Properties

Label 168.4.i.c.125.73
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.73
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.75

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.65881 - 0.964755i) q^{2} +(-5.10794 - 0.953394i) q^{3} +(6.13849 - 5.13019i) q^{4} +17.0023i q^{5} +(-14.5008 + 2.39302i) q^{6} +(-5.04990 - 17.8185i) q^{7} +(11.3717 - 19.5623i) q^{8} +(25.1821 + 9.73975i) q^{9} +(16.4031 + 45.2059i) q^{10} +37.8286 q^{11} +(-36.2462 + 20.3523i) q^{12} +77.9029 q^{13} +(-30.6172 - 42.5040i) q^{14} +(16.2099 - 86.8468i) q^{15} +(11.3622 - 62.9833i) q^{16} +34.6479 q^{17} +(76.3507 + 1.60157i) q^{18} -37.7811 q^{19} +(87.2252 + 104.369i) q^{20} +(8.80655 + 95.8303i) q^{21} +(100.579 - 36.4954i) q^{22} +47.8900i q^{23} +(-76.7365 + 89.0815i) q^{24} -164.079 q^{25} +(207.129 - 75.1572i) q^{26} +(-119.343 - 73.7585i) q^{27} +(-122.411 - 83.4717i) q^{28} +180.790 q^{29} +(-40.6869 - 246.547i) q^{30} -163.846i q^{31} +(-30.5535 - 178.422i) q^{32} +(-193.226 - 36.0656i) q^{33} +(92.1220 - 33.4267i) q^{34} +(302.956 - 85.8600i) q^{35} +(204.547 - 69.4015i) q^{36} +159.677i q^{37} +(-100.453 + 36.4496i) q^{38} +(-397.923 - 74.2721i) q^{39} +(332.605 + 193.345i) q^{40} -81.5544 q^{41} +(115.868 + 246.298i) q^{42} +241.294i q^{43} +(232.211 - 194.068i) q^{44} +(-165.598 + 428.154i) q^{45} +(46.2021 + 127.330i) q^{46} +356.246 q^{47} +(-118.086 + 310.882i) q^{48} +(-291.997 + 179.963i) q^{49} +(-436.254 + 158.296i) q^{50} +(-176.979 - 33.0331i) q^{51} +(478.207 - 399.657i) q^{52} -585.689 q^{53} +(-388.468 - 80.9730i) q^{54} +643.174i q^{55} +(-405.997 - 103.838i) q^{56} +(192.984 + 36.0203i) q^{57} +(480.686 - 174.418i) q^{58} +172.591i q^{59} +(-346.037 - 616.269i) q^{60} -572.943 q^{61} +(-158.072 - 435.636i) q^{62} +(46.3807 - 497.891i) q^{63} +(-253.370 - 444.913i) q^{64} +1324.53i q^{65} +(-548.545 + 90.5247i) q^{66} +765.089i q^{67} +(212.686 - 177.750i) q^{68} +(45.6580 - 244.619i) q^{69} +(722.666 - 520.563i) q^{70} -925.379i q^{71} +(476.895 - 381.863i) q^{72} -590.913i q^{73} +(154.050 + 424.551i) q^{74} +(838.105 + 156.432i) q^{75} +(-231.919 + 193.825i) q^{76} +(-191.031 - 674.049i) q^{77} +(-1129.66 + 186.423i) q^{78} -28.4235 q^{79} +(1070.86 + 193.184i) q^{80} +(539.274 + 490.534i) q^{81} +(-216.837 + 78.6800i) q^{82} +2.66288i q^{83} +(545.687 + 543.074i) q^{84} +589.094i q^{85} +(232.790 + 641.555i) q^{86} +(-923.466 - 172.364i) q^{87} +(430.175 - 740.016i) q^{88} +600.037 q^{89} +(-27.2303 + 1298.14i) q^{90} +(-393.402 - 1388.11i) q^{91} +(245.685 + 293.972i) q^{92} +(-156.210 + 836.917i) q^{93} +(947.190 - 343.691i) q^{94} -642.367i q^{95} +(-14.0411 + 940.499i) q^{96} +703.593i q^{97} +(-602.743 + 760.193i) q^{98} +(952.603 + 368.441i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.65881 0.964755i 0.940030 0.341092i
\(3\) −5.10794 0.953394i −0.983023 0.183481i
\(4\) 6.13849 5.13019i 0.767312 0.641274i
\(5\) 17.0023i 1.52073i 0.649494 + 0.760367i \(0.274981\pi\)
−0.649494 + 0.760367i \(0.725019\pi\)
\(6\) −14.5008 + 2.39302i −0.986655 + 0.162825i
\(7\) −5.04990 17.8185i −0.272669 0.962108i
\(8\) 11.3717 19.5623i 0.502562 0.864541i
\(9\) 25.1821 + 9.73975i 0.932670 + 0.360732i
\(10\) 16.4031 + 45.2059i 0.518711 + 1.42954i
\(11\) 37.8286 1.03689 0.518443 0.855112i \(-0.326512\pi\)
0.518443 + 0.855112i \(0.326512\pi\)
\(12\) −36.2462 + 20.3523i −0.871947 + 0.489601i
\(13\) 77.9029 1.66203 0.831015 0.556250i \(-0.187760\pi\)
0.831015 + 0.556250i \(0.187760\pi\)
\(14\) −30.6172 42.5040i −0.584485 0.811405i
\(15\) 16.2099 86.8468i 0.279025 1.49492i
\(16\) 11.3622 62.9833i 0.177535 0.984114i
\(17\) 34.6479 0.494314 0.247157 0.968975i \(-0.420504\pi\)
0.247157 + 0.968975i \(0.420504\pi\)
\(18\) 76.3507 + 1.60157i 0.999780 + 0.0209718i
\(19\) −37.7811 −0.456189 −0.228094 0.973639i \(-0.573249\pi\)
−0.228094 + 0.973639i \(0.573249\pi\)
\(20\) 87.2252 + 104.369i 0.975207 + 1.16688i
\(21\) 8.80655 + 95.8303i 0.0915117 + 0.995804i
\(22\) 100.579 36.4954i 0.974705 0.353674i
\(23\) 47.8900i 0.434163i 0.976153 + 0.217081i \(0.0696537\pi\)
−0.976153 + 0.217081i \(0.930346\pi\)
\(24\) −76.7365 + 89.0815i −0.652657 + 0.757654i
\(25\) −164.079 −1.31263
\(26\) 207.129 75.1572i 1.56236 0.566906i
\(27\) −119.343 73.7585i −0.850649 0.525734i
\(28\) −122.411 83.4717i −0.826197 0.563381i
\(29\) 180.790 1.15765 0.578826 0.815451i \(-0.303511\pi\)
0.578826 + 0.815451i \(0.303511\pi\)
\(30\) −40.6869 246.547i −0.247613 1.50044i
\(31\) 163.846i 0.949280i −0.880180 0.474640i \(-0.842578\pi\)
0.880180 0.474640i \(-0.157422\pi\)
\(32\) −30.5535 178.422i −0.168786 0.985653i
\(33\) −193.226 36.0656i −1.01928 0.190249i
\(34\) 92.1220 33.4267i 0.464670 0.168607i
\(35\) 302.956 85.8600i 1.46311 0.414657i
\(36\) 204.547 69.4015i 0.946976 0.321303i
\(37\) 159.677i 0.709481i 0.934965 + 0.354741i \(0.115431\pi\)
−0.934965 + 0.354741i \(0.884569\pi\)
\(38\) −100.453 + 36.4496i −0.428831 + 0.155603i
\(39\) −397.923 74.2721i −1.63381 0.304950i
\(40\) 332.605 + 193.345i 1.31474 + 0.764263i
\(41\) −81.5544 −0.310650 −0.155325 0.987863i \(-0.549642\pi\)
−0.155325 + 0.987863i \(0.549642\pi\)
\(42\) 115.868 + 246.298i 0.425685 + 0.904871i
\(43\) 241.294i 0.855745i 0.903839 + 0.427873i \(0.140737\pi\)
−0.903839 + 0.427873i \(0.859263\pi\)
\(44\) 232.211 194.068i 0.795616 0.664929i
\(45\) −165.598 + 428.154i −0.548577 + 1.41834i
\(46\) 46.2021 + 127.330i 0.148090 + 0.408126i
\(47\) 356.246 1.10561 0.552807 0.833309i \(-0.313557\pi\)
0.552807 + 0.833309i \(0.313557\pi\)
\(48\) −118.086 + 310.882i −0.355087 + 0.934833i
\(49\) −291.997 + 179.963i −0.851303 + 0.524674i
\(50\) −436.254 + 158.296i −1.23391 + 0.447729i
\(51\) −176.979 33.0331i −0.485923 0.0906971i
\(52\) 478.207 399.657i 1.27529 1.06582i
\(53\) −585.689 −1.51794 −0.758968 0.651128i \(-0.774296\pi\)
−0.758968 + 0.651128i \(0.774296\pi\)
\(54\) −388.468 80.9730i −0.978959 0.204056i
\(55\) 643.174i 1.57683i
\(56\) −405.997 103.838i −0.968815 0.247786i
\(57\) 192.984 + 36.0203i 0.448444 + 0.0837018i
\(58\) 480.686 174.418i 1.08823 0.394867i
\(59\) 172.591i 0.380839i 0.981703 + 0.190419i \(0.0609848\pi\)
−0.981703 + 0.190419i \(0.939015\pi\)
\(60\) −346.037 616.269i −0.744552 1.32600i
\(61\) −572.943 −1.20259 −0.601294 0.799028i \(-0.705348\pi\)
−0.601294 + 0.799028i \(0.705348\pi\)
\(62\) −158.072 435.636i −0.323792 0.892351i
\(63\) 46.3807 497.891i 0.0927527 0.995689i
\(64\) −253.370 444.913i −0.494862 0.868971i
\(65\) 1324.53i 2.52750i
\(66\) −548.545 + 90.5247i −1.02305 + 0.168831i
\(67\) 765.089i 1.39508i 0.716545 + 0.697541i \(0.245723\pi\)
−0.716545 + 0.697541i \(0.754277\pi\)
\(68\) 212.686 177.750i 0.379293 0.316991i
\(69\) 45.6580 244.619i 0.0796605 0.426792i
\(70\) 722.666 520.563i 1.23393 0.888846i
\(71\) 925.379i 1.54679i −0.633923 0.773396i \(-0.718556\pi\)
0.633923 0.773396i \(-0.281444\pi\)
\(72\) 476.895 381.863i 0.780592 0.625041i
\(73\) 590.913i 0.947413i −0.880683 0.473706i \(-0.842916\pi\)
0.880683 0.473706i \(-0.157084\pi\)
\(74\) 154.050 + 424.551i 0.241999 + 0.666933i
\(75\) 838.105 + 156.432i 1.29035 + 0.240843i
\(76\) −231.919 + 193.825i −0.350039 + 0.292542i
\(77\) −191.031 674.049i −0.282727 0.997597i
\(78\) −1129.66 + 186.423i −1.63985 + 0.270619i
\(79\) −28.4235 −0.0404797 −0.0202399 0.999795i \(-0.506443\pi\)
−0.0202399 + 0.999795i \(0.506443\pi\)
\(80\) 1070.86 + 193.184i 1.49658 + 0.269983i
\(81\) 539.274 + 490.534i 0.739745 + 0.672887i
\(82\) −216.837 + 78.6800i −0.292020 + 0.105960i
\(83\) 2.66288i 0.00352155i 0.999998 + 0.00176077i \(0.000560472\pi\)
−0.999998 + 0.00176077i \(0.999440\pi\)
\(84\) 545.687 + 543.074i 0.708801 + 0.705408i
\(85\) 589.094i 0.751721i
\(86\) 232.790 + 641.555i 0.291888 + 0.804426i
\(87\) −923.466 172.364i −1.13800 0.212407i
\(88\) 430.175 740.016i 0.521100 0.896431i
\(89\) 600.037 0.714649 0.357324 0.933980i \(-0.383689\pi\)
0.357324 + 0.933980i \(0.383689\pi\)
\(90\) −27.2303 + 1298.14i −0.0318925 + 1.52040i
\(91\) −393.402 1388.11i −0.453184 1.59905i
\(92\) 245.685 + 293.972i 0.278417 + 0.333138i
\(93\) −156.210 + 836.917i −0.174175 + 0.933164i
\(94\) 947.190 343.691i 1.03931 0.377117i
\(95\) 642.367i 0.693742i
\(96\) −14.0411 + 940.499i −0.0149278 + 0.999889i
\(97\) 703.593i 0.736485i 0.929730 + 0.368243i \(0.120040\pi\)
−0.929730 + 0.368243i \(0.879960\pi\)
\(98\) −602.743 + 760.193i −0.621288 + 0.783582i
\(99\) 952.603 + 368.441i 0.967073 + 0.374038i
\(100\) −1007.20 + 841.757i −1.00720 + 0.841757i
\(101\) 1007.27i 0.992350i −0.868223 0.496175i \(-0.834737\pi\)
0.868223 0.496175i \(-0.165263\pi\)
\(102\) −502.422 + 82.9131i −0.487718 + 0.0804865i
\(103\) 274.314i 0.262417i 0.991355 + 0.131209i \(0.0418857\pi\)
−0.991355 + 0.131209i \(0.958114\pi\)
\(104\) 885.887 1523.96i 0.835273 1.43689i
\(105\) −1629.34 + 149.732i −1.51435 + 0.139165i
\(106\) −1557.23 + 565.047i −1.42690 + 0.517756i
\(107\) −1132.06 −1.02281 −0.511405 0.859340i \(-0.670875\pi\)
−0.511405 + 0.859340i \(0.670875\pi\)
\(108\) −1110.98 + 159.485i −0.989853 + 0.142097i
\(109\) 2168.32i 1.90539i −0.303934 0.952693i \(-0.598300\pi\)
0.303934 0.952693i \(-0.401700\pi\)
\(110\) 620.506 + 1710.08i 0.537845 + 1.48227i
\(111\) 152.235 815.622i 0.130176 0.697436i
\(112\) −1179.65 + 115.602i −0.995233 + 0.0975296i
\(113\) 42.7131i 0.0355585i 0.999842 + 0.0177793i \(0.00565961\pi\)
−0.999842 + 0.0177793i \(0.994340\pi\)
\(114\) 547.857 90.4111i 0.450101 0.0742788i
\(115\) −814.240 −0.660246
\(116\) 1109.78 927.489i 0.888280 0.742373i
\(117\) 1961.76 + 758.755i 1.55012 + 0.599546i
\(118\) 166.508 + 458.887i 0.129901 + 0.358000i
\(119\) −174.968 617.373i −0.134784 0.475584i
\(120\) −1514.59 1304.70i −1.15219 0.992518i
\(121\) 100.004 0.0751345
\(122\) −1523.34 + 552.750i −1.13047 + 0.410194i
\(123\) 416.575 + 77.7534i 0.305376 + 0.0569983i
\(124\) −840.564 1005.77i −0.608749 0.728394i
\(125\) 664.433i 0.475430i
\(126\) −357.026 1368.54i −0.252432 0.967615i
\(127\) −57.0406 −0.0398546 −0.0199273 0.999801i \(-0.506343\pi\)
−0.0199273 + 0.999801i \(0.506343\pi\)
\(128\) −1102.89 938.498i −0.761585 0.648065i
\(129\) 230.048 1232.52i 0.157013 0.841217i
\(130\) 1277.85 + 3521.67i 0.862113 + 2.37593i
\(131\) 2244.81i 1.49717i 0.663036 + 0.748587i \(0.269268\pi\)
−0.663036 + 0.748587i \(0.730732\pi\)
\(132\) −1371.14 + 769.900i −0.904110 + 0.507660i
\(133\) 190.791 + 673.203i 0.124389 + 0.438903i
\(134\) 738.124 + 2034.22i 0.475852 + 1.31142i
\(135\) 1254.07 2029.10i 0.799502 1.29361i
\(136\) 394.005 677.793i 0.248424 0.427355i
\(137\) 1244.36i 0.776003i 0.921659 + 0.388002i \(0.126835\pi\)
−0.921659 + 0.388002i \(0.873165\pi\)
\(138\) −114.602 694.443i −0.0706924 0.428369i
\(139\) −502.246 −0.306475 −0.153237 0.988189i \(-0.548970\pi\)
−0.153237 + 0.988189i \(0.548970\pi\)
\(140\) 1419.21 2081.27i 0.856753 1.25643i
\(141\) −1819.69 339.643i −1.08684 0.202859i
\(142\) −892.764 2460.40i −0.527599 1.45403i
\(143\) 2946.96 1.72334
\(144\) 899.567 1475.39i 0.520583 0.853811i
\(145\) 3073.86i 1.76048i
\(146\) −570.086 1571.12i −0.323155 0.890596i
\(147\) 1663.08 640.853i 0.933119 0.359569i
\(148\) 819.176 + 980.179i 0.454972 + 0.544393i
\(149\) 2671.10 1.46863 0.734313 0.678811i \(-0.237504\pi\)
0.734313 + 0.678811i \(0.237504\pi\)
\(150\) 2379.28 392.645i 1.29511 0.213729i
\(151\) −1518.45 −0.818345 −0.409172 0.912457i \(-0.634183\pi\)
−0.409172 + 0.912457i \(0.634183\pi\)
\(152\) −429.635 + 739.087i −0.229263 + 0.394394i
\(153\) 872.506 + 337.462i 0.461032 + 0.178315i
\(154\) −1158.21 1607.87i −0.606045 0.841335i
\(155\) 2785.77 1.44360
\(156\) −2823.68 + 1585.50i −1.44920 + 0.813730i
\(157\) −1311.73 −0.666800 −0.333400 0.942785i \(-0.608196\pi\)
−0.333400 + 0.942785i \(0.608196\pi\)
\(158\) −75.5727 + 27.4218i −0.0380521 + 0.0138073i
\(159\) 2991.66 + 558.392i 1.49217 + 0.278512i
\(160\) 3033.59 519.481i 1.49892 0.256678i
\(161\) 853.327 241.839i 0.417712 0.118383i
\(162\) 1907.07 + 783.968i 0.924899 + 0.380212i
\(163\) 3119.89i 1.49920i −0.661894 0.749598i \(-0.730247\pi\)
0.661894 0.749598i \(-0.269753\pi\)
\(164\) −500.621 + 418.390i −0.238366 + 0.199212i
\(165\) 613.198 3285.29i 0.289318 1.55006i
\(166\) 2.56902 + 7.08007i 0.00120117 + 0.00331036i
\(167\) −3622.79 −1.67868 −0.839342 0.543604i \(-0.817059\pi\)
−0.839342 + 0.543604i \(0.817059\pi\)
\(168\) 1974.81 + 917.475i 0.906904 + 0.421338i
\(169\) 3871.87 1.76234
\(170\) 568.332 + 1566.29i 0.256406 + 0.706640i
\(171\) −951.408 367.979i −0.425474 0.164562i
\(172\) 1237.89 + 1481.18i 0.548767 + 0.656623i
\(173\) 1901.49i 0.835653i 0.908527 + 0.417826i \(0.137208\pi\)
−0.908527 + 0.417826i \(0.862792\pi\)
\(174\) −2621.61 + 432.635i −1.14220 + 0.188494i
\(175\) 828.582 + 2923.64i 0.357914 + 1.26289i
\(176\) 429.818 2382.57i 0.184084 1.02042i
\(177\) 164.548 881.586i 0.0698766 0.374373i
\(178\) 1595.38 578.888i 0.671791 0.243761i
\(179\) −1329.17 −0.555010 −0.277505 0.960724i \(-0.589507\pi\)
−0.277505 + 0.960724i \(0.589507\pi\)
\(180\) 1179.99 + 3477.77i 0.488617 + 1.44010i
\(181\) −2346.73 −0.963709 −0.481855 0.876251i \(-0.660037\pi\)
−0.481855 + 0.876251i \(0.660037\pi\)
\(182\) −2385.17 3311.18i −0.971431 1.34858i
\(183\) 2926.56 + 546.240i 1.18217 + 0.220652i
\(184\) 936.839 + 544.589i 0.375352 + 0.218194i
\(185\) −2714.89 −1.07893
\(186\) 392.088 + 2375.91i 0.154566 + 0.936612i
\(187\) 1310.68 0.512548
\(188\) 2186.82 1827.61i 0.848351 0.709002i
\(189\) −711.596 + 2498.98i −0.273868 + 0.961767i
\(190\) −619.727 1707.93i −0.236630 0.652138i
\(191\) 2129.66i 0.806791i −0.915026 0.403395i \(-0.867830\pi\)
0.915026 0.403395i \(-0.132170\pi\)
\(192\) 870.019 + 2514.15i 0.327022 + 0.945017i
\(193\) 878.502 0.327647 0.163824 0.986490i \(-0.447617\pi\)
0.163824 + 0.986490i \(0.447617\pi\)
\(194\) 678.795 + 1870.72i 0.251210 + 0.692318i
\(195\) 1262.80 6765.62i 0.463748 2.48460i
\(196\) −869.177 + 2602.70i −0.316755 + 0.948507i
\(197\) −3405.38 −1.23159 −0.615796 0.787906i \(-0.711165\pi\)
−0.615796 + 0.787906i \(0.711165\pi\)
\(198\) 2888.24 + 60.5850i 1.03666 + 0.0217454i
\(199\) 2603.72i 0.927503i −0.885965 0.463752i \(-0.846503\pi\)
0.885965 0.463752i \(-0.153497\pi\)
\(200\) −1865.85 + 3209.77i −0.659679 + 1.13482i
\(201\) 729.431 3908.03i 0.255971 1.37140i
\(202\) −971.771 2678.14i −0.338483 0.932838i
\(203\) −912.973 3221.41i −0.315656 1.11379i
\(204\) −1255.85 + 705.164i −0.431016 + 0.242017i
\(205\) 1386.61i 0.472416i
\(206\) 264.646 + 729.348i 0.0895085 + 0.246680i
\(207\) −466.436 + 1205.97i −0.156616 + 0.404931i
\(208\) 885.152 4906.59i 0.295068 1.63563i
\(209\) −1429.21 −0.473016
\(210\) −4187.64 + 1970.02i −1.37607 + 0.647354i
\(211\) 987.223i 0.322101i −0.986946 0.161050i \(-0.948512\pi\)
0.986946 0.161050i \(-0.0514881\pi\)
\(212\) −3595.25 + 3004.70i −1.16473 + 0.973413i
\(213\) −882.250 + 4726.78i −0.283807 + 1.52053i
\(214\) −3009.93 + 1092.16i −0.961471 + 0.348873i
\(215\) −4102.56 −1.30136
\(216\) −2800.02 + 1495.86i −0.882023 + 0.471207i
\(217\) −2919.50 + 827.408i −0.913310 + 0.258839i
\(218\) −2091.90 5765.13i −0.649913 1.79112i
\(219\) −563.373 + 3018.35i −0.173832 + 0.931329i
\(220\) 3299.61 + 3948.12i 1.01118 + 1.20992i
\(221\) 2699.17 0.821565
\(222\) −382.112 2315.45i −0.115521 0.700013i
\(223\) 1430.30i 0.429507i 0.976668 + 0.214754i \(0.0688949\pi\)
−0.976668 + 0.214754i \(0.931105\pi\)
\(224\) −3024.92 + 1445.43i −0.902282 + 0.431147i
\(225\) −4131.85 1598.09i −1.22425 0.473508i
\(226\) 41.2077 + 113.566i 0.0121287 + 0.0334261i
\(227\) 5026.34i 1.46965i 0.678258 + 0.734824i \(0.262735\pi\)
−0.678258 + 0.734824i \(0.737265\pi\)
\(228\) 1369.42 768.934i 0.397772 0.223350i
\(229\) 4464.57 1.28833 0.644164 0.764887i \(-0.277205\pi\)
0.644164 + 0.764887i \(0.277205\pi\)
\(230\) −2164.91 + 785.543i −0.620651 + 0.225205i
\(231\) 333.139 + 3625.13i 0.0948873 + 1.03254i
\(232\) 2055.89 3536.68i 0.581792 1.00084i
\(233\) 2131.34i 0.599265i −0.954055 0.299632i \(-0.903136\pi\)
0.954055 0.299632i \(-0.0968641\pi\)
\(234\) 5947.95 + 124.767i 1.66166 + 0.0348558i
\(235\) 6057.02i 1.68135i
\(236\) 885.427 + 1059.45i 0.244222 + 0.292222i
\(237\) 145.186 + 27.0988i 0.0397925 + 0.00742725i
\(238\) −1060.82 1472.67i −0.288919 0.401089i
\(239\) 6763.79i 1.83060i 0.402774 + 0.915299i \(0.368046\pi\)
−0.402774 + 0.915299i \(0.631954\pi\)
\(240\) −5285.72 2007.73i −1.42163 0.539993i
\(241\) 2721.77i 0.727489i 0.931499 + 0.363744i \(0.118502\pi\)
−0.931499 + 0.363744i \(0.881498\pi\)
\(242\) 265.891 96.4794i 0.0706287 0.0256278i
\(243\) −2286.91 3019.76i −0.603725 0.797192i
\(244\) −3517.01 + 2939.31i −0.922760 + 0.771189i
\(245\) −3059.79 4964.63i −0.797889 1.29461i
\(246\) 1182.60 195.161i 0.306505 0.0505815i
\(247\) −2943.26 −0.758199
\(248\) −3205.22 1863.21i −0.820692 0.477072i
\(249\) 2.53877 13.6018i 0.000646136 0.00346177i
\(250\) −641.015 1766.60i −0.162165 0.446918i
\(251\) 5463.02i 1.37380i 0.726754 + 0.686898i \(0.241028\pi\)
−0.726754 + 0.686898i \(0.758972\pi\)
\(252\) −2269.57 3294.25i −0.567339 0.823484i
\(253\) 1811.61i 0.450178i
\(254\) −151.660 + 55.0302i −0.0374645 + 0.0135941i
\(255\) 561.639 3009.06i 0.137926 0.738959i
\(256\) −3837.80 1431.26i −0.936963 0.349430i
\(257\) 6828.16 1.65731 0.828655 0.559760i \(-0.189107\pi\)
0.828655 + 0.559760i \(0.189107\pi\)
\(258\) −577.423 3498.96i −0.139336 0.844325i
\(259\) 2845.21 806.355i 0.682597 0.193453i
\(260\) 6795.10 + 8130.62i 1.62082 + 1.93938i
\(261\) 4552.68 + 1760.85i 1.07971 + 0.417602i
\(262\) 2165.69 + 5968.51i 0.510675 + 1.40739i
\(263\) 665.207i 0.155964i 0.996955 + 0.0779818i \(0.0248476\pi\)
−0.996955 + 0.0779818i \(0.975152\pi\)
\(264\) −2902.83 + 3369.83i −0.676731 + 0.785601i
\(265\) 9958.08i 2.30838i
\(266\) 1156.75 + 1605.85i 0.266635 + 0.370154i
\(267\) −3064.95 572.071i −0.702517 0.131124i
\(268\) 3925.06 + 4696.50i 0.894630 + 1.07046i
\(269\) 4857.98i 1.10110i −0.834802 0.550550i \(-0.814418\pi\)
0.834802 0.550550i \(-0.185582\pi\)
\(270\) 1376.73 6604.86i 0.310315 1.48874i
\(271\) 1075.74i 0.241131i −0.992705 0.120566i \(-0.961529\pi\)
0.992705 0.120566i \(-0.0384709\pi\)
\(272\) 393.677 2182.24i 0.0877581 0.486462i
\(273\) 686.056 + 7465.46i 0.152095 + 1.65506i
\(274\) 1200.50 + 3308.50i 0.264689 + 0.729466i
\(275\) −6206.88 −1.36105
\(276\) −974.671 1735.83i −0.212566 0.378567i
\(277\) 6119.99i 1.32749i 0.747959 + 0.663745i \(0.231034\pi\)
−0.747959 + 0.663745i \(0.768966\pi\)
\(278\) −1335.38 + 484.545i −0.288095 + 0.104536i
\(279\) 1595.82 4125.99i 0.342435 0.885365i
\(280\) 1765.49 6902.89i 0.376816 1.47331i
\(281\) 580.494i 0.123236i 0.998100 + 0.0616181i \(0.0196261\pi\)
−0.998100 + 0.0616181i \(0.980374\pi\)
\(282\) −5165.86 + 852.506i −1.09086 + 0.180021i
\(283\) −5973.23 −1.25467 −0.627335 0.778750i \(-0.715854\pi\)
−0.627335 + 0.778750i \(0.715854\pi\)
\(284\) −4747.37 5680.43i −0.991918 1.18687i
\(285\) −612.429 + 3281.17i −0.127288 + 0.681964i
\(286\) 7835.39 2843.09i 1.61999 0.587817i
\(287\) 411.841 + 1453.18i 0.0847046 + 0.298879i
\(288\) 968.387 4790.63i 0.198135 0.980175i
\(289\) −3712.52 −0.755653
\(290\) 2965.52 + 8172.78i 0.600487 + 1.65490i
\(291\) 670.801 3593.91i 0.135131 0.723982i
\(292\) −3031.50 3627.32i −0.607551 0.726961i
\(293\) 522.434i 0.104167i 0.998643 + 0.0520835i \(0.0165862\pi\)
−0.998643 + 0.0520835i \(0.983414\pi\)
\(294\) 3803.54 3308.37i 0.754513 0.656285i
\(295\) −2934.45 −0.579154
\(296\) 3123.66 + 1815.80i 0.613376 + 0.356558i
\(297\) −4514.57 2790.18i −0.882027 0.545127i
\(298\) 7101.95 2576.96i 1.38055 0.500937i
\(299\) 3730.77i 0.721591i
\(300\) 5947.23 3339.39i 1.14455 0.642665i
\(301\) 4299.50 1218.51i 0.823319 0.233335i
\(302\) −4037.28 + 1464.94i −0.769269 + 0.279131i
\(303\) −960.327 + 5145.08i −0.182077 + 0.975503i
\(304\) −429.278 + 2379.58i −0.0809895 + 0.448942i
\(305\) 9741.37i 1.82882i
\(306\) 2645.39 + 55.4908i 0.494206 + 0.0103667i
\(307\) −7907.97 −1.47014 −0.735068 0.677994i \(-0.762850\pi\)
−0.735068 + 0.677994i \(0.762850\pi\)
\(308\) −4630.64 3157.62i −0.856673 0.584163i
\(309\) 261.529 1401.18i 0.0481485 0.257962i
\(310\) 7406.82 2687.59i 1.35703 0.492402i
\(311\) 1459.26 0.266068 0.133034 0.991111i \(-0.457528\pi\)
0.133034 + 0.991111i \(0.457528\pi\)
\(312\) −5978.00 + 6939.71i −1.08474 + 1.25924i
\(313\) 5437.91i 0.982008i 0.871157 + 0.491004i \(0.163370\pi\)
−0.871157 + 0.491004i \(0.836630\pi\)
\(314\) −3487.64 + 1265.50i −0.626812 + 0.227440i
\(315\) 8465.31 + 788.579i 1.51418 + 0.141052i
\(316\) −174.478 + 145.818i −0.0310606 + 0.0259586i
\(317\) 7991.76 1.41597 0.707984 0.706228i \(-0.249605\pi\)
0.707984 + 0.706228i \(0.249605\pi\)
\(318\) 8492.97 1401.57i 1.49768 0.247157i
\(319\) 6839.05 1.20035
\(320\) 7564.56 4307.87i 1.32147 0.752554i
\(321\) 5782.51 + 1079.30i 1.00545 + 0.187666i
\(322\) 2035.51 1466.26i 0.352282 0.253762i
\(323\) −1309.04 −0.225501
\(324\) 5826.87 + 244.561i 0.999120 + 0.0419344i
\(325\) −12782.2 −2.18163
\(326\) −3009.93 8295.19i −0.511364 1.40929i
\(327\) −2067.26 + 11075.6i −0.349602 + 1.87304i
\(328\) −927.411 + 1595.39i −0.156121 + 0.268570i
\(329\) −1799.01 6347.77i −0.301467 1.06372i
\(330\) −1539.13 9326.55i −0.256746 1.55579i
\(331\) 5913.18i 0.981927i 0.871180 + 0.490963i \(0.163355\pi\)
−0.871180 + 0.490963i \(0.836645\pi\)
\(332\) 13.6611 + 16.3461i 0.00225828 + 0.00270213i
\(333\) −1555.22 + 4021.01i −0.255932 + 0.661712i
\(334\) −9632.31 + 3495.11i −1.57801 + 0.572586i
\(335\) −13008.3 −2.12155
\(336\) 6135.77 + 534.181i 0.996232 + 0.0867321i
\(337\) −10946.5 −1.76942 −0.884712 0.466138i \(-0.845645\pi\)
−0.884712 + 0.466138i \(0.845645\pi\)
\(338\) 10294.5 3735.40i 1.65665 0.601122i
\(339\) 40.7224 218.176i 0.00652430 0.0349549i
\(340\) 3022.17 + 3616.15i 0.482059 + 0.576804i
\(341\) 6198.08i 0.984296i
\(342\) −2884.62 60.5090i −0.456089 0.00956711i
\(343\) 4681.23 + 4294.15i 0.736917 + 0.675983i
\(344\) 4720.28 + 2743.92i 0.739827 + 0.430065i
\(345\) 4159.09 + 776.292i 0.649037 + 0.121142i
\(346\) 1834.48 + 5055.70i 0.285035 + 0.785538i
\(347\) −1637.21 −0.253285 −0.126643 0.991948i \(-0.540420\pi\)
−0.126643 + 0.991948i \(0.540420\pi\)
\(348\) −6552.95 + 3679.50i −1.00941 + 0.566787i
\(349\) 4492.59 0.689062 0.344531 0.938775i \(-0.388038\pi\)
0.344531 + 0.938775i \(0.388038\pi\)
\(350\) 5023.63 + 6974.01i 0.767213 + 1.06508i
\(351\) −9297.15 5746.00i −1.41380 0.873786i
\(352\) −1155.80 6749.46i −0.175012 1.02201i
\(353\) 1372.22 0.206901 0.103451 0.994635i \(-0.467012\pi\)
0.103451 + 0.994635i \(0.467012\pi\)
\(354\) −413.015 2502.71i −0.0620099 0.375756i
\(355\) 15733.6 2.35226
\(356\) 3683.32 3078.30i 0.548359 0.458286i
\(357\) 305.128 + 3320.32i 0.0452355 + 0.492240i
\(358\) −3534.00 + 1282.32i −0.521725 + 0.189310i
\(359\) 5118.09i 0.752430i 0.926532 + 0.376215i \(0.122775\pi\)
−0.926532 + 0.376215i \(0.877225\pi\)
\(360\) 6492.55 + 8108.32i 0.950521 + 1.18707i
\(361\) −5431.59 −0.791892
\(362\) −6239.51 + 2264.02i −0.905915 + 0.328714i
\(363\) −510.814 95.3432i −0.0738590 0.0137857i
\(364\) −9536.18 6502.69i −1.37316 0.936356i
\(365\) 10046.9 1.44076
\(366\) 8308.14 1371.07i 1.18654 0.195811i
\(367\) 6151.73i 0.874980i −0.899223 0.437490i \(-0.855867\pi\)
0.899223 0.437490i \(-0.144133\pi\)
\(368\) 3016.27 + 544.137i 0.427266 + 0.0770791i
\(369\) −2053.71 794.320i −0.289734 0.112061i
\(370\) −7218.36 + 2619.20i −1.01423 + 0.368016i
\(371\) 2957.67 + 10436.1i 0.413894 + 1.46042i
\(372\) 3334.65 + 5938.80i 0.464768 + 0.827722i
\(373\) 12854.7i 1.78443i −0.451614 0.892213i \(-0.649152\pi\)
0.451614 0.892213i \(-0.350848\pi\)
\(374\) 3484.85 1264.49i 0.481810 0.174826i
\(375\) −633.466 + 3393.88i −0.0872321 + 0.467358i
\(376\) 4051.12 6969.01i 0.555640 0.955849i
\(377\) 14084.1 1.92405
\(378\) 518.908 + 7330.82i 0.0706078 + 0.997504i
\(379\) 2284.79i 0.309662i 0.987941 + 0.154831i \(0.0494832\pi\)
−0.987941 + 0.154831i \(0.950517\pi\)
\(380\) −3295.47 3943.17i −0.444879 0.532316i
\(381\) 291.360 + 54.3821i 0.0391780 + 0.00731255i
\(382\) −2054.60 5662.36i −0.275190 0.758407i
\(383\) 3061.90 0.408501 0.204251 0.978919i \(-0.434524\pi\)
0.204251 + 0.978919i \(0.434524\pi\)
\(384\) 4738.75 + 5845.28i 0.629748 + 0.776799i
\(385\) 11460.4 3247.97i 1.51708 0.429952i
\(386\) 2335.77 847.539i 0.307998 0.111758i
\(387\) −2350.15 + 6076.29i −0.308694 + 0.798128i
\(388\) 3609.57 + 4319.00i 0.472289 + 0.565114i
\(389\) −2350.30 −0.306336 −0.153168 0.988200i \(-0.548948\pi\)
−0.153168 + 0.988200i \(0.548948\pi\)
\(390\) −3169.63 19206.8i −0.411540 2.49378i
\(391\) 1659.29i 0.214613i
\(392\) 200.000 + 7758.63i 0.0257692 + 0.999668i
\(393\) 2140.19 11466.3i 0.274703 1.47176i
\(394\) −9054.25 + 3285.36i −1.15773 + 0.420086i
\(395\) 483.266i 0.0615589i
\(396\) 7737.73 2625.36i 0.981907 0.333155i
\(397\) −1338.92 −0.169266 −0.0846329 0.996412i \(-0.526972\pi\)
−0.0846329 + 0.996412i \(0.526972\pi\)
\(398\) −2511.96 6922.80i −0.316364 0.871880i
\(399\) −332.721 3620.58i −0.0417466 0.454275i
\(400\) −1864.30 + 10334.2i −0.233038 + 1.29178i
\(401\) 7728.45i 0.962444i 0.876599 + 0.481222i \(0.159807\pi\)
−0.876599 + 0.481222i \(0.840193\pi\)
\(402\) −1830.88 11094.4i −0.227154 1.37647i
\(403\) 12764.1i 1.57773i
\(404\) −5167.50 6183.14i −0.636368 0.761442i
\(405\) −8340.23 + 9168.92i −1.02328 + 1.12496i
\(406\) −5535.29 7684.31i −0.676630 0.939325i
\(407\) 6040.37i 0.735652i
\(408\) −2658.76 + 3086.48i −0.322618 + 0.374519i
\(409\) 13294.9i 1.60731i −0.595093 0.803657i \(-0.702885\pi\)
0.595093 0.803657i \(-0.297115\pi\)
\(410\) −1337.74 3686.74i −0.161138 0.444085i
\(411\) 1186.36 6356.09i 0.142382 0.762829i
\(412\) 1407.28 + 1683.87i 0.168281 + 0.201356i
\(413\) 3075.32 871.569i 0.366408 0.103843i
\(414\) −76.6989 + 3656.43i −0.00910518 + 0.434067i
\(415\) −45.2751 −0.00535534
\(416\) −2380.21 13899.6i −0.280527 1.63818i
\(417\) 2565.44 + 478.838i 0.301272 + 0.0562322i
\(418\) −3799.99 + 1378.84i −0.444649 + 0.161342i
\(419\) 8465.25i 0.987003i −0.869745 0.493502i \(-0.835717\pi\)
0.869745 0.493502i \(-0.164283\pi\)
\(420\) −9233.53 + 9277.94i −1.07274 + 1.07790i
\(421\) 1141.45i 0.132140i 0.997815 + 0.0660701i \(0.0210461\pi\)
−0.997815 + 0.0660701i \(0.978954\pi\)
\(422\) −952.429 2624.83i −0.109866 0.302784i
\(423\) 8971.03 + 3469.75i 1.03117 + 0.398830i
\(424\) −6660.27 + 11457.4i −0.762857 + 1.31232i
\(425\) −5684.99 −0.648853
\(426\) 2214.45 + 13418.7i 0.251856 + 1.52615i
\(427\) 2893.31 + 10209.0i 0.327908 + 1.15702i
\(428\) −6949.16 + 5807.70i −0.784814 + 0.655901i
\(429\) −15052.9 2809.61i −1.69408 0.316199i
\(430\) −10907.9 + 3957.97i −1.22332 + 0.443884i
\(431\) 6623.29i 0.740215i −0.928989 0.370108i \(-0.879321\pi\)
0.928989 0.370108i \(-0.120679\pi\)
\(432\) −6001.56 + 6678.54i −0.668403 + 0.743800i
\(433\) 151.928i 0.0168619i −0.999964 0.00843095i \(-0.997316\pi\)
0.999964 0.00843095i \(-0.00268369\pi\)
\(434\) −6964.12 + 5016.51i −0.770250 + 0.554840i
\(435\) 2930.59 15701.1i 0.323014 1.73059i
\(436\) −11123.9 13310.2i −1.22187 1.46203i
\(437\) 1809.34i 0.198060i
\(438\) 1414.07 + 8568.71i 0.154262 + 0.934769i
\(439\) 9828.43i 1.06853i −0.845317 0.534266i \(-0.820588\pi\)
0.845317 0.534266i \(-0.179412\pi\)
\(440\) 12582.0 + 7313.98i 1.36323 + 0.792455i
\(441\) −9105.89 + 1687.87i −0.983251 + 0.182255i
\(442\) 7176.57 2604.04i 0.772296 0.280230i
\(443\) −2207.57 −0.236760 −0.118380 0.992968i \(-0.537770\pi\)
−0.118380 + 0.992968i \(0.537770\pi\)
\(444\) −3249.80 5787.69i −0.347362 0.618630i
\(445\) 10202.0i 1.08679i
\(446\) 1379.89 + 3802.90i 0.146502 + 0.403750i
\(447\) −13643.8 2546.61i −1.44369 0.269465i
\(448\) −6648.19 + 6761.43i −0.701111 + 0.713053i
\(449\) 7960.02i 0.836651i 0.908297 + 0.418326i \(0.137383\pi\)
−0.908297 + 0.418326i \(0.862617\pi\)
\(450\) −12527.5 262.783i −1.31234 0.0275283i
\(451\) −3085.09 −0.322109
\(452\) 219.127 + 262.194i 0.0228028 + 0.0272845i
\(453\) 7756.17 + 1447.68i 0.804452 + 0.150150i
\(454\) 4849.19 + 13364.1i 0.501286 + 1.38151i
\(455\) 23601.1 6688.75i 2.43173 0.689172i
\(456\) 2899.19 3365.60i 0.297735 0.345633i
\(457\) 3624.43 0.370993 0.185496 0.982645i \(-0.440611\pi\)
0.185496 + 0.982645i \(0.440611\pi\)
\(458\) 11870.4 4307.22i 1.21107 0.439439i
\(459\) −4134.97 2555.58i −0.420488 0.259878i
\(460\) −4998.21 + 4177.21i −0.506615 + 0.423399i
\(461\) 5885.29i 0.594589i 0.954786 + 0.297294i \(0.0960843\pi\)
−0.954786 + 0.297294i \(0.903916\pi\)
\(462\) 4383.11 + 9317.11i 0.441387 + 0.938249i
\(463\) 13856.2 1.39083 0.695415 0.718609i \(-0.255221\pi\)
0.695415 + 0.718609i \(0.255221\pi\)
\(464\) 2054.18 11386.8i 0.205524 1.13926i
\(465\) −14229.5 2655.93i −1.41909 0.264873i
\(466\) −2056.22 5666.82i −0.204405 0.563327i
\(467\) 12318.9i 1.22066i −0.792147 0.610330i \(-0.791037\pi\)
0.792147 0.610330i \(-0.208963\pi\)
\(468\) 15934.8 5406.58i 1.57390 0.534016i
\(469\) 13632.7 3863.62i 1.34222 0.380396i
\(470\) 5843.54 + 16104.4i 0.573494 + 1.58051i
\(471\) 6700.24 + 1250.60i 0.655480 + 0.122345i
\(472\) 3376.29 + 1962.65i 0.329251 + 0.191395i
\(473\) 9127.83i 0.887311i
\(474\) 412.164 68.0182i 0.0399395 0.00659109i
\(475\) 6199.09 0.598808
\(476\) −4241.28 2892.12i −0.408401 0.278487i
\(477\) −14748.9 5704.47i −1.41573 0.547567i
\(478\) 6525.40 + 17983.6i 0.624403 + 1.72082i
\(479\) −5683.40 −0.542132 −0.271066 0.962561i \(-0.587376\pi\)
−0.271066 + 0.962561i \(0.587376\pi\)
\(480\) −15990.7 238.732i −1.52056 0.0227012i
\(481\) 12439.3i 1.17918i
\(482\) 2625.84 + 7236.67i 0.248141 + 0.683861i
\(483\) −4589.31 + 421.745i −0.432341 + 0.0397310i
\(484\) 613.874 513.040i 0.0576516 0.0481818i
\(485\) −11962.7 −1.12000
\(486\) −8993.78 5822.65i −0.839436 0.543458i
\(487\) 3252.77 0.302663 0.151332 0.988483i \(-0.451644\pi\)
0.151332 + 0.988483i \(0.451644\pi\)
\(488\) −6515.33 + 11208.1i −0.604375 + 1.03969i
\(489\) −2974.49 + 15936.2i −0.275073 + 1.47374i
\(490\) −12925.0 10248.0i −1.19162 0.944814i
\(491\) 8991.73 0.826459 0.413229 0.910627i \(-0.364401\pi\)
0.413229 + 0.910627i \(0.364401\pi\)
\(492\) 2956.03 1659.82i 0.270870 0.152094i
\(493\) 6264.00 0.572244
\(494\) −7825.56 + 2839.53i −0.712730 + 0.258616i
\(495\) −6264.36 + 16196.5i −0.568812 + 1.47066i
\(496\) −10319.6 1861.66i −0.934200 0.168530i
\(497\) −16488.9 + 4673.07i −1.48818 + 0.421762i
\(498\) −6.37232 38.6139i −0.000573395 0.00347455i
\(499\) 10529.3i 0.944599i −0.881438 0.472300i \(-0.843424\pi\)
0.881438 0.472300i \(-0.156576\pi\)
\(500\) −3408.67 4078.62i −0.304881 0.364803i
\(501\) 18505.0 + 3453.95i 1.65019 + 0.308006i
\(502\) 5270.48 + 14525.1i 0.468592 + 1.29141i
\(503\) 1886.42 0.167220 0.0836098 0.996499i \(-0.473355\pi\)
0.0836098 + 0.996499i \(0.473355\pi\)
\(504\) −9212.49 6569.18i −0.814200 0.580584i
\(505\) 17126.0 1.50910
\(506\) 1747.76 + 4816.72i 0.153552 + 0.423181i
\(507\) −19777.3 3691.41i −1.73242 0.323356i
\(508\) −350.143 + 292.629i −0.0305809 + 0.0255577i
\(509\) 10860.9i 0.945781i −0.881121 0.472891i \(-0.843211\pi\)
0.881121 0.472891i \(-0.156789\pi\)
\(510\) −1409.72 8542.34i −0.122399 0.741689i
\(511\) −10529.2 + 2984.05i −0.911513 + 0.258330i
\(512\) −11584.8 102.914i −0.999961 0.00888324i
\(513\) 4508.90 + 2786.68i 0.388057 + 0.239834i
\(514\) 18154.7 6587.50i 1.55792 0.565296i
\(515\) −4663.97 −0.399067
\(516\) −4910.90 8745.99i −0.418973 0.746164i
\(517\) 13476.3 1.14640
\(518\) 6786.92 4888.87i 0.575676 0.414681i
\(519\) 1812.87 9712.71i 0.153326 0.821466i
\(520\) 25910.9 + 15062.1i 2.18513 + 1.27023i
\(521\) −6930.38 −0.582774 −0.291387 0.956605i \(-0.594117\pi\)
−0.291387 + 0.956605i \(0.594117\pi\)
\(522\) 13803.5 + 289.548i 1.15740 + 0.0242781i
\(523\) −9140.75 −0.764239 −0.382119 0.924113i \(-0.624806\pi\)
−0.382119 + 0.924113i \(0.624806\pi\)
\(524\) 11516.3 + 13779.7i 0.960099 + 1.14880i
\(525\) −1444.97 15723.7i −0.120121 1.30712i
\(526\) 641.762 + 1768.66i 0.0531980 + 0.146610i
\(527\) 5676.93i 0.469243i
\(528\) −4467.01 + 11760.2i −0.368185 + 0.969316i
\(529\) 9873.55 0.811503
\(530\) −9607.10 26476.6i −0.787370 2.16994i
\(531\) −1681.00 + 4346.21i −0.137381 + 0.355197i
\(532\) 4624.83 + 3153.66i 0.376902 + 0.257008i
\(533\) −6353.33 −0.516310
\(534\) −8701.02 + 1435.90i −0.705112 + 0.116362i
\(535\) 19247.7i 1.55542i
\(536\) 14966.9 + 8700.35i 1.20611 + 0.701116i
\(537\) 6789.31 + 1267.22i 0.545587 + 0.101834i
\(538\) −4686.76 12916.4i −0.375577 1.03507i
\(539\) −11045.8 + 6807.76i −0.882705 + 0.544027i
\(540\) −2711.62 18889.2i −0.216091 1.50530i
\(541\) 1327.06i 0.105461i −0.998609 0.0527307i \(-0.983207\pi\)
0.998609 0.0527307i \(-0.0167925\pi\)
\(542\) −1037.83 2860.19i −0.0822481 0.226671i
\(543\) 11987.0 + 2237.36i 0.947348 + 0.176822i
\(544\) −1058.61 6181.95i −0.0834333 0.487222i
\(545\) 36866.4 2.89759
\(546\) 9026.43 + 19187.3i 0.707501 + 1.50392i
\(547\) 6943.34i 0.542735i −0.962476 0.271367i \(-0.912524\pi\)
0.962476 0.271367i \(-0.0874758\pi\)
\(548\) 6383.78 + 7638.47i 0.497631 + 0.595437i
\(549\) −14427.9 5580.33i −1.12162 0.433811i
\(550\) −16502.9 + 5988.12i −1.27943 + 0.464244i
\(551\) −6830.47 −0.528108
\(552\) −4266.11 3674.91i −0.328945 0.283359i
\(553\) 143.536 + 506.465i 0.0110376 + 0.0389459i
\(554\) 5904.29 + 16271.9i 0.452797 + 1.24788i
\(555\) 13867.5 + 2588.36i 1.06062 + 0.197963i
\(556\) −3083.04 + 2576.62i −0.235162 + 0.196534i
\(557\) −12038.4 −0.915770 −0.457885 0.889012i \(-0.651393\pi\)
−0.457885 + 0.889012i \(0.651393\pi\)
\(558\) 262.411 12509.8i 0.0199081 0.949071i
\(559\) 18797.5i 1.42227i
\(560\) −1965.49 20056.7i −0.148317 1.51348i
\(561\) −6694.88 1249.59i −0.503847 0.0940427i
\(562\) 560.035 + 1543.42i 0.0420349 + 0.115846i
\(563\) 10849.1i 0.812139i 0.913842 + 0.406070i \(0.133101\pi\)
−0.913842 + 0.406070i \(0.866899\pi\)
\(564\) −12912.6 + 7250.44i −0.964037 + 0.541309i
\(565\) −726.222 −0.0540750
\(566\) −15881.6 + 5762.70i −1.17943 + 0.427958i
\(567\) 6017.30 12086.2i 0.445684 0.895190i
\(568\) −18102.6 10523.1i −1.33727 0.777359i
\(569\) 10335.0i 0.761450i −0.924688 0.380725i \(-0.875674\pi\)
0.924688 0.380725i \(-0.124326\pi\)
\(570\) 1537.20 + 9314.84i 0.112958 + 0.684484i
\(571\) 2025.81i 0.148472i −0.997241 0.0742360i \(-0.976348\pi\)
0.997241 0.0742360i \(-0.0236518\pi\)
\(572\) 18089.9 15118.5i 1.32234 1.10513i
\(573\) −2030.41 + 10878.2i −0.148030 + 0.793094i
\(574\) 2496.97 + 3466.39i 0.181570 + 0.252063i
\(575\) 7857.73i 0.569896i
\(576\) −2047.03 13671.6i −0.148078 0.988976i
\(577\) 3778.32i 0.272606i −0.990667 0.136303i \(-0.956478\pi\)
0.990667 0.136303i \(-0.0435220\pi\)
\(578\) −9870.88 + 3581.68i −0.710337 + 0.257748i
\(579\) −4487.33 837.558i −0.322085 0.0601170i
\(580\) 15769.5 + 18868.8i 1.12895 + 1.35084i
\(581\) 47.4484 13.4473i 0.00338811 0.000960217i
\(582\) −1683.71 10202.7i −0.119918 0.726657i
\(583\) −22155.8 −1.57393
\(584\) −11559.6 6719.67i −0.819077 0.476134i
\(585\) −12900.6 + 33354.4i −0.911751 + 2.35733i
\(586\) 504.021 + 1389.05i 0.0355306 + 0.0979200i
\(587\) 1814.70i 0.127599i 0.997963 + 0.0637997i \(0.0203219\pi\)
−0.997963 + 0.0637997i \(0.979678\pi\)
\(588\) 6921.10 12465.8i 0.485411 0.874286i
\(589\) 6190.30i 0.433051i
\(590\) −7802.14 + 2831.03i −0.544422 + 0.197545i
\(591\) 17394.5 + 3246.67i 1.21068 + 0.225973i
\(592\) 10057.0 + 1814.29i 0.698211 + 0.125958i
\(593\) −9793.33 −0.678185 −0.339093 0.940753i \(-0.610120\pi\)
−0.339093 + 0.940753i \(0.610120\pi\)
\(594\) −14695.2 3063.10i −1.01507 0.211583i
\(595\) 10496.8 2974.87i 0.723236 0.204971i
\(596\) 16396.6 13703.3i 1.12689 0.941792i
\(597\) −2482.37 + 13299.7i −0.170179 + 0.911757i
\(598\) 3599.28 + 9919.39i 0.246129 + 0.678317i
\(599\) 10824.1i 0.738332i −0.929363 0.369166i \(-0.879643\pi\)
0.929363 0.369166i \(-0.120357\pi\)
\(600\) 12590.8 14616.4i 0.856698 0.994520i
\(601\) 16512.2i 1.12071i −0.828252 0.560355i \(-0.810665\pi\)
0.828252 0.560355i \(-0.189335\pi\)
\(602\) 10256.0 7387.75i 0.694356 0.500170i
\(603\) −7451.78 + 19266.5i −0.503250 + 1.30115i
\(604\) −9321.03 + 7789.97i −0.627926 + 0.524783i
\(605\) 1700.30i 0.114260i
\(606\) 2410.42 + 14606.3i 0.161579 + 0.979107i
\(607\) 7537.39i 0.504009i −0.967726 0.252004i \(-0.918910\pi\)
0.967726 0.252004i \(-0.0810898\pi\)
\(608\) 1154.35 + 6741.00i 0.0769982 + 0.449644i
\(609\) 1592.14 + 17325.2i 0.105939 + 1.15279i
\(610\) −9398.03 25900.4i −0.623796 1.71914i
\(611\) 27752.6 1.83756
\(612\) 7087.11 2404.61i 0.468104 0.158825i
\(613\) 10916.9i 0.719297i −0.933088 0.359648i \(-0.882897\pi\)
0.933088 0.359648i \(-0.117103\pi\)
\(614\) −21025.7 + 7629.25i −1.38197 + 0.501452i
\(615\) −1321.99 + 7082.74i −0.0866792 + 0.464396i
\(616\) −15358.3 3928.06i −1.00455 0.256926i
\(617\) 27154.5i 1.77180i 0.463881 + 0.885898i \(0.346457\pi\)
−0.463881 + 0.885898i \(0.653543\pi\)
\(618\) −656.439 3977.77i −0.0427279 0.258915i
\(619\) 12483.7 0.810602 0.405301 0.914183i \(-0.367167\pi\)
0.405301 + 0.914183i \(0.367167\pi\)
\(620\) 17100.4 14291.5i 1.10769 0.925745i
\(621\) 3532.29 5715.32i 0.228254 0.369320i
\(622\) 3879.89 1407.83i 0.250112 0.0907537i
\(623\) −3030.12 10691.7i −0.194863 0.687569i
\(624\) −9199.21 + 24218.6i −0.590165 + 1.55372i
\(625\) −9212.97 −0.589630
\(626\) 5246.25 + 14458.3i 0.334956 + 0.923117i
\(627\) 7300.31 + 1362.60i 0.464986 + 0.0867894i
\(628\) −8052.06 + 6729.44i −0.511643 + 0.427601i
\(629\) 5532.48i 0.350707i
\(630\) 23268.4 6070.27i 1.47148 0.383882i
\(631\) 5011.50 0.316172 0.158086 0.987425i \(-0.449468\pi\)
0.158086 + 0.987425i \(0.449468\pi\)
\(632\) −323.224 + 556.031i −0.0203436 + 0.0349964i
\(633\) −941.212 + 5042.68i −0.0590992 + 0.316632i
\(634\) 21248.5 7710.09i 1.33105 0.482976i
\(635\) 969.822i 0.0606082i
\(636\) 21229.0 11920.1i 1.32356 0.743182i
\(637\) −22747.4 + 14019.7i −1.41489 + 0.872023i
\(638\) 18183.7 6598.01i 1.12837 0.409432i
\(639\) 9012.96 23303.0i 0.557977 1.44265i
\(640\) 15956.7 18751.7i 0.985534 1.15817i
\(641\) 20433.1i 1.25906i −0.776975 0.629531i \(-0.783247\pi\)
0.776975 0.629531i \(-0.216753\pi\)
\(642\) 16415.8 2709.05i 1.00916 0.166538i
\(643\) 7784.75 0.477450 0.238725 0.971087i \(-0.423270\pi\)
0.238725 + 0.971087i \(0.423270\pi\)
\(644\) 3997.46 5862.26i 0.244599 0.358704i
\(645\) 20955.6 + 3911.36i 1.27927 + 0.238775i
\(646\) −3480.47 + 1262.90i −0.211977 + 0.0769166i
\(647\) 13288.6 0.807463 0.403732 0.914877i \(-0.367713\pi\)
0.403732 + 0.914877i \(0.367713\pi\)
\(648\) 15728.5 4971.26i 0.953506 0.301373i
\(649\) 6528.89i 0.394887i
\(650\) −33985.5 + 12331.7i −2.05080 + 0.744138i
\(651\) 15701.4 1442.92i 0.945297 0.0868702i
\(652\) −16005.7 19151.4i −0.961395 1.15035i
\(653\) 6596.26 0.395301 0.197651 0.980273i \(-0.436669\pi\)
0.197651 + 0.980273i \(0.436669\pi\)
\(654\) 5188.83 + 31442.3i 0.310244 + 1.87996i
\(655\) −38167.0 −2.27680
\(656\) −926.641 + 5136.57i −0.0551513 + 0.305715i
\(657\) 5755.35 14880.4i 0.341762 0.883623i
\(658\) −10907.3 15141.9i −0.646215 0.897101i
\(659\) −8372.03 −0.494883 −0.247442 0.968903i \(-0.579590\pi\)
−0.247442 + 0.968903i \(0.579590\pi\)
\(660\) −13090.1 23312.6i −0.772016 1.37491i
\(661\) −6191.40 −0.364323 −0.182162 0.983269i \(-0.558309\pi\)
−0.182162 + 0.983269i \(0.558309\pi\)
\(662\) 5704.77 + 15722.0i 0.334928 + 0.923040i
\(663\) −13787.2 2573.37i −0.807618 0.150741i
\(664\) 52.0921 + 30.2814i 0.00304452 + 0.00176980i
\(665\) −11446.0 + 3243.89i −0.667455 + 0.189162i
\(666\) −255.734 + 12191.5i −0.0148791 + 0.709325i
\(667\) 8658.04i 0.502610i
\(668\) −22238.5 + 18585.6i −1.28807 + 1.07650i
\(669\) 1363.64 7305.90i 0.0788063 0.422216i
\(670\) −34586.5 + 12549.8i −1.99432 + 0.723644i
\(671\) −21673.7 −1.24695
\(672\) 16829.2 4499.23i 0.966071 0.258276i
\(673\) 1317.91 0.0754855 0.0377428 0.999287i \(-0.487983\pi\)
0.0377428 + 0.999287i \(0.487983\pi\)
\(674\) −29104.7 + 10560.7i −1.66331 + 0.603537i
\(675\) 19581.6 + 12102.2i 1.11659 + 0.690096i
\(676\) 23767.4 19863.4i 1.35227 1.13014i
\(677\) 11076.8i 0.628826i −0.949286 0.314413i \(-0.898192\pi\)
0.949286 0.314413i \(-0.101808\pi\)
\(678\) −102.213 619.375i −0.00578980 0.0350840i
\(679\) 12537.0 3553.08i 0.708578 0.200817i
\(680\) 11524.1 + 6698.99i 0.649893 + 0.377786i
\(681\) 4792.08 25674.2i 0.269652 1.44470i
\(682\) −5979.63 16479.5i −0.335736 0.925268i
\(683\) 31967.1 1.79090 0.895451 0.445161i \(-0.146853\pi\)
0.895451 + 0.445161i \(0.146853\pi\)
\(684\) −7728.02 + 2622.07i −0.432000 + 0.146575i
\(685\) −21156.9 −1.18009
\(686\) 16589.3 + 6901.07i 0.923297 + 0.384088i
\(687\) −22804.8 4256.50i −1.26646 0.236383i
\(688\) 15197.5 + 2741.64i 0.842151 + 0.151925i
\(689\) −45626.9 −2.52285
\(690\) 11807.1 1948.50i 0.651435 0.107504i
\(691\) −4700.10 −0.258756 −0.129378 0.991595i \(-0.541298\pi\)
−0.129378 + 0.991595i \(0.541298\pi\)
\(692\) 9755.03 + 11672.3i 0.535882 + 0.641206i
\(693\) 1754.52 18834.5i 0.0961740 1.03242i
\(694\) −4353.02 + 1579.50i −0.238095 + 0.0863936i
\(695\) 8539.35i 0.466066i
\(696\) −13873.2 + 16105.1i −0.755550 + 0.877099i
\(697\) −2825.69 −0.153559
\(698\) 11944.9 4334.25i 0.647739 0.235034i
\(699\) −2032.01 + 10886.8i −0.109954 + 0.589091i
\(700\) 20085.1 + 13696.0i 1.08449 + 0.739512i
\(701\) 22855.2 1.23143 0.615714 0.787970i \(-0.288868\pi\)
0.615714 + 0.787970i \(0.288868\pi\)
\(702\) −30262.8 6308.03i −1.62706 0.339147i
\(703\) 6032.79i 0.323657i
\(704\) −9584.62 16830.5i −0.513116 0.901025i
\(705\) 5774.72 30938.9i 0.308494 1.65280i
\(706\) 3648.47 1323.86i 0.194493 0.0705724i
\(707\) −17948.1 + 5086.62i −0.954748 + 0.270583i
\(708\) −3512.63 6255.77i −0.186459 0.332071i
\(709\) 20814.1i 1.10252i 0.834333 + 0.551261i \(0.185853\pi\)
−0.834333 + 0.551261i \(0.814147\pi\)
\(710\) 41832.6 15179.1i 2.21119 0.802338i
\(711\) −715.764 276.838i −0.0377542 0.0146023i
\(712\) 6823.43 11738.1i 0.359156 0.617843i
\(713\) 7846.60 0.412142
\(714\) 4014.57 + 8533.70i 0.210422 + 0.447291i
\(715\) 50105.2i 2.62074i
\(716\) −8159.09 + 6818.89i −0.425865 + 0.355913i
\(717\) 6448.55 34549.0i 0.335880 1.79952i
\(718\) 4937.70 + 13608.0i 0.256648 + 0.707306i
\(719\) 5088.93 0.263957 0.131979 0.991253i \(-0.457867\pi\)
0.131979 + 0.991253i \(0.457867\pi\)
\(720\) 25085.0 + 15294.7i 1.29842 + 0.791668i
\(721\) 4887.86 1385.26i 0.252474 0.0715530i
\(722\) −14441.5 + 5240.15i −0.744402 + 0.270108i
\(723\) 2594.92 13902.7i 0.133480 0.715139i
\(724\) −14405.4 + 12039.2i −0.739465 + 0.618002i
\(725\) −29663.9 −1.51957
\(726\) −1450.14 + 239.312i −0.0741318 + 0.0122337i
\(727\) 1716.37i 0.0875609i −0.999041 0.0437804i \(-0.986060\pi\)
0.999041 0.0437804i \(-0.0139402\pi\)
\(728\) −31628.4 8089.32i −1.61020 0.411827i
\(729\) 8802.37 + 17605.1i 0.447207 + 0.894431i
\(730\) 26712.7 9692.79i 1.35436 0.491433i
\(731\) 8360.34i 0.423007i
\(732\) 20767.0 11660.7i 1.04859 0.588788i
\(733\) −2487.51 −0.125346 −0.0626728 0.998034i \(-0.519962\pi\)
−0.0626728 + 0.998034i \(0.519962\pi\)
\(734\) −5934.91 16356.3i −0.298449 0.822508i
\(735\) 10896.0 + 28276.2i 0.546809 + 1.41902i
\(736\) 8544.63 1463.21i 0.427934 0.0732806i
\(737\) 28942.3i 1.44654i
\(738\) −6226.74 130.615i −0.310582 0.00651490i
\(739\) 16167.7i 0.804786i −0.915467 0.402393i \(-0.868179\pi\)
0.915467 0.402393i \(-0.131821\pi\)
\(740\) −16665.3 + 13927.9i −0.827877 + 0.691891i
\(741\) 15034.0 + 2806.09i 0.745328 + 0.139115i
\(742\) 17932.1 + 24894.1i 0.887210 + 1.23166i
\(743\) 6261.24i 0.309156i 0.987981 + 0.154578i \(0.0494017\pi\)
−0.987981 + 0.154578i \(0.950598\pi\)
\(744\) 14595.7 + 12573.0i 0.719225 + 0.619554i
\(745\) 45415.0i 2.23339i
\(746\) −12401.6 34178.2i −0.608654 1.67741i
\(747\) −25.9358 + 67.0568i −0.00127033 + 0.00328444i
\(748\) 8045.61 6724.05i 0.393284 0.328684i
\(749\) 5716.80 + 20171.6i 0.278888 + 0.984053i
\(750\) 1590.00 + 9634.81i 0.0774116 + 0.469085i
\(751\) 26131.4 1.26971 0.634853 0.772633i \(-0.281061\pi\)
0.634853 + 0.772633i \(0.281061\pi\)
\(752\) 4047.76 22437.6i 0.196285 1.08805i
\(753\) 5208.41 27904.8i 0.252065 1.35047i
\(754\) 37446.9 13587.7i 1.80867 0.656280i
\(755\) 25817.3i 1.24448i
\(756\) 8452.12 + 18990.6i 0.406615 + 0.913600i
\(757\) 2301.88i 0.110519i 0.998472 + 0.0552596i \(0.0175987\pi\)
−0.998472 + 0.0552596i \(0.982401\pi\)
\(758\) 2204.26 + 6074.81i 0.105623 + 0.291091i
\(759\) 1727.18 9253.60i 0.0825989 0.442535i
\(760\) −12566.2 7304.80i −0.599768 0.348648i
\(761\) 22624.8 1.07772 0.538862 0.842394i \(-0.318854\pi\)
0.538862 + 0.842394i \(0.318854\pi\)
\(762\) 827.134 136.499i 0.0393227 0.00648931i
\(763\) −38636.1 + 10949.8i −1.83319 + 0.519540i
\(764\) −10925.6 13072.9i −0.517374 0.619060i
\(765\) −5737.63 + 14834.6i −0.271169 + 0.701107i
\(766\) 8141.01 2953.99i 0.384003 0.139337i
\(767\) 13445.4i 0.632965i
\(768\) 18238.7 + 10969.7i 0.856943 + 0.515412i
\(769\) 12312.9i 0.577393i −0.957421 0.288697i \(-0.906778\pi\)
0.957421 0.288697i \(-0.0932219\pi\)
\(770\) 27337.5 19692.2i 1.27945 0.921632i
\(771\) −34877.8 6509.92i −1.62917 0.304084i
\(772\) 5392.68 4506.88i 0.251408 0.210112i
\(773\) 18738.9i 0.871916i 0.899967 + 0.435958i \(0.143590\pi\)
−0.899967 + 0.435958i \(0.856410\pi\)
\(774\) −386.449 + 18423.0i −0.0179465 + 0.855557i
\(775\) 26883.7i 1.24606i
\(776\) 13763.9 + 8001.04i 0.636722 + 0.370130i
\(777\) −15301.9 + 1406.21i −0.706504 + 0.0649258i
\(778\) −6248.98 + 2267.46i −0.287965 + 0.104489i
\(779\) 3081.22 0.141715
\(780\) −26957.3 48009.1i −1.23747 2.20385i
\(781\) 35005.8i 1.60385i
\(782\) 1600.80 + 4411.72i 0.0732029 + 0.201743i
\(783\) −21576.0 13334.8i −0.984756 0.608618i
\(784\) 8016.94 + 20435.7i 0.365203 + 0.930928i
\(785\) 22302.5i 1.01403i
\(786\) −5371.88 32551.5i −0.243777 1.47719i
\(787\) −7115.83 −0.322302 −0.161151 0.986930i \(-0.551521\pi\)
−0.161151 + 0.986930i \(0.551521\pi\)
\(788\) −20903.9 + 17470.3i −0.945015 + 0.789788i
\(789\) 634.204 3397.84i 0.0286163 0.153316i
\(790\) −466.234 1284.91i −0.0209973 0.0578672i
\(791\) 761.083 215.697i 0.0342111 0.00969570i
\(792\) 18040.3 14445.3i 0.809385 0.648097i
\(793\) −44634.0 −1.99874
\(794\) −3559.93 + 1291.73i −0.159115 + 0.0577353i
\(795\) −9493.96 + 50865.2i −0.423542 + 2.26919i
\(796\) −13357.6 15982.9i −0.594784 0.711684i
\(797\) 12278.2i 0.545693i 0.962058 + 0.272846i \(0.0879650\pi\)
−0.962058 + 0.272846i \(0.912035\pi\)
\(798\) −4377.61 9305.42i −0.194193 0.412792i
\(799\) 12343.2 0.546521
\(800\) 5013.19 + 29275.3i 0.221554 + 1.29380i
\(801\) 15110.2 + 5844.21i 0.666531 + 0.257796i
\(802\) 7456.06 + 20548.4i 0.328282 + 0.904726i
\(803\) 22353.4i 0.982360i
\(804\) −15571.3 27731.5i −0.683033 1.21644i
\(805\) 4111.83 + 14508.5i 0.180029 + 0.635228i
\(806\) −12314.2 33937.3i −0.538152 1.48311i
\(807\) −4631.57 + 24814.3i −0.202031 + 1.08241i
\(808\) −19704.6 11454.4i −0.857927 0.498718i
\(809\) 9226.15i 0.400957i 0.979698 + 0.200479i \(0.0642497\pi\)
−0.979698 + 0.200479i \(0.935750\pi\)
\(810\) −13329.3 + 32424.6i −0.578201 + 1.40653i
\(811\) −36172.6 −1.56621 −0.783103 0.621892i \(-0.786364\pi\)
−0.783103 + 0.621892i \(0.786364\pi\)
\(812\) −22130.7 15090.9i −0.956449 0.652200i
\(813\) −1025.60 + 5494.82i −0.0442430 + 0.237038i
\(814\) 5827.48 + 16060.2i 0.250925 + 0.691534i
\(815\) 53045.4 2.27988
\(816\) −4091.41 + 10771.4i −0.175525 + 0.462101i
\(817\) 9116.38i 0.390381i
\(818\) −12826.3 35348.6i −0.548243 1.51092i
\(819\) 3613.19 38787.2i 0.154158 1.65486i
\(820\) −7113.60 8511.72i −0.302948 0.362491i
\(821\) −7181.84 −0.305296 −0.152648 0.988281i \(-0.548780\pi\)
−0.152648 + 0.988281i \(0.548780\pi\)
\(822\) −2977.77 18044.2i −0.126352 0.765648i
\(823\) −2266.38 −0.0959916 −0.0479958 0.998848i \(-0.515283\pi\)
−0.0479958 + 0.998848i \(0.515283\pi\)
\(824\) 5366.22 + 3119.41i 0.226870 + 0.131881i
\(825\) 31704.4 + 5917.60i 1.33794 + 0.249726i
\(826\) 7335.82 5284.26i 0.309014 0.222594i
\(827\) −5411.98 −0.227561 −0.113781 0.993506i \(-0.536296\pi\)
−0.113781 + 0.993506i \(0.536296\pi\)
\(828\) 3323.64 + 9795.74i 0.139498 + 0.411142i
\(829\) 27630.7 1.15760 0.578802 0.815468i \(-0.303520\pi\)
0.578802 + 0.815468i \(0.303520\pi\)
\(830\) −120.378 + 43.6794i −0.00503418 + 0.00182667i
\(831\) 5834.76 31260.5i 0.243569 1.30495i
\(832\) −19738.2 34660.0i −0.822476 1.44426i
\(833\) −10117.1 + 6235.34i −0.420811 + 0.259354i
\(834\) 7282.98 1201.89i 0.302385 0.0499016i
\(835\) 61595.9i 2.55283i
\(836\) −8773.19 + 7332.11i −0.362951 + 0.303333i
\(837\) −12085.1 + 19553.9i −0.499069 + 0.807504i
\(838\) −8166.89 22507.4i −0.336659 0.927812i
\(839\) −38177.4 −1.57095 −0.785476 0.618892i \(-0.787582\pi\)
−0.785476 + 0.618892i \(0.787582\pi\)
\(840\) −15599.2 + 33576.3i −0.640743 + 1.37916i
\(841\) 8296.14 0.340159
\(842\) 1101.22 + 3034.90i 0.0450720 + 0.124216i
\(843\) 553.439 2965.13i 0.0226115 0.121144i
\(844\) −5064.64 6060.06i −0.206555 0.247152i
\(845\) 65830.7i 2.68005i
\(846\) 27199.7 + 570.552i 1.10537 + 0.0231867i
\(847\) −505.010 1781.92i −0.0204868 0.0722875i
\(848\) −6654.74 + 36888.6i −0.269487 + 1.49382i
\(849\) 30510.9 + 5694.84i 1.23337 + 0.230208i
\(850\) −15115.3 + 5484.62i −0.609941 + 0.221319i
\(851\) −7646.94 −0.308030
\(852\) 18833.6 + 33541.4i 0.757310 + 1.34872i
\(853\) 5549.77 0.222767 0.111384 0.993777i \(-0.464472\pi\)
0.111384 + 0.993777i \(0.464472\pi\)
\(854\) 17541.9 + 24352.4i 0.702894 + 0.975786i
\(855\) 6256.50 16176.1i 0.250255 0.647032i
\(856\) −12873.5 + 22145.8i −0.514025 + 0.884261i
\(857\) −22763.4 −0.907332 −0.453666 0.891172i \(-0.649884\pi\)
−0.453666 + 0.891172i \(0.649884\pi\)
\(858\) −42733.3 + 7052.14i −1.70034 + 0.280602i
\(859\) 672.946 0.0267295 0.0133647 0.999911i \(-0.495746\pi\)
0.0133647 + 0.999911i \(0.495746\pi\)
\(860\) −25183.6 + 21046.9i −0.998550 + 0.834529i
\(861\) −718.212 7815.38i −0.0284281 0.309347i
\(862\) −6389.86 17610.0i −0.252482 0.695824i
\(863\) 38773.2i 1.52938i 0.644397 + 0.764691i \(0.277108\pi\)
−0.644397 + 0.764691i \(0.722892\pi\)
\(864\) −9513.82 + 23547.0i −0.374614 + 0.927181i
\(865\) −32329.8 −1.27081
\(866\) −146.574 403.948i −0.00575147 0.0158507i
\(867\) 18963.4 + 3539.50i 0.742825 + 0.138648i
\(868\) −13676.5 + 20056.6i −0.534807 + 0.784292i
\(869\) −1075.22 −0.0419729
\(870\) −7355.80 44573.4i −0.286650 1.73699i
\(871\) 59602.7i 2.31867i
\(872\) −42417.3 24657.4i −1.64728 0.957575i
\(873\) −6852.83 + 17717.9i −0.265674 + 0.686898i
\(874\) −1745.57 4810.68i −0.0675569 0.186183i
\(875\) −11839.2 + 3355.32i −0.457415 + 0.129635i
\(876\) 12026.4 + 21418.3i 0.463854 + 0.826093i
\(877\) 5911.60i 0.227617i 0.993503 + 0.113809i \(0.0363051\pi\)
−0.993503 + 0.113809i \(0.963695\pi\)
\(878\) −9482.03 26131.9i −0.364468 1.00445i
\(879\) 498.085 2668.56i 0.0191126 0.102399i
\(880\) 40509.3 + 7307.90i 1.55178 + 0.279942i
\(881\) −1628.16 −0.0622635 −0.0311317 0.999515i \(-0.509911\pi\)
−0.0311317 + 0.999515i \(0.509911\pi\)
\(882\) −22582.4 + 13272.7i −0.862119 + 0.506705i
\(883\) 13348.7i 0.508743i −0.967107 0.254371i \(-0.918131\pi\)
0.967107 0.254371i \(-0.0818686\pi\)
\(884\) 16568.8 13847.3i 0.630397 0.526848i
\(885\) 14989.0 + 2797.69i 0.569322 + 0.106264i
\(886\) −5869.50 + 2129.76i −0.222562 + 0.0807571i
\(887\) −35230.3 −1.33362 −0.666808 0.745230i \(-0.732340\pi\)
−0.666808 + 0.745230i \(0.732340\pi\)
\(888\) −14224.3 12253.1i −0.537541 0.463048i
\(889\) 288.049 + 1016.38i 0.0108671 + 0.0383444i
\(890\) 9842.45 + 27125.2i 0.370696 + 1.02162i
\(891\) 20400.0 + 18556.2i 0.767032 + 0.697708i
\(892\) 7337.73 + 8779.90i 0.275432 + 0.329566i
\(893\) −13459.4 −0.504369
\(894\) −38733.2 + 6392.01i −1.44903 + 0.239128i
\(895\) 22598.9i 0.844022i
\(896\) −11153.1 + 24391.2i −0.415848 + 0.909434i
\(897\) 3556.89 19056.5i 0.132398 0.709341i
\(898\) 7679.47 + 21164.1i 0.285375 + 0.786477i
\(899\) 29621.8i 1.09894i
\(900\) −33561.8 + 11387.3i −1.24303 + 0.421753i
\(901\) −20292.9 −0.750337
\(902\) −8202.65 + 2976.36i −0.302792 + 0.109869i
\(903\) −23123.3 + 2124.97i −0.852154 + 0.0783107i
\(904\) 835.568 + 485.720i 0.0307418 + 0.0178704i
\(905\) 39899.9i 1.46554i
\(906\) 22018.8 3633.70i 0.807424 0.133247i
\(907\) 41269.7i 1.51085i 0.655237 + 0.755423i \(0.272569\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(908\) 25786.1 + 30854.2i 0.942447 + 1.12768i
\(909\) 9810.58 25365.2i 0.357972 0.925535i
\(910\) 56297.8 40553.4i 2.05083 1.47729i
\(911\) 11899.0i 0.432747i 0.976311 + 0.216373i \(0.0694228\pi\)
−0.976311 + 0.216373i \(0.930577\pi\)
\(912\) 4461.41 11745.5i 0.161987 0.426461i
\(913\) 100.733i 0.00365145i
\(914\) 9636.66 3496.69i 0.348744 0.126543i
\(915\) −9287.36 + 49758.3i −0.335552 + 1.79777i
\(916\) 27405.8 22904.1i 0.988550 0.826172i
\(917\) 39999.1 11336.1i 1.44044 0.408233i
\(918\) −13459.6 2805.54i −0.483914 0.100868i
\(919\) −19268.9 −0.691647 −0.345823 0.938300i \(-0.612400\pi\)
−0.345823 + 0.938300i \(0.612400\pi\)
\(920\) −9259.29 + 15928.4i −0.331815 + 0.570810i
\(921\) 40393.4 + 7539.40i 1.44518 + 0.269741i
\(922\) 5677.87 + 15647.9i 0.202810 + 0.558931i
\(923\) 72089.7i 2.57081i
\(924\) 20642.6 + 20543.8i 0.734947 + 0.731428i
\(925\) 26199.7i 0.931287i
\(926\) 36841.0 13367.9i 1.30742 0.474401i
\(927\) −2671.75 + 6907.80i −0.0946621 + 0.244748i
\(928\) −5523.78 32257.0i −0.195395 1.14104i
\(929\) 22796.3 0.805083 0.402542 0.915402i \(-0.368127\pi\)
0.402542 + 0.915402i \(0.368127\pi\)
\(930\) −40395.9 + 6666.41i −1.42434 + 0.235054i
\(931\) 11032.0 6799.21i 0.388355 0.239350i
\(932\) −10934.2 13083.2i −0.384293 0.459823i
\(933\) −7453.81 1391.25i −0.261551 0.0488183i
\(934\) −11884.7 32753.4i −0.416358 1.14746i
\(935\) 22284.6i 0.779449i
\(936\) 37151.5 29748.2i 1.29737 1.03884i
\(937\) 34878.2i 1.21603i 0.793925 + 0.608016i \(0.208034\pi\)
−0.793925 + 0.608016i \(0.791966\pi\)
\(938\) 32519.3 23424.9i 1.13198 0.815404i
\(939\) 5184.46 27776.5i 0.180180 0.965337i
\(940\) 31073.7 + 37181.0i 1.07820 + 1.29012i
\(941\) 34823.7i 1.20640i −0.797591 0.603198i \(-0.793893\pi\)
0.797591 0.603198i \(-0.206107\pi\)
\(942\) 19021.2 3139.00i 0.657901 0.108571i
\(943\) 3905.64i 0.134873i
\(944\) 10870.4 + 1961.02i 0.374789 + 0.0676122i
\(945\) −42488.5 12098.8i −1.46259 0.416480i
\(946\) 8806.12 + 24269.1i 0.302655 + 0.834099i
\(947\) −44753.6 −1.53569 −0.767844 0.640637i \(-0.778671\pi\)
−0.767844 + 0.640637i \(0.778671\pi\)
\(948\) 1030.24 578.485i 0.0352962 0.0198189i
\(949\) 46033.8i 1.57463i
\(950\) 16482.2 5980.60i 0.562897 0.204249i
\(951\) −40821.4 7619.29i −1.39193 0.259803i
\(952\) −14066.9 3597.78i −0.478899 0.122484i
\(953\) 27410.7i 0.931709i −0.884861 0.465854i \(-0.845747\pi\)
0.884861 0.465854i \(-0.154253\pi\)
\(954\) −44717.8 938.019i −1.51760 0.0318339i
\(955\) 36209.2 1.22691
\(956\) 34699.5 + 41519.5i 1.17392 + 1.40464i
\(957\) −34933.4 6520.30i −1.17998 0.220242i
\(958\) −15111.1 + 5483.09i −0.509620 + 0.184917i
\(959\) 22172.5 6283.87i 0.746599 0.211592i
\(960\) −42746.4 + 14792.3i −1.43712 + 0.497313i
\(961\) 2945.36 0.0988674
\(962\) 12000.9 + 33073.8i 0.402209 + 1.10846i
\(963\) −28507.7 11026.0i −0.953943 0.368960i
\(964\) 13963.2 + 16707.6i 0.466520 + 0.558211i
\(965\) 14936.6i 0.498264i
\(966\) −11795.2 + 5548.90i −0.392862 + 0.184817i
\(967\) 19242.8 0.639923 0.319961 0.947431i \(-0.396330\pi\)
0.319961 + 0.947431i \(0.396330\pi\)
\(968\) 1137.21 1956.31i 0.0377598 0.0649569i
\(969\) 6686.48 + 1248.03i 0.221672 + 0.0413750i
\(970\) −31806.6 + 11541.1i −1.05283 + 0.382023i
\(971\) 9065.66i 0.299620i 0.988715 + 0.149810i \(0.0478661\pi\)
−0.988715 + 0.149810i \(0.952134\pi\)
\(972\) −29530.1 6804.51i −0.974464 0.224542i
\(973\) 2536.29 + 8949.27i 0.0835661 + 0.294862i
\(974\) 8648.48 3138.13i 0.284512 0.103236i
\(975\) 65290.9 + 12186.5i 2.14460 + 0.400287i
\(976\) −6509.92 + 36085.9i −0.213501 + 1.18348i
\(977\) 59374.1i 1.94426i −0.234435 0.972132i \(-0.575324\pi\)
0.234435 0.972132i \(-0.424676\pi\)
\(978\) 7465.97 + 45241.0i 0.244106 + 1.47919i
\(979\) 22698.6 0.741010
\(980\) −44252.0 14778.0i −1.44243 0.481701i
\(981\) 21118.9 54602.7i 0.687333 1.77710i
\(982\) 23907.3 8674.82i 0.776896 0.281899i
\(983\) 22834.0 0.740886 0.370443 0.928855i \(-0.379206\pi\)
0.370443 + 0.928855i \(0.379206\pi\)
\(984\) 6258.20 7264.99i 0.202748 0.235365i
\(985\) 57899.4i 1.87292i
\(986\) 16654.8 6043.23i 0.537927 0.195188i
\(987\) 3137.30 + 34139.2i 0.101177 + 1.10098i
\(988\) −18067.2 + 15099.5i −0.581775 + 0.486214i
\(989\) −11555.6 −0.371533
\(990\) −1030.09 + 49106.8i −0.0330690 + 1.57648i
\(991\) 33338.9 1.06866 0.534331 0.845275i \(-0.320563\pi\)
0.534331 + 0.845275i \(0.320563\pi\)
\(992\) −29233.8 + 5006.08i −0.935660 + 0.160225i
\(993\) 5637.59 30204.2i 0.180165 0.965257i
\(994\) −39332.3 + 28332.5i −1.25507 + 0.904077i
\(995\) 44269.4 1.41049
\(996\) −54.1957 96.5190i −0.00172415 0.00307060i
\(997\) −17170.3 −0.545427 −0.272713 0.962095i \(-0.587921\pi\)
−0.272713 + 0.962095i \(0.587921\pi\)
\(998\) −10158.2 27995.3i −0.322196 0.887951i
\(999\) 11777.6 19056.3i 0.372999 0.603519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.73 yes 80
3.2 odd 2 inner 168.4.i.c.125.7 yes 80
4.3 odd 2 672.4.i.c.209.75 80
7.6 odd 2 inner 168.4.i.c.125.74 yes 80
8.3 odd 2 672.4.i.c.209.6 80
8.5 even 2 inner 168.4.i.c.125.6 yes 80
12.11 even 2 672.4.i.c.209.74 80
21.20 even 2 inner 168.4.i.c.125.8 yes 80
24.5 odd 2 inner 168.4.i.c.125.76 yes 80
24.11 even 2 672.4.i.c.209.7 80
28.27 even 2 672.4.i.c.209.5 80
56.13 odd 2 inner 168.4.i.c.125.5 80
56.27 even 2 672.4.i.c.209.76 80
84.83 odd 2 672.4.i.c.209.8 80
168.83 odd 2 672.4.i.c.209.73 80
168.125 even 2 inner 168.4.i.c.125.75 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.5 80 56.13 odd 2 inner
168.4.i.c.125.6 yes 80 8.5 even 2 inner
168.4.i.c.125.7 yes 80 3.2 odd 2 inner
168.4.i.c.125.8 yes 80 21.20 even 2 inner
168.4.i.c.125.73 yes 80 1.1 even 1 trivial
168.4.i.c.125.74 yes 80 7.6 odd 2 inner
168.4.i.c.125.75 yes 80 168.125 even 2 inner
168.4.i.c.125.76 yes 80 24.5 odd 2 inner
672.4.i.c.209.5 80 28.27 even 2
672.4.i.c.209.6 80 8.3 odd 2
672.4.i.c.209.7 80 24.11 even 2
672.4.i.c.209.8 80 84.83 odd 2
672.4.i.c.209.73 80 168.83 odd 2
672.4.i.c.209.74 80 12.11 even 2
672.4.i.c.209.75 80 4.3 odd 2
672.4.i.c.209.76 80 56.27 even 2