0.712730 0.258616i
\(495\) 6264.36 + 16196.5i 0.568812 + 1.47066i
\(496\) 10319.6 1861.66i 0.934200 0.168530i
\(497\) 16488.9 4673.07i 1.48818 0.421762i
\(498\) −6.37232 + 38.6139i −0.000573395 + 0.00347455i
\(499\) 10529.3i 0.944599i 0.881438 + 0.472300i \(0.156576\pi\)
−0.881438 + 0.472300i \(0.843424\pi\)
\(500\) 3408.67 4078.62i 0.304881 0.364803i
\(501\) 18505.0 3453.95i 1.65019 0.308006i
\(502\) −5270.48 + 14525.1i −0.468592 + 1.29141i
\(503\) −1886.42 −0.167220 −0.0836098 0.996499i \(-0.526645\pi\)
−0.0836098 + 0.996499i \(0.526645\pi\)
\(504\) 4395.95 10425.9i 0.388514 0.921443i
\(505\) 17126.0 1.50910
\(506\) 1747.76 4816.72i 0.153552 0.423181i
\(507\) 19777.3 3691.41i 1.73242 0.323356i
\(508\) −350.143 292.629i −0.0305809 0.0255577i
\(509\) 10860.9i 0.945781i −0.881121 0.472891i \(-0.843211\pi\)
0.881121 0.472891i \(-0.156789\pi\)
\(510\) 1409.72 8542.34i 0.122399 0.741689i
\(511\) −10529.2 + 2984.05i −0.911513 + 0.258330i
\(512\) −11584.8 + 102.914i −0.999961 + 0.00888324i
\(513\) 4508.90 2786.68i 0.388057 0.239834i
\(514\) −18154.7 6587.50i −1.55792 0.565296i
\(515\) −4663.97 −0.399067
\(516\) 4910.90 8745.99i 0.418973 0.746164i
\(517\) −13476.3 −1.14640
\(518\) −8342.79 600.990i −0.707647 0.0509768i
\(519\) 1812.87 + 9712.71i 0.153326 + 0.821466i
\(520\) 25910.9 15062.1i 2.18513 1.27023i
\(521\) 6930.38 0.582774 0.291387 0.956605i \(-0.405883\pi\)
0.291387 + 0.956605i \(0.405883\pi\)
\(522\) 13803.5 289.548i 1.15740 0.0242781i
\(523\) 9140.75 0.764239 0.382119 0.924113i \(-0.375194\pi\)
0.382119 + 0.924113i \(0.375194\pi\)
\(524\) −11516.3 + 13779.7i −0.960099 + 1.14880i
\(525\) 7019.73 + 14143.8i 0.583554 + 1.17578i
\(526\) 641.762 1768.66i 0.0531980 0.146610i
\(527\) 5676.93i 0.469243i
\(528\) 4467.01 + 11760.2i 0.368185 + 0.969316i
\(529\) 9873.55 0.811503
\(530\) 9607.10 26476.6i 0.787370 2.16994i
\(531\) 1681.00 + 4346.21i 0.137381 + 0.355197i
\(532\) 2282.49 5111.25i 0.186012 0.416543i
\(533\) −6353.33 −0.516310
\(534\) −8701.02 1435.90i −0.705112 0.116362i
\(535\) 19247.7i 1.55542i
\(536\) 14966.9 8700.35i 1.20611 0.701116i
\(537\) −6789.31 + 1267.22i −0.545587 + 0.101834i
\(538\) 4686.76 12916.4i 0.375577 1.03507i
\(539\) −11045.8 + 6807.76i −0.882705 + 0.544027i
\(540\) −2711.62 + 18889.2i −0.216091 + 1.50530i
\(541\) 1327.06i 0.105461i 0.998609 + 0.0527307i \(0.0167925\pi\)
−0.998609 + 0.0527307i \(0.983207\pi\)
\(542\) 1037.83 2860.19i 0.0822481 0.226671i
\(543\) 11987.0 2237.36i 0.947348 0.176822i
\(544\) 1058.61 6181.95i 0.0834333 0.487222i
\(545\) −36866.4 −2.89759
\(546\) 2382.86 + 21070.2i 0.186771 + 1.65150i
\(547\) 6943.34i 0.542735i 0.962476 + 0.271367i \(0.0874758\pi\)
−0.962476 + 0.271367i \(0.912524\pi\)
\(548\) 6383.78 7638.47i 0.497631 0.595437i
\(549\) 14427.9 5580.33i 1.12162 0.433811i
\(550\) −16502.9 5988.12i −1.27943 0.464244i
\(551\) 6830.47 0.528108
\(552\) 4266.11 3674.91i 0.328945 0.283359i
\(553\) 143.536 + 506.465i 0.0110376 + 0.0389459i
\(554\) 5904.29 16271.9i 0.452797 1.24788i
\(555\) 13867.5 2588.36i 1.06062 0.197963i
\(556\) 3083.04 + 2576.62i 0.235162 + 0.196534i
\(557\) −12038.4 −0.915770 −0.457885 0.889012i \(-0.651393\pi\)
−0.457885 + 0.889012i \(0.651393\pi\)
\(558\) −262.411 12509.8i −0.0199081 0.949071i
\(559\) 18797.5i 1.42227i
\(560\) 8850.00 + 18105.6i 0.667823 + 1.36625i
\(561\) −6694.88 + 1249.59i −0.503847 + 0.0940427i
\(562\) 560.035 1543.42i 0.0420349 0.115846i
\(563\) 10849.1i 0.812139i 0.913842 + 0.406070i \(0.133101\pi\)
−0.913842 + 0.406070i \(0.866899\pi\)
\(564\) −12912.6 7250.44i −0.964037 0.541309i
\(565\) 726.222 0.0540750
\(566\) 15881.6 + 5762.70i 1.17943 + 0.427958i
\(567\) −11463.9 7131.91i −0.849095 0.528240i
\(568\) −18102.6 + 10523.1i −1.33727 + 0.777359i
\(569\) 10335.0i 0.761450i 0.924688 + 0.380725i \(0.124326\pi\)
−0.924688 + 0.380725i \(0.875674\pi\)
\(570\) −1537.20 + 9314.84i −0.112958 + 0.684484i
\(571\) 2025.81i 0.148472i 0.997241 + 0.0742360i \(0.0236518\pi\)
−0.997241 + 0.0742360i \(0.976348\pi\)
\(572\) −18089.9 15118.5i −1.32234 1.10513i
\(573\) 2030.41 + 10878.2i 0.148030 + 0.793094i
\(574\) 306.953 4261.04i 0.0223205 0.309847i
\(575\) 7857.73i 0.569896i
\(576\) −2047.03 + 13671.6i −0.148078 + 0.988976i
\(577\) 3778.32i 0.272606i −0.990667 0.136303i \(-0.956478\pi\)
0.990667 0.136303i \(-0.0435220\pi\)
\(578\) −9870.88 3581.68i −0.710337 0.257748i
\(579\) 4487.33 837.558i 0.322085 0.0601170i
\(580\) −15769.5 + 18868.8i −1.12895 + 1.35084i
\(581\) 47.4484 13.4473i 0.00338811 0.000960217i
\(582\) −1683.71 + 10202.7i −0.119918 + 0.726657i
\(583\) −22155.8 −1.57393
\(584\) 11559.6 6719.67i 0.819077 0.476134i
\(585\) −12900.6 33354.4i −0.911751 2.35733i
\(586\) −504.021 + 1389.05i −0.0355306 + 0.0979200i
\(587\) 1814.70i 0.127599i 0.997963 + 0.0637997i \(0.0203219\pi\)
−0.997963 + 0.0637997i \(0.979678\pi\)
\(588\) −14246.4 + 580.157i −0.999172 + 0.0406892i
\(589\) 6190.30i 0.433051i
\(590\) −7802.14 2831.03i −0.544422 0.197545i
\(591\) −17394.5 + 3246.67i −1.21068 + 0.225973i
\(592\) 10057.0 1814.29i 0.698211 0.125958i
\(593\) 9793.33 0.678185 0.339093 0.940753i \(-0.389880\pi\)
0.339093 + 0.940753i \(0.389880\pi\)
\(594\) 14695.2 3063.10i 1.01507 0.211583i
\(595\) −10496.8 + 2974.87i −0.723236 + 0.204971i
\(596\) 16396.6 + 13703.3i 1.12689 + 0.941792i
\(597\) −2482.37 13299.7i −0.170179 0.911757i
\(598\) −3599.28 + 9919.39i −0.246129 + 0.678317i
\(599\) 10824.1i 0.738332i 0.929363 + 0.369166i \(0.120357\pi\)
−0.929363 + 0.369166i \(0.879643\pi\)
\(600\) −12590.8 14616.4i −0.856698 0.994520i
\(601\) 16512.2i 1.12071i −0.828252 0.560355i \(-0.810665\pi\)
0.828252 0.560355i \(-0.189335\pi\)
\(602\) −12607.1 908.178i −0.853533 0.0614860i
\(603\) −7451.78 19266.5i −0.503250 1.30115i
\(604\) −9321.03 7789.97i −0.627926 0.524783i
\(605\) 1700.30i 0.114260i
\(606\) 2410.42 14606.3i 0.161579 0.979107i
\(607\) 7537.39i 0.504009i −0.967726 0.252004i \(-0.918910\pi\)
0.967726 0.252004i \(-0.0810898\pi\)
\(608\) −1154.35 + 6741.00i −0.0769982 + 0.449644i
\(609\) −7734.68 15584.3i −0.514655 1.03696i
\(610\) −9398.03 + 25900.4i −0.623796 + 1.71914i
\(611\) 27752.6 1.83756
\(612\) −7087.11 2404.61i −0.468104 0.158825i
\(613\) 10916.9i 0.719297i 0.933088 + 0.359648i \(0.117103\pi\)
−0.933088 + 0.359648i \(0.882897\pi\)
\(614\) 21025.7 + 7629.25i 1.38197 + 0.501452i
\(615\) 1321.99 + 7082.74i 0.0866792 + 0.464396i
\(616\) 11013.6 11402.1i 0.720376 0.745784i
\(617\) 27154.5i 1.77180i −0.463881 0.885898i \(-0.653543\pi\)
0.463881 0.885898i \(-0.346457\pi\)
\(618\) −656.439 + 3977.77i −0.0427279 + 0.258915i
\(619\) −12483.7 −0.810602 −0.405301 0.914183i \(-0.632833\pi\)
−0.405301 + 0.914183i \(0.632833\pi\)
\(620\) 17100.4 + 14291.5i 1.10769 + 0.925745i
\(621\) −3532.29 5715.32i −0.228254 0.369320i
\(622\) −3879.89 1407.83i −0.250112 0.0907537i
\(623\) 3030.12 + 10691.7i 0.194863 + 0.687569i
\(624\) −9199.21 24218.6i −0.590165 1.55372i
\(625\) −9212.97 −0.589630
\(626\) −5246.25 + 14458.3i −0.334956 + 0.923117i
\(627\) 7300.31 1362.60i 0.464986 0.0867894i
\(628\) 8052.06 + 6729.44i 0.511643 + 0.427601i
\(629\) 5532.48i 0.350707i
\(630\) 22993.4 7040.68i 1.45409 0.445250i
\(631\) 5011.50 0.316172 0.158086 0.987425i \(-0.449468\pi\)
0.158086 + 0.987425i \(0.449468\pi\)
\(632\) −323.224 556.031i −0.0203436 0.0349964i
\(633\) 941.212 + 5042.68i 0.0590992 + 0.316632i
\(634\) 21248.5 + 7710.09i 1.33105 + 0.482976i
\(635\) 969.822i 0.0606082i
\(636\) −21229.0 11920.1i −1.32356 0.743182i
\(637\) 22747.4 14019.7i 1.41489 0.872023i
\(638\) 18183.7 + 6598.01i 1.12837 + 0.409432i
\(639\) 9012.96 + 23303.0i 0.557977 + 1.44265i
\(640\) −15956.7 18751.7i −0.985534 1.15817i
\(641\) 20433.1i 1.25906i 0.776975 + 0.629531i \(0.216753\pi\)
−0.776975 + 0.629531i \(0.783247\pi\)
\(642\) −16415.8 2709.05i −1.00916 0.166538i
\(643\) −7784.75 −0.477450 −0.238725 0.971087i \(-0.576730\pi\)
−0.238725 + 0.971087i \(0.576730\pi\)
\(644\) −6478.82 2893.20i −0.396431 0.177031i
\(645\) 20955.6 3911.36i 1.27927 0.238775i
\(646\) −3480.47 1262.90i −0.211977 0.0769166i
\(647\) −13288.6 −0.807463 −0.403732 0.914877i \(-0.632287\pi\)
−0.403732 + 0.914877i \(0.632287\pi\)
\(648\) 15728.5 + 4971.26i 0.953506 + 0.301373i
\(649\) 6528.89i 0.394887i
\(650\) 33985.5 + 12331.7i 2.05080 + 0.744138i
\(651\) −14123.8 + 7009.78i −0.850313 + 0.422020i
\(652\) −16005.7 + 19151.4i −0.961395 + 1.15035i
\(653\) 6596.26 0.395301 0.197651 0.980273i \(-0.436669\pi\)
0.197651 + 0.980273i \(0.436669\pi\)
\(654\) −5188.83 + 31442.3i −0.310244 + 1.87996i
\(655\) −38167.0 −2.27680
\(656\) 926.641 + 5136.57i 0.0551513 + 0.305715i
\(657\) −5755.35 14880.4i −0.341762 0.883623i
\(658\) −1340.83 + 18613.1i −0.0794393 + 1.10276i
\(659\) −8372.03 −0.494883 −0.247442 0.968903i \(-0.579590\pi\)
−0.247442 + 0.968903i \(0.579590\pi\)
\(660\) −13090.1 + 23312.6i −0.772016 + 1.37491i
\(661\) 6191.40 0.364323 0.182162 0.983269i \(-0.441691\pi\)
0.182162 + 0.983269i \(0.441691\pi\)
\(662\) 5704.77 15722.0i 0.334928 0.923040i
\(663\) 13787.2 2573.37i 0.807618 0.150741i
\(664\) −52.0921 + 30.2814i −0.00304452 + 0.00176980i
\(665\) 11446.0 3243.89i 0.667455 0.189162i
\(666\) −255.734 12191.5i −0.0148791 0.709325i
\(667\) 8658.04i 0.502610i
\(668\) 22238.5 + 18585.6i 1.28807 + 1.07650i
\(669\) 1363.64 + 7305.90i 0.0788063 + 0.422216i
\(670\) 34586.5 + 12549.8i 1.99432 + 0.723644i
\(671\) 21673.7 1.24695
\(672\) 16687.4 4999.62i 0.957930 0.287001i
\(673\) 1317.91 0.0754855 0.0377428 0.999287i \(-0.487983\pi\)
0.0377428 + 0.999287i \(0.487983\pi\)
\(674\) −29104.7 10560.7i −1.66331 0.603537i
\(675\) −19581.6 + 12102.2i −1.11659 + 0.690096i
\(676\) 23767.4 + 19863.4i 1.35227 + 1.13014i
\(677\) 11076.8i 0.628826i −0.949286 0.314413i \(-0.898192\pi\)
0.949286 0.314413i \(-0.101808\pi\)
\(678\) 102.213 619.375i 0.00578980 0.0350840i
\(679\) 12537.0 3553.08i 0.708578 0.200817i
\(680\) 11524.1 6698.99i 0.649893 0.377786i
\(681\) 4792.08 + 25674.2i 0.269652 + 1.44470i
\(682\) 5979.63 16479.5i 0.335736 0.925268i
\(683\) 31967.1 1.79090 0.895451 0.445161i \(-0.146853\pi\)
0.895451 + 0.445161i \(0.146853\pi\)
\(684\) 7728.02 + 2622.07i 0.432000 + 0.146575i
\(685\) 21156.9 1.18009
\(686\) 8303.67 + 15933.5i 0.462151 + 0.886801i
\(687\) −22804.8 + 4256.50i −1.26646 + 0.236383i
\(688\) 15197.5 2741.64i 0.842151 0.151925i
\(689\) 45626.9 2.52285
\(690\) 11807.1 + 1948.50i 0.651435 + 0.107504i
\(691\) 4700.10 0.258756 0.129378 0.991595i \(-0.458702\pi\)
0.129378 + 0.991595i \(0.458702\pi\)
\(692\) −9755.03 + 11672.3i −0.535882 + 0.641206i
\(693\) −11375.6 15113.4i −0.623556 0.828440i
\(694\) −4353.02 1579.50i −0.238095 0.0863936i
\(695\) 8539.35i 0.466066i
\(696\) 13873.2 + 16105.1i 0.755550 + 0.877099i
\(697\) −2825.69 −0.153559
\(698\) −11944.9 4334.25i −0.647739 0.235034i
\(699\) 2032.01 + 10886.8i 0.109954 + 0.589091i
\(700\) −9912.58 + 22197.5i −0.535229 + 1.19855i
\(701\) 22855.2 1.23143 0.615714 0.787970i \(-0.288868\pi\)
0.615714 + 0.787970i \(0.288868\pi\)
\(702\) −30262.8 + 6308.03i −1.62706 + 0.339147i
\(703\) 6032.79i 0.323657i
\(704\) −9584.62 + 16830.5i −0.513116 + 0.901025i
\(705\) −5774.72 30938.9i −0.308494 1.65280i
\(706\) −3648.47 1323.86i −0.194493 0.0705724i
\(707\) −17948.1 + 5086.62i −0.954748 + 0.270583i
\(708\) −3512.63 + 6255.77i −0.186459 + 0.332071i
\(709\) 20814.1i 1.10252i −0.834333 0.551261i \(-0.814147\pi\)
0.834333 0.551261i \(-0.185853\pi\)
\(710\) −41832.6 15179.1i −2.21119 0.802338i
\(711\) −715.764 + 276.838i −0.0377542 + 0.0146023i
\(712\) −6823.43 11738.1i −0.359156 0.617843i
\(713\) −7846.60 −0.412142
\(714\) 1059.79 + 9371.11i 0.0555488 + 0.491183i
\(715\) 50105.2i 2.62074i
\(716\) −8159.09 6818.89i −0.425865 0.355913i
\(717\) −6448.55 34549.0i −0.335880 1.79952i
\(718\) 4937.70 13608.0i 0.256648 0.707306i
\(719\) −5088.93 −0.263957 −0.131979 0.991253i \(-0.542133\pi\)
−0.131979 + 0.991253i \(0.542133\pi\)
\(720\) −25085.0 + 15294.7i −1.29842 + 0.791668i
\(721\) 4887.86 1385.26i 0.252474 0.0715530i
\(722\) −14441.5 5240.15i −0.744402 0.270108i
\(723\) 2594.92 + 13902.7i 0.133480 + 0.715139i
\(724\) 14405.4 + 12039.2i 0.739465 + 0.618002i
\(725\) −29663.9 −1.51957
\(726\) 1450.14 + 239.312i 0.0741318 + 0.0122337i
\(727\) 1716.37i 0.0875609i −0.999041 0.0437804i \(-0.986060\pi\)
0.999041 0.0437804i \(-0.0139402\pi\)
\(728\) −22681.1 + 23481.0i −1.15469 + 1.19542i
\(729\) 8802.37 17605.1i 0.447207 0.894431i
\(730\) 26712.7 + 9692.79i 1.35436 + 0.491433i
\(731\) 8360.34i 0.423007i
\(732\) 20767.0 + 11660.7i 1.04859 + 0.588788i
\(733\) 2487.51 0.125346 0.0626728 0.998034i \(-0.480038\pi\)
0.0626728 + 0.998034i \(0.480038\pi\)
\(734\) 5934.91 16356.3i 0.298449 0.822508i
\(735\) −20362.5 22441.8i −1.02188 1.12623i
\(736\) 8544.63 + 1463.21i 0.427934 + 0.0732806i
\(737\) 28942.3i 1.44654i
\(738\) 6226.74 130.615i 0.310582 0.00651490i
\(739\) 16167.7i 0.804786i 0.915467 + 0.402393i \(0.131821\pi\)
−0.915467 + 0.402393i \(0.868179\pi\)
\(740\) 16665.3 + 13927.9i 0.827877 + 0.691891i
\(741\) −15034.0 + 2806.09i −0.745328 + 0.139115i
\(742\) −2204.40 + 30601.0i −0.109065 + 1.51401i
\(743\) 6261.24i 0.309156i −0.987981 0.154578i \(-0.950598\pi\)
0.987981 0.154578i \(-0.0494017\pi\)
\(744\) 14595.7 12573.0i 0.719225 0.619554i
\(745\) 45415.0i 2.23339i
\(746\) −12401.6 + 34178.2i −0.608654 + 1.67741i
\(747\) 25.9358 + 67.0568i 0.00127033 + 0.00328444i
\(748\) −8045.61 6724.05i −0.393284 0.328684i
\(749\) 5716.80 + 20171.6i 0.278888 + 0.984053i
\(750\) 1590.00 9634.81i 0.0774116 0.469085i
\(751\) 26131.4 1.26971 0.634853 0.772633i \(-0.281061\pi\)
0.634853 + 0.772633i \(0.281061\pi\)
\(752\) −4047.76 22437.6i −0.196285 1.08805i
\(753\) 5208.41 + 27904.8i 0.252065 + 1.35047i
\(754\) −37446.9 13587.7i −1.80867 0.656280i
\(755\) 25817.3i 1.24448i
\(756\) −2768.56 20601.4i −0.133190 0.991091i
\(757\) 2301.88i 0.110519i −0.998472 0.0552596i \(-0.982401\pi\)
0.998472 0.0552596i \(-0.0175987\pi\)
\(758\) 2204.26 6074.81i 0.105623 0.291091i
\(759\) −1727.18 9253.60i −0.0825989 0.442535i
\(760\) −12566.2 + 7304.80i −0.599768 + 0.348648i
\(761\) −22624.8 −1.07772 −0.538862 0.842394i \(-0.681146\pi\)
−0.538862 + 0.842394i \(0.681146\pi\)
\(762\) −827.134 136.499i −0.0393227 0.00648931i
\(763\) 38636.1 10949.8i 1.83319 0.519540i
\(764\) −10925.6 + 13072.9i −0.517374 + 0.619060i
\(765\) −5737.63 14834.6i −0.271169 0.701107i
\(766\) −8141.01 2953.99i −0.384003 0.139337i
\(767\) 13445.4i 0.632965i
\(768\) −18238.7 + 10969.7i −0.856943 + 0.515412i
\(769\) 12312.9i 0.577393i −0.957421 0.288697i \(-0.906778\pi\)
0.957421 0.288697i \(-0.0932219\pi\)
\(770\) 33604.4 + 2420.76i 1.57275 + 0.113297i
\(771\) −34877.8 + 6509.92i −1.62917 + 0.304084i
\(772\) 5392.68 + 4506.88i 0.251408 + 0.210112i
\(773\) 18738.9i 0.871916i 0.899967 + 0.435958i \(0.143590\pi\)
−0.899967 + 0.435958i \(0.856410\pi\)
\(774\) −386.449 18423.0i −0.0179465 0.855557i
\(775\) 26883.7i 1.24606i
\(776\) −13763.9 + 8001.04i −0.636722 + 0.370130i
\(777\) −13764.4 + 6831.42i −0.635514 + 0.315413i
\(778\) −6248.98 2267.46i −0.287965 0.104489i
\(779\) 3081.22 0.141715
\(780\) 26957.3 48009.1i 1.23747 2.20385i
\(781\) 35005.8i 1.60385i
\(782\) −1600.80 + 4411.72i −0.0732029 + 0.201743i
\(783\) 21576.0 13334.8i 0.984756 0.608618i
\(784\) −14652.4 16346.2i −0.667475 0.744632i
\(785\) 22302.5i 1.01403i
\(786\) −5371.88 + 32551.5i −0.243777 + 1.47719i
\(787\) 7115.83 0.322302 0.161151 0.986930i \(-0.448479\pi\)
0.161151 + 0.986930i \(0.448479\pi\)
\(788\) −20903.9 17470.3i −0.945015 0.789788i
\(789\) −634.204 3397.84i −0.0286163 0.153316i
\(790\) 466.234 1284.91i 0.0209973 0.0578672i
\(791\) −761.083 + 215.697i −0.0342111 + 0.00969570i
\(792\) 18040.3 + 14445.3i 0.809385 + 0.648097i
\(793\) −44634.0 −1.99874
\(794\) 3559.93 + 1291.73i 0.159115 + 0.0577353i
\(795\) −9493.96 50865.2i −0.423542 2.26919i
\(796\) 13357.6 15982.9i 0.594784 0.711684i
\(797\) 12278.2i 0.545693i 0.962058 + 0.272846i \(0.0879650\pi\)
−0.962058 + 0.272846i \(0.912035\pi\)
\(798\) −1155.63 10218.6i −0.0512644 0.453299i
\(799\) 12343.2 0.546521
\(800\) 5013.19 29275.3i 0.221554 1.29380i
\(801\) −15110.2 + 5844.21i −0.666531 + 0.257796i
\(802\) 7456.06 20548.4i 0.328282 0.904726i
\(803\) 22353.4i 0.982360i
\(804\) 15571.3 27731.5i 0.683033 1.21644i
\(805\) −4111.83 14508.5i −0.180029 0.635228i
\(806\) −12314.2 + 33937.3i −0.538152 + 1.48311i
\(807\) −4631.57 24814.3i −0.202031 1.08241i
\(808\) 19704.6 11454.4i 0.857927 0.498718i
\(809\) 9226.15i 0.400957i −0.979698 0.200479i \(-0.935750\pi\)
0.979698 0.200479i \(-0.0642497\pi\)
\(810\) 13329.3 + 32424.6i 0.578201 + 1.40653i
\(811\) 36172.6 1.56621 0.783103 0.621892i \(-0.213636\pi\)
0.783103 + 0.621892i \(0.213636\pi\)
\(812\) 10922.2 24458.3i 0.472036 1.05704i
\(813\) −1025.60 5494.82i −0.0442430 0.237038i
\(814\) 5827.48 16060.2i 0.250925 0.691534i
\(815\) −53045.4 −2.27988
\(816\) −4091.41 10771.4i −0.175525 0.462101i
\(817\) 9116.38i 0.390381i
\(818\) 12826.3 35348.6i 0.548243 1.51092i
\(819\) 23426.5 + 31123.9i 0.999499 + 1.32791i
\(820\) −7113.60 + 8511.72i −0.302948 + 0.362491i
\(821\) −7181.84 −0.305296 −0.152648 0.988281i \(-0.548780\pi\)
−0.152648 + 0.988281i \(0.548780\pi\)
\(822\) 2977.77 18044.2i 0.126352 0.765648i
\(823\) −2266.38 −0.0959916 −0.0479958 0.998848i \(-0.515283\pi\)
−0.0479958 + 0.998848i \(0.515283\pi\)
\(824\) −5366.22 + 3119.41i −0.226870 + 0.131881i
\(825\) −31704.4 + 5917.60i −1.33794 + 0.249726i
\(826\) 9017.52 + 649.596i 0.379854 + 0.0273636i
\(827\) −5411.98 −0.227561 −0.113781 0.993506i \(-0.536296\pi\)
−0.113781 + 0.993506i \(0.536296\pi\)
\(828\) 3323.64 9795.74i 0.139498 0.411142i
\(829\) −27630.7 −1.15760 −0.578802 0.815468i \(-0.696480\pi\)
−0.578802 + 0.815468i \(0.696480\pi\)
\(830\) −120.378 43.6794i −0.00503418 0.00182667i
\(831\) −5834.76 31260.5i −0.243569 1.30495i
\(832\) 19738.2 34660.0i 0.822476 1.44426i
\(833\) 10117.1 6235.34i 0.420811 0.259354i
\(834\) 7282.98 + 1201.89i 0.302385 + 0.0499016i
\(835\) 61595.9i 2.55283i
\(836\) 8773.19 + 7332.11i 0.362951 + 0.303333i
\(837\) −12085.1 19553.9i −0.499069 0.807504i
\(838\) 8166.89 22507.4i 0.336659 0.927812i
\(839\) 38177.4 1.57095 0.785476 0.618892i \(-0.212418\pi\)
0.785476 + 0.618892i \(0.212418\pi\)
\(840\) 30896.3 + 20399.2i 1.26908 + 0.837902i
\(841\) 8296.14 0.340159
\(842\) 1101.22 3034.90i 0.0450720 0.124216i
\(843\) −553.439 2965.13i −0.0226115 0.121144i
\(844\) −5064.64 + 6060.06i −0.206555 + 0.247152i
\(845\) 65830.7i 2.68005i
\(846\) −27199.7 + 570.552i −1.10537 + 0.0231867i
\(847\) −505.010 1781.92i −0.0204868 0.0722875i
\(848\) −6654.74 36888.6i −0.269487 1.49382i
\(849\) 30510.9 5694.84i 1.23337 0.230208i
\(850\) 15115.3 + 5484.62i 0.609941 + 0.221319i
\(851\) −7646.94 −0.308030
\(852\) −18833.6 + 33541.4i −0.757310 + 1.34872i
\(853\) −5549.77 −0.222767 −0.111384 0.993777i \(-0.535528\pi\)
−0.111384 + 0.993777i \(0.535528\pi\)
\(854\) 2156.43 29935.0i 0.0864070 1.19948i
\(855\) 6256.50 + 16176.1i 0.250255 + 0.647032i
\(856\) −12873.5 22145.8i −0.514025 0.884261i
\(857\) 22763.4 0.907332 0.453666 0.891172i \(-0.350116\pi\)
0.453666 + 0.891172i \(0.350116\pi\)
\(858\) −42733.3 7052.14i −1.70034 0.280602i
\(859\) −672.946 −0.0267295 −0.0133647 0.999911i \(-0.504254\pi\)
−0.0133647 + 0.999911i \(0.504254\pi\)
\(860\) 25183.6 + 21046.9i 0.998550 + 0.834529i
\(861\) −3489.11 7030.09i −0.138105 0.278263i
\(862\) −6389.86 + 17610.0i −0.252482 + 0.695824i
\(863\) 38773.2i 1.52938i −0.644397 0.764691i \(-0.722892\pi\)
0.644397 0.764691i \(-0.277108\pi\)
\(864\) 9513.82 + 23547.0i 0.374614 + 0.927181i
\(865\) −32329.8 −1.27081
\(866\) 146.574 403.948i 0.00575147 0.0158507i
\(867\) −18963.4 + 3539.50i −0.742825 + 0.138648i
\(868\) −22166.1 9898.53i −0.866780 0.387072i
\(869\) −1075.22 −0.0419729
\(870\) −7355.80 + 44573.4i −0.286650 + 1.73699i
\(871\) 59602.7i 2.31867i
\(872\) −42417.3 + 24657.4i −1.64728 + 0.957575i
\(873\) 6852.83 + 17717.9i 0.265674 + 0.686898i
\(874\) 1745.57 4810.68i 0.0675569 0.186183i
\(875\) −11839.2 + 3355.32i −0.457415 + 0.129635i
\(876\) 12026.4 21418.3i 0.463854 0.826093i
\(877\) 5911.60i 0.227617i −0.993503 0.113809i \(-0.963695\pi\)
0.993503 0.113809i \(-0.0363051\pi\)
\(878\) 9482.03 26131.9i 0.364468 1.00445i
\(879\) 498.085 + 2668.56i 0.0191126 + 0.102399i
\(880\) −40509.3 + 7307.90i −1.55178 + 0.279942i
\(881\) 1628.16 0.0622635 0.0311317 0.999515i \(-0.490089\pi\)
0.0311317 + 0.999515i \(0.490089\pi\)
\(882\) −22006.0 + 14208.0i −0.840113 + 0.542412i
\(883\) 13348.7i 0.508743i 0.967107 + 0.254371i \(0.0818686\pi\)
−0.967107 + 0.254371i \(0.918131\pi\)
\(884\) 16568.8 + 13847.3i 0.630397 + 0.526848i
\(885\) −14989.0 + 2797.69i −0.569322 + 0.106264i
\(886\) −5869.50 2129.76i −0.222562 0.0807571i
\(887\) 35230.3 1.33362 0.666808 0.745230i \(-0.267660\pi\)
0.666808 + 0.745230i \(0.267660\pi\)
\(888\) 14224.3 12253.1i 0.537541 0.463048i
\(889\) 288.049 + 1016.38i 0.0108671 + 0.0383444i
\(890\) 9842.45 27125.2i 0.370696 1.02162i
\(891\) 20400.0 18556.2i 0.767032 0.697708i
\(892\) −7337.73 + 8779.90i −0.275432 + 0.329566i
\(893\) −13459.4 −0.504369
\(894\) 38733.2 + 6392.01i 1.44903 + 0.239128i
\(895\) 22598.9i 0.844022i
\(896\) 22292.1 + 14912.6i 0.831169 + 0.556020i
\(897\) 3556.89 + 19056.5i 0.132398 + 0.709341i
\(898\) 7679.47 21164.1i 0.285375 0.786477i
\(899\) 29621.8i 1.09894i
\(900\) −33561.8 11387.3i −1.24303 0.421753i
\(901\) 20292.9 0.750337
\(902\) 8202.65 + 2976.36i 0.302792 + 0.109869i
\(903\) −20799.9 + 10323.2i −0.766529 + 0.380437i
\(904\) 835.568 485.720i 0.0307418 0.0178704i
\(905\) 39899.9i 1.46554i
\(906\) −22018.8 3633.70i −0.807424 0.133247i
\(907\) 41269.7i 1.51085i −0.655237 0.755423i \(-0.727431\pi\)
0.655237 0.755423i \(-0.272569\pi\)
\(908\) −25786.1 + 30854.2i −0.942447 + 1.12768i
\(909\) −9810.58 25365.2i −0.357972 0.925535i
\(910\) −69203.8 4985.24i −2.52097 0.181603i
\(911\) 11899.0i 0.432747i −0.976311 0.216373i \(-0.930577\pi\)
0.976311 0.216373i \(-0.0694228\pi\)
\(912\) 4461.41 + 11745.5i 0.161987 + 0.426461i
\(913\) 100.733i 0.00365145i
\(914\) 9636.66 + 3496.69i 0.348744 + 0.126543i
\(915\) 9287.36 + 49758.3i 0.335552 + 1.79777i
\(916\) −27405.8 22904.1i −0.988550 0.826172i
\(917\) 39999.1 11336.1i 1.44044 0.408233i
\(918\) −13459.6 + 2805.54i −0.483914 + 0.100868i
\(919\) −19268.9 −0.691647 −0.345823 0.938300i \(-0.612400\pi\)
−0.345823 + 0.938300i \(0.612400\pi\)
\(920\) 9259.29 + 15928.4i 0.331815 + 0.570810i
\(921\) 40393.4 7539.40i 1.44518 0.269741i
\(922\) −5677.87 + 15647.9i −0.202810 + 0.558931i
\(923\) 72089.7i 2.57081i
\(924\) 6794.32 28319.6i 0.241901 1.00827i
\(925\) 26199.7i 0.931287i
\(926\) 36841.0 + 13367.9i 1.30742 + 0.474401i
\(927\) 2671.75 + 6907.80i 0.0946621 + 0.244748i
\(928\) −5523.78 + 32257.0i −0.195395 + 1.14104i
\(929\) −22796.3 −0.805083 −0.402542 0.915402i \(-0.631873\pi\)
−0.402542 + 0.915402i \(0.631873\pi\)
\(930\) 40395.9 + 6666.41i 1.42434 + 0.235054i
\(931\) −11032.0 + 6799.21i −0.388355 + 0.239350i
\(932\) −10934.2 + 13083.2i −0.384293 + 0.459823i
\(933\) −7453.81 + 1391.25i −0.261551 + 0.0488183i
\(934\) 11884.7 32753.4i 0.416358 1.14746i
\(935\) 22284.6i 0.779449i
\(936\) −37151.5 29748.2i −1.29737 1.03884i
\(937\) 34878.2i 1.21603i 0.793925 + 0.608016i \(0.208034\pi\)
−0.793925 + 0.608016i \(0.791966\pi\)
\(938\) −39974.2 2879.63i −1.39148 0.100238i
\(939\) 5184.46 + 27776.5i 0.180180 + 0.965337i
\(940\) 31073.7 37181.0i 1.07820 1.29012i
\(941\) 34823.7i 1.20640i −0.797591 0.603198i \(-0.793893\pi\)
0.797591 0.603198i \(-0.206107\pi\)
\(942\) 19021.2 + 3139.00i 0.657901 + 0.108571i
\(943\) 3905.64i 0.134873i
\(944\) −10870.4 + 1961.02i −0.374789 + 0.0676122i
\(945\) 29822.6 32592.3i 1.02659 1.12193i
\(946\) 8806.12 24269.1i 0.302655 0.834099i
\(947\) −44753.6 −1.53569 −0.767844 0.640637i \(-0.778671\pi\)
−0.767844 + 0.640637i \(0.778671\pi\)
\(948\) −1030.24 578.485i −0.0352962 0.0198189i
\(949\) 46033.8i 1.57463i
\(950\) −16482.2 5980.60i −0.562897 0.204249i
\(951\) 40821.4 7619.29i 1.39193 0.259803i
\(952\) −10087.6 + 10443.4i −0.343424 + 0.355537i
\(953\) 27410.7i 0.931709i 0.884861 + 0.465854i \(0.154253\pi\)
−0.884861 + 0.465854i \(0.845747\pi\)
\(954\) −44717.8 + 938.019i −1.51760 + 0.0318339i
\(955\) −36209.2 −1.22691
\(956\) 34699.5 41519.5i 1.17392 1.40464i
\(957\) 34933.4 6520.30i 1.17998 0.220242i
\(958\) 15111.1 + 5483.09i 0.509620 + 0.184917i
\(959\) −22172.5 + 6283.87i −0.746599 + 0.211592i
\(960\) −42746.4 14792.3i −1.43712 0.497313i
\(961\) 2945.36 0.0988674
\(962\) −12000.9 + 33073.8i −0.402209 + 1.10846i
\(963\) −28507.7 + 11026.0i −0.953943 + 0.368960i
\(964\) −13963.2 + 16707.6i −0.466520 + 0.558211i
\(965\) 14936.6i 0.498264i
\(966\) −12952.7 + 1464.84i −0.431413 + 0.0487892i
\(967\) 19242.8 0.639923 0.319961 0.947431i \(-0.396330\pi\)
0.319961 + 0.947431i \(0.396330\pi\)
\(968\) 1137.21 + 1956.31i 0.0377598 + 0.0649569i
\(969\) −6686.48 + 1248.03i −0.221672 + 0.0413750i
\(970\) −31806.6 11541.1i −1.05283 0.382023i
\(971\) 9065.66i 0.299620i 0.988715 + 0.149810i \(0.0478661\pi\)
−0.988715 + 0.149810i \(0.952134\pi\)
\(972\) 29530.1 6804.51i 0.974464 0.224542i
\(973\) −2536.29 8949.27i −0.0835661 0.294862i
\(974\) 8648.48 + 3138.13i 0.284512 + 0.103236i
\(975\) 65290.9 12186.5i 2.14460 0.400287i
\(976\) 6509.92 + 36085.9i 0.213501 + 1.18348i
\(977\) 59374.1i 1.94426i 0.234435 + 0.972132i \(0.424676\pi\)
−0.234435 + 0.972132i \(0.575324\pi\)
\(978\) −7465.97 + 45241.0i −0.244106 + 1.47919i
\(979\) −22698.6 −0.741010
\(980\) 6686.98 46172.7i 0.217967 1.50503i
\(981\) 21118.9 + 54602.7i 0.687333 + 1.77710i
\(982\) 23907.3 + 8674.82i 0.776896 + 0.281899i
\(983\) −22834.0 −0.740886 −0.370443 0.928855i \(-0.620794\pi\)
−0.370443 + 0.928855i \(0.620794\pi\)
\(984\) 6258.20 + 7264.99i 0.202748 + 0.235365i
\(985\) 57899.4i 1.87292i
\(986\) −16654.8 6043.23i −0.537927 0.195188i
\(987\) 15241.2 + 30708.9i 0.491521 + 0.990349i
\(988\) −18067.2 15099.5i −0.581775 0.486214i
\(989\) −11555.6 −0.371533
\(990\) 1030.09 + 49106.8i 0.0330690 + 1.57648i
\(991\) 33338.9 1.06866 0.534331 0.845275i \(-0.320563\pi\)
0.534331 + 0.845275i \(0.320563\pi\)
\(992\) 29233.8 + 5006.08i 0.935660 + 0.160225i
\(993\) −5637.59 30204.2i −0.180165 0.965257i
\(994\) 48349.0 + 3482.92i 1.54279 + 0.111138i
\(995\) 44269.4 1.41049
\(996\) −54.1957 + 96.5190i −0.00172415 + 0.00307060i
\(997\) 17170.3 0.545427 0.272713 0.962095i \(-0.412079\pi\)
0.272713 + 0.962095i \(0.412079\pi\)
\(998\) −10158.2 + 27995.3i −0.322196 + 0.887951i
\(999\) −11777.6 19056.3i −0.372999 0.603519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.76 yes 80
3.2 odd 2 inner 168.4.i.c.125.6 yes 80
4.3 odd 2 672.4.i.c.209.7 80
7.6 odd 2 inner 168.4.i.c.125.75 yes 80
8.3 odd 2 672.4.i.c.209.74 80
8.5 even 2 inner 168.4.i.c.125.7 yes 80
12.11 even 2 672.4.i.c.209.6 80
21.20 even 2 inner 168.4.i.c.125.5 80
24.5 odd 2 inner 168.4.i.c.125.73 yes 80
24.11 even 2 672.4.i.c.209.75 80
28.27 even 2 672.4.i.c.209.73 80
56.13 odd 2 inner 168.4.i.c.125.8 yes 80
56.27 even 2 672.4.i.c.209.8 80
84.83 odd 2 672.4.i.c.209.76 80
168.83 odd 2 672.4.i.c.209.5 80
168.125 even 2 inner 168.4.i.c.125.74 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.5 80 21.20 even 2 inner
168.4.i.c.125.6 yes 80 3.2 odd 2 inner
168.4.i.c.125.7 yes 80 8.5 even 2 inner
168.4.i.c.125.8 yes 80 56.13 odd 2 inner
168.4.i.c.125.73 yes 80 24.5 odd 2 inner
168.4.i.c.125.74 yes 80 168.125 even 2 inner
168.4.i.c.125.75 yes 80 7.6 odd 2 inner
168.4.i.c.125.76 yes 80 1.1 even 1 trivial
672.4.i.c.209.5 80 168.83 odd 2
672.4.i.c.209.6 80 12.11 even 2
672.4.i.c.209.7 80 4.3 odd 2
672.4.i.c.209.8 80 56.27 even 2
672.4.i.c.209.73 80 28.27 even 2
672.4.i.c.209.74 80 8.3 odd 2
672.4.i.c.209.75 80 24.11 even 2
672.4.i.c.209.76 80 84.83 odd 2