Properties

Label 168.4.i.c.125.7
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.7
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.65881 + 0.964755i) q^{2} +(-5.10794 + 0.953394i) q^{3} +(6.13849 - 5.13019i) q^{4} -17.0023i q^{5} +(12.6612 - 7.46280i) q^{6} +(-5.04990 - 17.8185i) q^{7} +(-11.3717 + 19.5623i) q^{8} +(25.1821 - 9.73975i) q^{9} +(16.4031 + 45.2059i) q^{10} -37.8286 q^{11} +(-26.4640 + 32.0571i) q^{12} +77.9029 q^{13} +(30.6172 + 42.5040i) q^{14} +(16.2099 + 86.8468i) q^{15} +(11.3622 - 62.9833i) q^{16} -34.6479 q^{17} +(-57.5578 + 50.1907i) q^{18} -37.7811 q^{19} +(-87.2252 - 104.369i) q^{20} +(42.7826 + 86.2012i) q^{21} +(100.579 - 36.4954i) q^{22} -47.8900i q^{23} +(39.4353 - 110.765i) q^{24} -164.079 q^{25} +(-207.129 + 75.1572i) q^{26} +(-119.343 + 73.7585i) q^{27} +(-122.411 - 83.4717i) q^{28} -180.790 q^{29} +(-126.885 - 215.270i) q^{30} -163.846i q^{31} +(30.5535 + 178.422i) q^{32} +(193.226 - 36.0656i) q^{33} +(92.1220 - 33.4267i) q^{34} +(-302.956 + 85.8600i) q^{35} +(104.613 - 188.976i) q^{36} +159.677i q^{37} +(100.453 - 36.4496i) q^{38} +(-397.923 + 74.2721i) q^{39} +(332.605 + 193.345i) q^{40} +81.5544 q^{41} +(-196.914 - 187.918i) q^{42} +241.294i q^{43} +(-232.211 + 194.068i) q^{44} +(-165.598 - 428.154i) q^{45} +(46.2021 + 127.330i) q^{46} -356.246 q^{47} +(2.01027 + 332.548i) q^{48} +(-291.997 + 179.963i) q^{49} +(436.254 - 158.296i) q^{50} +(176.979 - 33.0331i) q^{51} +(478.207 - 399.657i) q^{52} +585.689 q^{53} +(246.150 - 311.246i) q^{54} +643.174i q^{55} +(405.997 + 103.838i) q^{56} +(192.984 - 36.0203i) q^{57} +(480.686 - 174.418i) q^{58} -172.591i q^{59} +(545.045 + 449.949i) q^{60} -572.943 q^{61} +(158.072 + 435.636i) q^{62} +(-300.715 - 399.522i) q^{63} +(-253.370 - 444.913i) q^{64} -1324.53i q^{65} +(-478.957 + 282.307i) q^{66} +765.089i q^{67} +(-212.686 + 177.750i) q^{68} +(45.6580 + 244.619i) q^{69} +(722.666 - 520.563i) q^{70} +925.379i q^{71} +(-95.8304 + 603.378i) q^{72} -590.913i q^{73} +(-154.050 - 424.551i) q^{74} +(838.105 - 156.432i) q^{75} +(-231.919 + 193.825i) q^{76} +(191.031 + 674.049i) q^{77} +(986.346 - 581.374i) q^{78} -28.4235 q^{79} +(-1070.86 - 193.184i) q^{80} +(539.274 - 490.534i) q^{81} +(-216.837 + 78.6800i) q^{82} -2.66288i q^{83} +(704.850 + 309.663i) q^{84} +589.094i q^{85} +(-232.790 - 641.555i) q^{86} +(923.466 - 172.364i) q^{87} +(430.175 - 740.016i) q^{88} -600.037 q^{89} +(853.358 + 978.616i) q^{90} +(-393.402 - 1388.11i) q^{91} +(-245.685 - 293.972i) q^{92} +(156.210 + 836.917i) q^{93} +(947.190 - 343.691i) q^{94} +642.367i q^{95} +(-326.172 - 882.240i) q^{96} +703.593i q^{97} +(602.743 - 760.193i) q^{98} +(-952.603 + 368.441i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.65881 + 0.964755i −0.940030 + 0.341092i
\(3\) −5.10794 + 0.953394i −0.983023 + 0.183481i
\(4\) 6.13849 5.13019i 0.767312 0.641274i
\(5\) 17.0023i 1.52073i −0.649494 0.760367i \(-0.725019\pi\)
0.649494 0.760367i \(-0.274981\pi\)
\(6\) 12.6612 7.46280i 0.861487 0.507779i
\(7\) −5.04990 17.8185i −0.272669 0.962108i
\(8\) −11.3717 + 19.5623i −0.502562 + 0.864541i
\(9\) 25.1821 9.73975i 0.932670 0.360732i
\(10\) 16.4031 + 45.2059i 0.518711 + 1.42954i
\(11\) −37.8286 −1.03689 −0.518443 0.855112i \(-0.673488\pi\)
−0.518443 + 0.855112i \(0.673488\pi\)
\(12\) −26.4640 + 32.0571i −0.636624 + 0.771174i
\(13\) 77.9029 1.66203 0.831015 0.556250i \(-0.187760\pi\)
0.831015 + 0.556250i \(0.187760\pi\)
\(14\) 30.6172 + 42.5040i 0.584485 + 0.811405i
\(15\) 16.2099 + 86.8468i 0.279025 + 1.49492i
\(16\) 11.3622 62.9833i 0.177535 0.984114i
\(17\) −34.6479 −0.494314 −0.247157 0.968975i \(-0.579496\pi\)
−0.247157 + 0.968975i \(0.579496\pi\)
\(18\) −57.5578 + 50.1907i −0.753694 + 0.657225i
\(19\) −37.7811 −0.456189 −0.228094 0.973639i \(-0.573249\pi\)
−0.228094 + 0.973639i \(0.573249\pi\)
\(20\) −87.2252 104.369i −0.975207 1.16688i
\(21\) 42.7826 + 86.2012i 0.444568 + 0.895745i
\(22\) 100.579 36.4954i 0.974705 0.353674i
\(23\) 47.8900i 0.434163i −0.976153 0.217081i \(-0.930346\pi\)
0.976153 0.217081i \(-0.0696537\pi\)
\(24\) 39.4353 110.765i 0.335404 0.942074i
\(25\) −164.079 −1.31263
\(26\) −207.129 + 75.1572i −1.56236 + 0.566906i
\(27\) −119.343 + 73.7585i −0.850649 + 0.525734i
\(28\) −122.411 83.4717i −0.826197 0.563381i
\(29\) −180.790 −1.15765 −0.578826 0.815451i \(-0.696489\pi\)
−0.578826 + 0.815451i \(0.696489\pi\)
\(30\) −126.885 215.270i −0.772197 1.31009i
\(31\) 163.846i 0.949280i −0.880180 0.474640i \(-0.842578\pi\)
0.880180 0.474640i \(-0.157422\pi\)
\(32\) 30.5535 + 178.422i 0.168786 + 0.985653i
\(33\) 193.226 36.0656i 1.01928 0.190249i
\(34\) 92.1220 33.4267i 0.464670 0.168607i
\(35\) −302.956 + 85.8600i −1.46311 + 0.414657i
\(36\) 104.613 188.976i 0.484321 0.874891i
\(37\) 159.677i 0.709481i 0.934965 + 0.354741i \(0.115431\pi\)
−0.934965 + 0.354741i \(0.884569\pi\)
\(38\) 100.453 36.4496i 0.428831 0.155603i
\(39\) −397.923 + 74.2721i −1.63381 + 0.304950i
\(40\) 332.605 + 193.345i 1.31474 + 0.764263i
\(41\) 81.5544 0.310650 0.155325 0.987863i \(-0.450358\pi\)
0.155325 + 0.987863i \(0.450358\pi\)
\(42\) −196.914 187.918i −0.723439 0.690388i
\(43\) 241.294i 0.855745i 0.903839 + 0.427873i \(0.140737\pi\)
−0.903839 + 0.427873i \(0.859263\pi\)
\(44\) −232.211 + 194.068i −0.795616 + 0.664929i
\(45\) −165.598 428.154i −0.548577 1.41834i
\(46\) 46.2021 + 127.330i 0.148090 + 0.408126i
\(47\) −356.246 −1.10561 −0.552807 0.833309i \(-0.686443\pi\)
−0.552807 + 0.833309i \(0.686443\pi\)
\(48\) 2.01027 + 332.548i 0.00604496 + 0.999982i
\(49\) −291.997 + 179.963i −0.851303 + 0.524674i
\(50\) 436.254 158.296i 1.23391 0.447729i
\(51\) 176.979 33.0331i 0.485923 0.0906971i
\(52\) 478.207 399.657i 1.27529 1.06582i
\(53\) 585.689 1.51794 0.758968 0.651128i \(-0.225704\pi\)
0.758968 + 0.651128i \(0.225704\pi\)
\(54\) 246.150 311.246i 0.620311 0.784356i
\(55\) 643.174i 1.57683i
\(56\) 405.997 + 103.838i 0.968815 + 0.247786i
\(57\) 192.984 36.0203i 0.448444 0.0837018i
\(58\) 480.686 174.418i 1.08823 0.394867i
\(59\) 172.591i 0.380839i −0.981703 0.190419i \(-0.939015\pi\)
0.981703 0.190419i \(-0.0609848\pi\)
\(60\) 545.045 + 449.949i 1.17275 + 0.968136i
\(61\) −572.943 −1.20259 −0.601294 0.799028i \(-0.705348\pi\)
−0.601294 + 0.799028i \(0.705348\pi\)
\(62\) 158.072 + 435.636i 0.323792 + 0.892351i
\(63\) −300.715 399.522i −0.601373 0.798969i
\(64\) −253.370 444.913i −0.494862 0.868971i
\(65\) 1324.53i 2.52750i
\(66\) −478.957 + 282.307i −0.893265 + 0.526510i
\(67\) 765.089i 1.39508i 0.716545 + 0.697541i \(0.245723\pi\)
−0.716545 + 0.697541i \(0.754277\pi\)
\(68\) −212.686 + 177.750i −0.379293 + 0.316991i
\(69\) 45.6580 + 244.619i 0.0796605 + 0.426792i
\(70\) 722.666 520.563i 1.23393 0.888846i
\(71\) 925.379i 1.54679i 0.633923 + 0.773396i \(0.281444\pi\)
−0.633923 + 0.773396i \(0.718556\pi\)
\(72\) −95.8304 + 603.378i −0.156857 + 0.987621i
\(73\) 590.913i 0.947413i −0.880683 0.473706i \(-0.842916\pi\)
0.880683 0.473706i \(-0.157084\pi\)
\(74\) −154.050 424.551i −0.241999 0.666933i
\(75\) 838.105 156.432i 1.29035 0.240843i
\(76\) −231.919 + 193.825i −0.350039 + 0.292542i
\(77\) 191.031 + 674.049i 0.282727 + 0.997597i
\(78\) 986.346 581.374i 1.43182 0.843944i
\(79\) −28.4235 −0.0404797 −0.0202399 0.999795i \(-0.506443\pi\)
−0.0202399 + 0.999795i \(0.506443\pi\)
\(80\) −1070.86 193.184i −1.49658 0.269983i
\(81\) 539.274 490.534i 0.739745 0.672887i
\(82\) −216.837 + 78.6800i −0.292020 + 0.105960i
\(83\) 2.66288i 0.00352155i −0.999998 0.00176077i \(-0.999440\pi\)
0.999998 0.00176077i \(-0.000560472\pi\)
\(84\) 704.850 + 309.663i 0.915541 + 0.402226i
\(85\) 589.094i 0.751721i
\(86\) −232.790 641.555i −0.291888 0.804426i
\(87\) 923.466 172.364i 1.13800 0.212407i
\(88\) 430.175 740.016i 0.521100 0.896431i
\(89\) −600.037 −0.714649 −0.357324 0.933980i \(-0.616311\pi\)
−0.357324 + 0.933980i \(0.616311\pi\)
\(90\) 853.358 + 978.616i 0.999464 + 1.14617i
\(91\) −393.402 1388.11i −0.453184 1.59905i
\(92\) −245.685 293.972i −0.278417 0.333138i
\(93\) 156.210 + 836.917i 0.174175 + 0.933164i
\(94\) 947.190 343.691i 1.03931 0.377117i
\(95\) 642.367i 0.693742i
\(96\) −326.172 882.240i −0.346769 0.937951i
\(97\) 703.593i 0.736485i 0.929730 + 0.368243i \(0.120040\pi\)
−0.929730 + 0.368243i \(0.879960\pi\)
\(98\) 602.743 760.193i 0.621288 0.783582i
\(99\) −952.603 + 368.441i −0.967073 + 0.374038i
\(100\) −1007.20 + 841.757i −1.00720 + 0.841757i
\(101\) 1007.27i 0.992350i 0.868223 + 0.496175i \(0.165263\pi\)
−0.868223 + 0.496175i \(0.834737\pi\)
\(102\) −438.685 + 258.570i −0.425846 + 0.251003i
\(103\) 274.314i 0.262417i 0.991355 + 0.131209i \(0.0418857\pi\)
−0.991355 + 0.131209i \(0.958114\pi\)
\(104\) −885.887 + 1523.96i −0.835273 + 1.43689i
\(105\) 1465.62 727.404i 1.36219 0.676070i
\(106\) −1557.23 + 565.047i −1.42690 + 0.517756i
\(107\) 1132.06 1.02281 0.511405 0.859340i \(-0.329125\pi\)
0.511405 + 0.859340i \(0.329125\pi\)
\(108\) −354.189 + 1065.02i −0.315573 + 0.948901i
\(109\) 2168.32i 1.90539i −0.303934 0.952693i \(-0.598300\pi\)
0.303934 0.952693i \(-0.401700\pi\)
\(110\) −620.506 1710.08i −0.537845 1.48227i
\(111\) −152.235 815.622i −0.130176 0.697436i
\(112\) −1179.65 + 115.602i −0.995233 + 0.0975296i
\(113\) 42.7131i 0.0355585i −0.999842 0.0177793i \(-0.994340\pi\)
0.999842 0.0177793i \(-0.00565961\pi\)
\(114\) −478.356 + 281.953i −0.393001 + 0.231643i
\(115\) −814.240 −0.660246
\(116\) −1109.78 + 927.489i −0.888280 + 0.742373i
\(117\) 1961.76 758.755i 1.55012 0.599546i
\(118\) 166.508 + 458.887i 0.129901 + 0.358000i
\(119\) 174.968 + 617.373i 0.134784 + 0.475584i
\(120\) −1883.26 670.491i −1.43264 0.510060i
\(121\) 100.004 0.0751345
\(122\) 1523.34 552.750i 1.13047 0.410194i
\(123\) −416.575 + 77.7534i −0.305376 + 0.0569983i
\(124\) −840.564 1005.77i −0.608749 0.728394i
\(125\) 664.433i 0.475430i
\(126\) 1184.98 + 772.135i 0.837830 + 0.545931i
\(127\) −57.0406 −0.0398546 −0.0199273 0.999801i \(-0.506343\pi\)
−0.0199273 + 0.999801i \(0.506343\pi\)
\(128\) 1102.89 + 938.498i 0.761585 + 0.648065i
\(129\) −230.048 1232.52i −0.157013 0.841217i
\(130\) 1277.85 + 3521.67i 0.862113 + 2.37593i
\(131\) 2244.81i 1.49717i −0.663036 0.748587i \(-0.730732\pi\)
0.663036 0.748587i \(-0.269268\pi\)
\(132\) 1001.10 1212.68i 0.660107 0.799621i
\(133\) 190.791 + 673.203i 0.124389 + 0.438903i
\(134\) −738.124 2034.22i −0.475852 1.31142i
\(135\) 1254.07 + 2029.10i 0.799502 + 1.29361i
\(136\) 394.005 677.793i 0.248424 0.427355i
\(137\) 1244.36i 0.776003i −0.921659 0.388002i \(-0.873165\pi\)
0.921659 0.388002i \(-0.126835\pi\)
\(138\) −357.393 606.346i −0.220459 0.374026i
\(139\) −502.246 −0.306475 −0.153237 0.988189i \(-0.548970\pi\)
−0.153237 + 0.988189i \(0.548970\pi\)
\(140\) −1419.21 + 2081.27i −0.856753 + 1.25643i
\(141\) 1819.69 339.643i 1.08684 0.202859i
\(142\) −892.764 2460.40i −0.527599 1.45403i
\(143\) −2946.96 −1.72334
\(144\) −327.317 1696.72i −0.189420 0.981896i
\(145\) 3073.86i 1.76048i
\(146\) 570.086 + 1571.12i 0.323155 + 0.890596i
\(147\) 1319.93 1197.63i 0.740583 0.671964i
\(148\) 819.176 + 980.179i 0.454972 + 0.544393i
\(149\) −2671.10 −1.46863 −0.734313 0.678811i \(-0.762496\pi\)
−0.734313 + 0.678811i \(0.762496\pi\)
\(150\) −2077.44 + 1224.49i −1.13082 + 0.666527i
\(151\) −1518.45 −0.818345 −0.409172 0.912457i \(-0.634183\pi\)
−0.409172 + 0.912457i \(0.634183\pi\)
\(152\) 429.635 739.087i 0.229263 0.394394i
\(153\) −872.506 + 337.462i −0.461032 + 0.178315i
\(154\) −1158.21 1607.87i −0.606045 0.841335i
\(155\) −2785.77 −1.44360
\(156\) −2061.62 + 2497.34i −1.05809 + 1.28171i
\(157\) −1311.73 −0.666800 −0.333400 0.942785i \(-0.608196\pi\)
−0.333400 + 0.942785i \(0.608196\pi\)
\(158\) 75.5727 27.4218i 0.0380521 0.0138073i
\(159\) −2991.66 + 558.392i −1.49217 + 0.278512i
\(160\) 3033.59 519.481i 1.49892 0.256678i
\(161\) −853.327 + 241.839i −0.417712 + 0.118383i
\(162\) −960.580 + 1824.50i −0.465866 + 0.884855i
\(163\) 3119.89i 1.49920i −0.661894 0.749598i \(-0.730247\pi\)
0.661894 0.749598i \(-0.269753\pi\)
\(164\) 500.621 418.390i 0.238366 0.199212i
\(165\) −613.198 3285.29i −0.289318 1.55006i
\(166\) 2.56902 + 7.08007i 0.00120117 + 0.00331036i
\(167\) 3622.79 1.67868 0.839342 0.543604i \(-0.182941\pi\)
0.839342 + 0.543604i \(0.182941\pi\)
\(168\) −2172.81 143.325i −0.997831 0.0658202i
\(169\) 3871.87 1.76234
\(170\) −568.332 1566.29i −0.256406 0.706640i
\(171\) −951.408 + 367.979i −0.425474 + 0.164562i
\(172\) 1237.89 + 1481.18i 0.548767 + 0.656623i
\(173\) 1901.49i 0.835653i −0.908527 0.417826i \(-0.862792\pi\)
0.908527 0.417826i \(-0.137208\pi\)
\(174\) −2289.03 + 1349.20i −0.997303 + 0.587832i
\(175\) 828.582 + 2923.64i 0.357914 + 1.26289i
\(176\) −429.818 + 2382.57i −0.184084 + 1.02042i
\(177\) 164.548 + 881.586i 0.0698766 + 0.374373i
\(178\) 1595.38 578.888i 0.671791 0.243761i
\(179\) 1329.17 0.555010 0.277505 0.960724i \(-0.410493\pi\)
0.277505 + 0.960724i \(0.410493\pi\)
\(180\) −3213.04 1778.67i −1.33048 0.736523i
\(181\) −2346.73 −0.963709 −0.481855 0.876251i \(-0.660037\pi\)
−0.481855 + 0.876251i \(0.660037\pi\)
\(182\) 2385.17 + 3311.18i 0.971431 + 1.34858i
\(183\) 2926.56 546.240i 1.18217 0.220652i
\(184\) 936.839 + 544.589i 0.375352 + 0.218194i
\(185\) 2714.89 1.07893
\(186\) −1222.75 2074.50i −0.482025 0.817793i
\(187\) 1310.68 0.512548
\(188\) −2186.82 + 1827.61i −0.848351 + 0.709002i
\(189\) 1916.93 + 1754.03i 0.737759 + 0.675064i
\(190\) −619.727 1707.93i −0.236630 0.652138i
\(191\) 2129.66i 0.806791i 0.915026 + 0.403395i \(0.132170\pi\)
−0.915026 + 0.403395i \(0.867830\pi\)
\(192\) 1718.37 + 2031.03i 0.645901 + 0.763421i
\(193\) 878.502 0.327647 0.163824 0.986490i \(-0.447617\pi\)
0.163824 + 0.986490i \(0.447617\pi\)
\(194\) −678.795 1870.72i −0.251210 0.692318i
\(195\) 1262.80 + 6765.62i 0.463748 + 2.48460i
\(196\) −869.177 + 2602.70i −0.316755 + 0.948507i
\(197\) 3405.38 1.23159 0.615796 0.787906i \(-0.288835\pi\)
0.615796 + 0.787906i \(0.288835\pi\)
\(198\) 2177.33 1898.64i 0.781496 0.681468i
\(199\) 2603.72i 0.927503i −0.885965 0.463752i \(-0.846503\pi\)
0.885965 0.463752i \(-0.153497\pi\)
\(200\) 1865.85 3209.77i 0.659679 1.13482i
\(201\) −729.431 3908.03i −0.255971 1.37140i
\(202\) −971.771 2678.14i −0.338483 0.932838i
\(203\) 912.973 + 3221.41i 0.315656 + 1.11379i
\(204\) 916.920 1110.71i 0.314692 0.381203i
\(205\) 1386.61i 0.472416i
\(206\) −264.646 729.348i −0.0895085 0.246680i
\(207\) −466.436 1205.97i −0.156616 0.404931i
\(208\) 885.152 4906.59i 0.295068 1.63563i
\(209\) 1429.21 0.473016
\(210\) −3195.03 + 3347.99i −1.04990 + 1.10016i
\(211\) 987.223i 0.322101i −0.986946 0.161050i \(-0.948512\pi\)
0.986946 0.161050i \(-0.0514881\pi\)
\(212\) 3595.25 3004.70i 1.16473 0.973413i
\(213\) −882.250 4726.78i −0.283807 1.52053i
\(214\) −3009.93 + 1092.16i −0.961471 + 0.348873i
\(215\) 4102.56 1.30136
\(216\) −85.7603 3173.38i −0.0270151 0.999635i
\(217\) −2919.50 + 827.408i −0.913310 + 0.258839i
\(218\) 2091.90 + 5765.13i 0.649913 + 1.79112i
\(219\) 563.373 + 3018.35i 0.173832 + 0.931329i
\(220\) 3299.61 + 3948.12i 1.01118 + 1.20992i
\(221\) −2699.17 −0.821565
\(222\) 1191.64 + 2021.71i 0.360260 + 0.611209i
\(223\) 1430.30i 0.429507i 0.976668 + 0.214754i \(0.0688949\pi\)
−0.976668 + 0.214754i \(0.931105\pi\)
\(224\) 3024.92 1445.43i 0.902282 0.431147i
\(225\) −4131.85 + 1598.09i −1.22425 + 0.473508i
\(226\) 41.2077 + 113.566i 0.0121287 + 0.0334261i
\(227\) 5026.34i 1.46965i −0.678258 0.734824i \(-0.737265\pi\)
0.678258 0.734824i \(-0.262735\pi\)
\(228\) 999.839 1211.15i 0.290421 0.351801i
\(229\) 4464.57 1.28833 0.644164 0.764887i \(-0.277205\pi\)
0.644164 + 0.764887i \(0.277205\pi\)
\(230\) 2164.91 785.543i 0.620651 0.225205i
\(231\) −1618.41 3260.87i −0.460967 0.928786i
\(232\) 2055.89 3536.68i 0.581792 1.00084i
\(233\) 2131.34i 0.599265i 0.954055 + 0.299632i \(0.0968641\pi\)
−0.954055 + 0.299632i \(0.903136\pi\)
\(234\) −4483.92 + 3910.00i −1.25266 + 1.09233i
\(235\) 6057.02i 1.68135i
\(236\) −885.427 1059.45i −0.244222 0.292222i
\(237\) 145.186 27.0988i 0.0397925 0.00742725i
\(238\) −1060.82 1472.67i −0.288919 0.401089i
\(239\) 6763.79i 1.83060i −0.402774 0.915299i \(-0.631954\pi\)
0.402774 0.915299i \(-0.368046\pi\)
\(240\) 5654.08 34.1793i 1.52071 0.00919277i
\(241\) 2721.77i 0.727489i 0.931499 + 0.363744i \(0.118502\pi\)
−0.931499 + 0.363744i \(0.881498\pi\)
\(242\) −265.891 + 96.4794i −0.0706287 + 0.0256278i
\(243\) −2286.91 + 3019.76i −0.603725 + 0.797192i
\(244\) −3517.01 + 2939.31i −0.922760 + 0.771189i
\(245\) 3059.79 + 4964.63i 0.797889 + 1.29461i
\(246\) 1032.58 608.624i 0.267621 0.157742i
\(247\) −2943.26 −0.758199
\(248\) 3205.22 + 1863.21i 0.820692 + 0.477072i
\(249\) 2.53877 + 13.6018i 0.000646136 + 0.00346177i
\(250\) −641.015 1766.60i −0.162165 0.446918i
\(251\) 5463.02i 1.37380i −0.726754 0.686898i \(-0.758972\pi\)
0.726754 0.686898i \(-0.241028\pi\)
\(252\) −3895.56 909.739i −0.973798 0.227413i
\(253\) 1811.61i 0.450178i
\(254\) 151.660 55.0302i 0.0374645 0.0135941i
\(255\) −561.639 3009.06i −0.137926 0.738959i
\(256\) −3837.80 1431.26i −0.936963 0.349430i
\(257\) −6828.16 −1.65731 −0.828655 0.559760i \(-0.810893\pi\)
−0.828655 + 0.559760i \(0.810893\pi\)
\(258\) 1800.73 + 3055.08i 0.434530 + 0.737214i
\(259\) 2845.21 806.355i 0.682597 0.193453i
\(260\) −6795.10 8130.62i −1.62082 1.93938i
\(261\) −4552.68 + 1760.85i −1.07971 + 0.417602i
\(262\) 2165.69 + 5968.51i 0.510675 + 1.40739i
\(263\) 665.207i 0.155964i −0.996955 0.0779818i \(-0.975152\pi\)
0.996955 0.0779818i \(-0.0248476\pi\)
\(264\) −1491.78 + 4190.08i −0.347776 + 0.976825i
\(265\) 9958.08i 2.30838i
\(266\) −1156.75 1605.85i −0.266635 0.370154i
\(267\) 3064.95 572.071i 0.702517 0.131124i
\(268\) 3925.06 + 4696.50i 0.894630 + 1.07046i
\(269\) 4857.98i 1.10110i 0.834802 + 0.550550i \(0.185582\pi\)
−0.834802 + 0.550550i \(0.814418\pi\)
\(270\) −5291.90 4185.12i −1.19280 0.943328i
\(271\) 1075.74i 0.241131i −0.992705 0.120566i \(-0.961529\pi\)
0.992705 0.120566i \(-0.0384709\pi\)
\(272\) −393.677 + 2182.24i −0.0877581 + 0.486462i
\(273\) 3332.89 + 6715.33i 0.738885 + 1.48875i
\(274\) 1200.50 + 3308.50i 0.264689 + 0.729466i
\(275\) 6206.88 1.36105
\(276\) 1535.21 + 1267.36i 0.334815 + 0.276399i
\(277\) 6119.99i 1.32749i 0.747959 + 0.663745i \(0.231034\pi\)
−0.747959 + 0.663745i \(0.768966\pi\)
\(278\) 1335.38 484.545i 0.288095 0.104536i
\(279\) −1595.82 4125.99i −0.342435 0.885365i
\(280\) 1765.49 6902.89i 0.376816 1.47331i
\(281\) 580.494i 0.123236i −0.998100 0.0616181i \(-0.980374\pi\)
0.998100 0.0616181i \(-0.0196261\pi\)
\(282\) −4510.52 + 2658.60i −0.952473 + 0.561408i
\(283\) −5973.23 −1.25467 −0.627335 0.778750i \(-0.715854\pi\)
−0.627335 + 0.778750i \(0.715854\pi\)
\(284\) 4747.37 + 5680.43i 0.991918 + 1.18687i
\(285\) −612.429 3281.17i −0.127288 0.681964i
\(286\) 7835.39 2843.09i 1.61999 0.587817i
\(287\) −411.841 1453.18i −0.0847046 0.298879i
\(288\) 2507.19 + 4195.46i 0.512978 + 0.858402i
\(289\) −3712.52 −0.755653
\(290\) −2965.52 8172.78i −0.600487 1.65490i
\(291\) −670.801 3593.91i −0.135131 0.723982i
\(292\) −3031.50 3627.32i −0.607551 0.726961i
\(293\) 522.434i 0.104167i −0.998643 0.0520835i \(-0.983414\pi\)
0.998643 0.0520835i \(-0.0165862\pi\)
\(294\) −2354.01 + 4457.67i −0.466969 + 0.884274i
\(295\) −2934.45 −0.579154
\(296\) −3123.66 1815.80i −0.613376 0.356558i
\(297\) 4514.57 2790.18i 0.882027 0.545127i
\(298\) 7101.95 2576.96i 1.38055 0.500937i
\(299\) 3730.77i 0.721591i
\(300\) 4342.18 5259.90i 0.835653 1.01227i
\(301\) 4299.50 1218.51i 0.823319 0.233335i
\(302\) 4037.28 1464.94i 0.769269 0.279131i
\(303\) −960.327 5145.08i −0.182077 0.975503i
\(304\) −429.278 + 2379.58i −0.0809895 + 0.448942i
\(305\) 9741.37i 1.82882i
\(306\) 1994.25 1739.00i 0.372562 0.324876i
\(307\) −7907.97 −1.47014 −0.735068 0.677994i \(-0.762850\pi\)
−0.735068 + 0.677994i \(0.762850\pi\)
\(308\) 4630.64 + 3157.62i 0.856673 + 0.584163i
\(309\) −261.529 1401.18i −0.0481485 0.257962i
\(310\) 7406.82 2687.59i 1.35703 0.492402i
\(311\) −1459.26 −0.266068 −0.133034 0.991111i \(-0.542472\pi\)
−0.133034 + 0.991111i \(0.542472\pi\)
\(312\) 3072.12 8628.91i 0.557451 1.56576i
\(313\) 5437.91i 0.982008i 0.871157 + 0.491004i \(0.163370\pi\)
−0.871157 + 0.491004i \(0.836630\pi\)
\(314\) 3487.64 1265.50i 0.626812 0.227440i
\(315\) −6792.80 + 5112.85i −1.21502 + 0.914528i
\(316\) −174.478 + 145.818i −0.0310606 + 0.0259586i
\(317\) −7991.76 −1.41597 −0.707984 0.706228i \(-0.750395\pi\)
−0.707984 + 0.706228i \(0.750395\pi\)
\(318\) 7415.54 4370.88i 1.30768 0.770776i
\(319\) 6839.05 1.20035
\(320\) −7564.56 + 4307.87i −1.32147 + 0.752554i
\(321\) −5782.51 + 1079.30i −1.00545 + 0.187666i
\(322\) 2035.51 1466.26i 0.352282 0.253762i
\(323\) 1309.04 0.225501
\(324\) 793.797 5777.73i 0.136111 0.990694i
\(325\) −12782.2 −2.18163
\(326\) 3009.93 + 8295.19i 0.511364 + 1.40929i
\(327\) 2067.26 + 11075.6i 0.349602 + 1.87304i
\(328\) −927.411 + 1595.39i −0.156121 + 0.268570i
\(329\) 1799.01 + 6347.77i 0.301467 + 1.06372i
\(330\) 4799.88 + 8143.37i 0.800681 + 1.35842i
\(331\) 5913.18i 0.981927i 0.871180 + 0.490963i \(0.163355\pi\)
−0.871180 + 0.490963i \(0.836645\pi\)
\(332\) −13.6611 16.3461i −0.00225828 0.00270213i
\(333\) 1555.22 + 4021.01i 0.255932 + 0.661712i
\(334\) −9632.31 + 3495.11i −1.57801 + 0.572586i
\(335\) 13008.3 2.12155
\(336\) 5915.35 1715.15i 0.960442 0.278480i
\(337\) −10946.5 −1.76942 −0.884712 0.466138i \(-0.845645\pi\)
−0.884712 + 0.466138i \(0.845645\pi\)
\(338\) −10294.5 + 3735.40i −1.65665 + 0.601122i
\(339\) 40.7224 + 218.176i 0.00652430 + 0.0349549i
\(340\) 3022.17 + 3616.15i 0.482059 + 0.576804i
\(341\) 6198.08i 0.984296i
\(342\) 2174.60 1896.26i 0.343827 0.299819i
\(343\) 4681.23 + 4294.15i 0.736917 + 0.675983i
\(344\) −4720.28 2743.92i −0.739827 0.430065i
\(345\) 4159.09 776.292i 0.649037 0.121142i
\(346\) 1834.48 + 5055.70i 0.285035 + 0.785538i
\(347\) 1637.21 0.253285 0.126643 0.991948i \(-0.459580\pi\)
0.126643 + 0.991948i \(0.459580\pi\)
\(348\) 4784.43 5795.62i 0.736989 0.892752i
\(349\) 4492.59 0.689062 0.344531 0.938775i \(-0.388038\pi\)
0.344531 + 0.938775i \(0.388038\pi\)
\(350\) −5023.63 6974.01i −0.767213 1.06508i
\(351\) −9297.15 + 5746.00i −1.41380 + 0.873786i
\(352\) −1155.80 6749.46i −0.175012 1.02201i
\(353\) −1372.22 −0.206901 −0.103451 0.994635i \(-0.532988\pi\)
−0.103451 + 0.994635i \(0.532988\pi\)
\(354\) −1288.01 2185.22i −0.193382 0.328088i
\(355\) 15733.6 2.35226
\(356\) −3683.32 + 3078.30i −0.548359 + 0.458286i
\(357\) −1482.33 2986.69i −0.219756 0.442780i
\(358\) −3534.00 + 1282.32i −0.521725 + 0.189310i
\(359\) 5118.09i 0.752430i −0.926532 0.376215i \(-0.877225\pi\)
0.926532 0.376215i \(-0.122775\pi\)
\(360\) 10258.8 + 1629.34i 1.50191 + 0.238538i
\(361\) −5431.59 −0.791892
\(362\) 6239.51 2264.02i 0.905915 0.328714i
\(363\) −510.814 + 95.3432i −0.0738590 + 0.0137857i
\(364\) −9536.18 6502.69i −1.37316 0.936356i
\(365\) −10046.9 −1.44076
\(366\) −7254.16 + 4275.76i −1.03601 + 0.610649i
\(367\) 6151.73i 0.874980i −0.899223 0.437490i \(-0.855867\pi\)
0.899223 0.437490i \(-0.144133\pi\)
\(368\) −3016.27 544.137i −0.427266 0.0770791i
\(369\) 2053.71 794.320i 0.289734 0.112061i
\(370\) −7218.36 + 2619.20i −1.01423 + 0.368016i
\(371\) −2957.67 10436.1i −0.413894 1.46042i
\(372\) 5252.44 + 4336.03i 0.732060 + 0.604334i
\(373\) 12854.7i 1.78443i −0.451614 0.892213i \(-0.649152\pi\)
0.451614 0.892213i \(-0.350848\pi\)
\(374\) −3484.85 + 1264.49i −0.481810 + 0.174826i
\(375\) −633.466 3393.88i −0.0872321 0.467358i
\(376\) 4051.12 6969.01i 0.555640 0.955849i
\(377\) −14084.1 −1.92405
\(378\) −6788.97 2814.26i −0.923775 0.382937i
\(379\) 2284.79i 0.309662i 0.987941 + 0.154831i \(0.0494832\pi\)
−0.987941 + 0.154831i \(0.950517\pi\)
\(380\) 3295.47 + 3943.17i 0.444879 + 0.532316i
\(381\) 291.360 54.3821i 0.0391780 0.00731255i
\(382\) −2054.60 5662.36i −0.275190 0.758407i
\(383\) −3061.90 −0.408501 −0.204251 0.978919i \(-0.565476\pi\)
−0.204251 + 0.978919i \(0.565476\pi\)
\(384\) −6528.27 3742.30i −0.867563 0.497327i
\(385\) 11460.4 3247.97i 1.51708 0.429952i
\(386\) −2335.77 + 847.539i −0.307998 + 0.111758i
\(387\) 2350.15 + 6076.29i 0.308694 + 0.798128i
\(388\) 3609.57 + 4319.00i 0.472289 + 0.565114i
\(389\) 2350.30 0.306336 0.153168 0.988200i \(-0.451052\pi\)
0.153168 + 0.988200i \(0.451052\pi\)
\(390\) −9884.71 16770.2i −1.28341 2.17741i
\(391\) 1659.29i 0.214613i
\(392\) −200.000 7758.63i −0.0257692 0.999668i
\(393\) 2140.19 + 11466.3i 0.274703 + 1.47176i
\(394\) −9054.25 + 3285.36i −1.15773 + 0.420086i
\(395\) 483.266i 0.0615589i
\(396\) −3957.37 + 7148.71i −0.502186 + 0.907163i
\(397\) −1338.92 −0.169266 −0.0846329 0.996412i \(-0.526972\pi\)
−0.0846329 + 0.996412i \(0.526972\pi\)
\(398\) 2511.96 + 6922.80i 0.316364 + 0.871880i
\(399\) −1616.38 3256.78i −0.202807 0.408629i
\(400\) −1864.30 + 10334.2i −0.233038 + 1.29178i
\(401\) 7728.45i 0.962444i −0.876599 0.481222i \(-0.840193\pi\)
0.876599 0.481222i \(-0.159807\pi\)
\(402\) 5709.71 + 9686.97i 0.708394 + 1.20185i
\(403\) 12764.1i 1.57773i
\(404\) 5167.50 + 6183.14i 0.636368 + 0.761442i
\(405\) −8340.23 9168.92i −1.02328 1.12496i
\(406\) −5535.29 7684.31i −0.676630 0.939325i
\(407\) 6040.37i 0.735652i
\(408\) −1366.35 + 3837.77i −0.165795 + 0.465681i
\(409\) 13294.9i 1.60731i −0.595093 0.803657i \(-0.702885\pi\)
0.595093 0.803657i \(-0.297115\pi\)
\(410\) 1337.74 + 3686.74i 0.161138 + 0.444085i
\(411\) 1186.36 + 6356.09i 0.142382 + 0.762829i
\(412\) 1407.28 + 1683.87i 0.168281 + 0.201356i
\(413\) −3075.32 + 871.569i −0.366408 + 0.103843i
\(414\) 2403.63 + 2756.44i 0.285343 + 0.327226i
\(415\) −45.2751 −0.00535534
\(416\) 2380.21 + 13899.6i 0.280527 + 1.63818i
\(417\) 2565.44 478.838i 0.301272 0.0562322i
\(418\) −3799.99 + 1378.84i −0.444649 + 0.161342i
\(419\) 8465.25i 0.987003i 0.869745 + 0.493502i \(0.164283\pi\)
−0.869745 + 0.493502i \(0.835717\pi\)
\(420\) 5264.98 11984.1i 0.611678 1.39229i
\(421\) 1141.45i 0.132140i 0.997815 + 0.0660701i \(0.0210461\pi\)
−0.997815 + 0.0660701i \(0.978954\pi\)
\(422\) 952.429 + 2624.83i 0.109866 + 0.302784i
\(423\) −8971.03 + 3469.75i −1.03117 + 0.398830i
\(424\) −6660.27 + 11457.4i −0.762857 + 1.31232i
\(425\) 5684.99 0.648853
\(426\) 6905.92 + 11716.4i 0.785429 + 1.33254i
\(427\) 2893.31 + 10209.0i 0.327908 + 1.15702i
\(428\) 6949.16 5807.70i 0.784814 0.655901i
\(429\) 15052.9 2809.61i 1.69408 0.316199i
\(430\) −10907.9 + 3957.97i −1.22332 + 0.443884i
\(431\) 6623.29i 0.740215i 0.928989 + 0.370108i \(0.120679\pi\)
−0.928989 + 0.370108i \(0.879321\pi\)
\(432\) 3289.55 + 8354.66i 0.366363 + 0.930472i
\(433\) 151.928i 0.0168619i −0.999964 0.00843095i \(-0.997316\pi\)
0.999964 0.00843095i \(-0.00268369\pi\)
\(434\) 6964.12 5016.51i 0.770250 0.554840i
\(435\) −2930.59 15701.1i −0.323014 1.73059i
\(436\) −11123.9 13310.2i −1.22187 1.46203i
\(437\) 1809.34i 0.198060i
\(438\) −4409.86 7481.68i −0.481076 0.816184i
\(439\) 9828.43i 1.06853i −0.845317 0.534266i \(-0.820588\pi\)
0.845317 0.534266i \(-0.179412\pi\)
\(440\) −12582.0 7313.98i −1.36323 0.792455i
\(441\) −5600.30 + 7375.83i −0.604718 + 0.796439i
\(442\) 7176.57 2604.04i 0.772296 0.280230i
\(443\) 2207.57 0.236760 0.118380 0.992968i \(-0.462230\pi\)
0.118380 + 0.992968i \(0.462230\pi\)
\(444\) −5118.80 4225.70i −0.547134 0.451673i
\(445\) 10202.0i 1.08679i
\(446\) −1379.89 3802.90i −0.146502 0.403750i
\(447\) 13643.8 2546.61i 1.44369 0.269465i
\(448\) −6648.19 + 6761.43i −0.701111 + 0.713053i
\(449\) 7960.02i 0.836651i −0.908297 0.418326i \(-0.862617\pi\)
0.908297 0.418326i \(-0.137383\pi\)
\(450\) 9444.02 8235.23i 0.989323 0.862694i
\(451\) −3085.09 −0.322109
\(452\) −219.127 262.194i −0.0228028 0.0272845i
\(453\) 7756.17 1447.68i 0.804452 0.150150i
\(454\) 4849.19 + 13364.1i 0.501286 + 1.38151i
\(455\) −23601.1 + 6688.75i −2.43173 + 0.689172i
\(456\) −1489.91 + 4184.82i −0.153007 + 0.429764i
\(457\) 3624.43 0.370993 0.185496 0.982645i \(-0.440611\pi\)
0.185496 + 0.982645i \(0.440611\pi\)
\(458\) −11870.4 + 4307.22i −1.21107 + 0.439439i
\(459\) 4134.97 2555.58i 0.420488 0.259878i
\(460\) −4998.21 + 4177.21i −0.506615 + 0.423399i
\(461\) 5885.29i 0.594589i −0.954786 0.297294i \(-0.903916\pi\)
0.954786 0.297294i \(-0.0960843\pi\)
\(462\) 7448.97 + 7108.66i 0.750125 + 0.715854i
\(463\) 13856.2 1.39083 0.695415 0.718609i \(-0.255221\pi\)
0.695415 + 0.718609i \(0.255221\pi\)
\(464\) −2054.18 + 11386.8i −0.205524 + 1.13926i
\(465\) 14229.5 2655.93i 1.41909 0.264873i
\(466\) −2056.22 5666.82i −0.204405 0.563327i
\(467\) 12318.9i 1.22066i 0.792147 + 0.610330i \(0.208963\pi\)
−0.792147 + 0.610330i \(0.791037\pi\)
\(468\) 8149.68 14721.8i 0.804955 1.45409i
\(469\) 13632.7 3863.62i 1.34222 0.380396i
\(470\) −5843.54 16104.4i −0.573494 1.58051i
\(471\) 6700.24 1250.60i 0.655480 0.122345i
\(472\) 3376.29 + 1962.65i 0.329251 + 0.191395i
\(473\) 9127.83i 0.887311i
\(474\) −359.877 + 212.119i −0.0348728 + 0.0205548i
\(475\) 6199.09 0.598808
\(476\) 4241.28 + 2892.12i 0.408401 + 0.278487i
\(477\) 14748.9 5704.47i 1.41573 0.547567i
\(478\) 6525.40 + 17983.6i 0.624403 + 1.72082i
\(479\) 5683.40 0.542132 0.271066 0.962561i \(-0.412624\pi\)
0.271066 + 0.962561i \(0.412624\pi\)
\(480\) −15000.1 + 5545.68i −1.42637 + 0.527343i
\(481\) 12439.3i 1.17918i
\(482\) −2625.84 7236.67i −0.248141 0.683861i
\(483\) 4128.17 2048.86i 0.388899 0.193015i
\(484\) 613.874 513.040i 0.0576516 0.0481818i
\(485\) 11962.7 1.12000
\(486\) 3167.12 10235.3i 0.295603 0.955311i
\(487\) 3252.77 0.302663 0.151332 0.988483i \(-0.451644\pi\)
0.151332 + 0.988483i \(0.451644\pi\)
\(488\) 6515.33 11208.1i 0.604375 1.03969i
\(489\) 2974.49 + 15936.2i 0.275073 + 1.47374i
\(490\) −12925.0 10248.0i −1.19162 0.944814i
\(491\) −8991.73 −0.826459 −0.413229 0.910627i \(-0.635599\pi\)
−0.413229 + 0.910627i \(0.635599\pi\)
\(492\) −2158.25 + 2614.40i −0.197767 + 0.239565i
\(493\) 6264.00 0.572244
\(494\) 7825.56 2839.53i 0.712730 0.258616i
\(495\) 6264.36 + 16196.5i 0.568812 + 1.47066i
\(496\) −10319.6 1861.66i −0.934200 0.168530i
\(497\) 16488.9 4673.07i 1.48818 0.421762i
\(498\) −19.8725 33.7153i −0.00178817 0.00303377i
\(499\) 10529.3i 0.944599i −0.881438 0.472300i \(-0.843424\pi\)
0.881438 0.472300i \(-0.156576\pi\)
\(500\) 3408.67 + 4078.62i 0.304881 + 0.364803i
\(501\) −18505.0 + 3453.95i −1.65019 + 0.308006i
\(502\) 5270.48 + 14525.1i 0.468592 + 1.29141i
\(503\) −1886.42 −0.167220 −0.0836098 0.996499i \(-0.526645\pi\)
−0.0836098 + 0.996499i \(0.526645\pi\)
\(504\) 11235.2 1339.44i 0.992968 0.118380i
\(505\) 17126.0 1.50910
\(506\) −1747.76 4816.72i −0.153552 0.423181i
\(507\) −19777.3 + 3691.41i −1.73242 + 0.323356i
\(508\) −350.143 + 292.629i −0.0305809 + 0.0255577i
\(509\) 10860.9i 0.945781i 0.881121 + 0.472891i \(0.156789\pi\)
−0.881121 + 0.472891i \(0.843211\pi\)
\(510\) 4396.29 + 7458.66i 0.381708 + 0.647598i
\(511\) −10529.2 + 2984.05i −0.911513 + 0.258330i
\(512\) 11584.8 + 102.914i 0.999961 + 0.00888324i
\(513\) 4508.90 2786.68i 0.388057 0.239834i
\(514\) 18154.7 6587.50i 1.55792 0.565296i
\(515\) 4663.97 0.399067
\(516\) −7735.20 6385.60i −0.659929 0.544788i
\(517\) 13476.3 1.14640
\(518\) −6786.92 + 4888.87i −0.575676 + 0.414681i
\(519\) 1812.87 + 9712.71i 0.153326 + 0.821466i
\(520\) 25910.9 + 15062.1i 2.18513 + 1.27023i
\(521\) 6930.38 0.582774 0.291387 0.956605i \(-0.405883\pi\)
0.291387 + 0.956605i \(0.405883\pi\)
\(522\) 10405.9 9073.98i 0.872516 0.760838i
\(523\) −9140.75 −0.764239 −0.382119 0.924113i \(-0.624806\pi\)
−0.382119 + 0.924113i \(0.624806\pi\)
\(524\) −11516.3 13779.7i −0.960099 1.14880i
\(525\) −7019.73 14143.8i −0.583554 1.17578i
\(526\) 641.762 + 1768.66i 0.0531980 + 0.146610i
\(527\) 5676.93i 0.469243i
\(528\) −76.0459 12579.8i −0.00626794 1.03687i
\(529\) 9873.55 0.811503
\(530\) 9607.10 + 26476.6i 0.787370 + 2.16994i
\(531\) −1681.00 4346.21i −0.137381 0.355197i
\(532\) 4624.83 + 3153.66i 0.376902 + 0.257008i
\(533\) 6353.33 0.516310
\(534\) −7597.20 + 4477.95i −0.615661 + 0.362884i
\(535\) 19247.7i 1.55542i
\(536\) −14966.9 8700.35i −1.20611 0.701116i
\(537\) −6789.31 + 1267.22i −0.545587 + 0.101834i
\(538\) −4686.76 12916.4i −0.375577 1.03507i
\(539\) 11045.8 6807.76i 0.882705 0.544027i
\(540\) 18107.8 + 6022.04i 1.44303 + 0.479903i
\(541\) 1327.06i 0.105461i −0.998609 0.0527307i \(-0.983207\pi\)
0.998609 0.0527307i \(-0.0167925\pi\)
\(542\) 1037.83 + 2860.19i 0.0822481 + 0.226671i
\(543\) 11987.0 2237.36i 0.947348 0.176822i
\(544\) −1058.61 6181.95i −0.0834333 0.487222i
\(545\) −36866.4 −2.89759
\(546\) −15340.2 14639.3i −1.20238 1.14745i
\(547\) 6943.34i 0.542735i −0.962476 0.271367i \(-0.912524\pi\)
0.962476 0.271367i \(-0.0874758\pi\)
\(548\) −6383.78 7638.47i −0.497631 0.595437i
\(549\) −14427.9 + 5580.33i −1.12162 + 0.433811i
\(550\) −16502.9 + 5988.12i −1.27943 + 0.464244i
\(551\) 6830.47 0.528108
\(552\) −5304.53 1888.55i −0.409014 0.145620i
\(553\) 143.536 + 506.465i 0.0110376 + 0.0389459i
\(554\) −5904.29 16271.9i −0.452797 1.24788i
\(555\) −13867.5 + 2588.36i −1.06062 + 0.197963i
\(556\) −3083.04 + 2576.62i −0.235162 + 0.196534i
\(557\) 12038.4 0.915770 0.457885 0.889012i \(-0.348607\pi\)
0.457885 + 0.889012i \(0.348607\pi\)
\(558\) 8223.56 + 9430.64i 0.623891 + 0.715467i
\(559\) 18797.5i 1.42227i
\(560\) 1965.49 + 20056.7i 0.148317 + 1.51348i
\(561\) −6694.88 + 1249.59i −0.503847 + 0.0940427i
\(562\) 560.035 + 1543.42i 0.0420349 + 0.115846i
\(563\) 10849.1i 0.812139i −0.913842 0.406070i \(-0.866899\pi\)
0.913842 0.406070i \(-0.133101\pi\)
\(564\) 9427.69 11420.2i 0.703861 0.852622i
\(565\) −726.222 −0.0540750
\(566\) 15881.6 5762.70i 1.17943 0.427958i
\(567\) −11463.9 7131.91i −0.849095 0.528240i
\(568\) −18102.6 10523.1i −1.33727 0.777359i
\(569\) 10335.0i 0.761450i 0.924688 + 0.380725i \(0.124326\pi\)
−0.924688 + 0.380725i \(0.875674\pi\)
\(570\) 4793.86 + 8133.16i 0.352268 + 0.597650i
\(571\) 2025.81i 0.148472i −0.997241 0.0742360i \(-0.976348\pi\)
0.997241 0.0742360i \(-0.0236518\pi\)
\(572\) −18089.9 + 15118.5i −1.32234 + 1.10513i
\(573\) −2030.41 10878.2i −0.148030 0.793094i
\(574\) 2496.97 + 3466.39i 0.181570 + 0.252063i
\(575\) 7857.73i 0.569896i
\(576\) −10713.7 8736.09i −0.775009 0.631951i
\(577\) 3778.32i 0.272606i −0.990667 0.136303i \(-0.956478\pi\)
0.990667 0.136303i \(-0.0435220\pi\)
\(578\) 9870.88 3581.68i 0.710337 0.257748i
\(579\) −4487.33 + 837.558i −0.322085 + 0.0601170i
\(580\) 15769.5 + 18868.8i 1.12895 + 1.35084i
\(581\) −47.4484 + 13.4473i −0.00338811 + 0.000960217i
\(582\) 5250.78 + 8908.35i 0.373972 + 0.634473i
\(583\) −22155.8 −1.57393
\(584\) 11559.6 + 6719.67i 0.819077 + 0.476134i
\(585\) −12900.6 33354.4i −0.911751 2.35733i
\(586\) 504.021 + 1389.05i 0.0355306 + 0.0979200i
\(587\) 1814.70i 0.127599i −0.997963 0.0637997i \(-0.979678\pi\)
0.997963 0.0637997i \(-0.0203219\pi\)
\(588\) 1958.30 14123.1i 0.137345 0.990523i
\(589\) 6190.30i 0.433051i
\(590\) 7802.14 2831.03i 0.544422 0.197545i
\(591\) −17394.5 + 3246.67i −1.21068 + 0.225973i
\(592\) 10057.0 + 1814.29i 0.698211 + 0.125958i
\(593\) 9793.33 0.678185 0.339093 0.940753i \(-0.389880\pi\)
0.339093 + 0.940753i \(0.389880\pi\)
\(594\) −9311.52 + 11774.0i −0.643192 + 0.813288i
\(595\) 10496.8 2974.87i 0.723236 0.204971i
\(596\) −16396.6 + 13703.3i −1.12689 + 0.941792i
\(597\) 2482.37 + 13299.7i 0.170179 + 0.911757i
\(598\) 3599.28 + 9919.39i 0.246129 + 0.678317i
\(599\) 10824.1i 0.738332i 0.929363 + 0.369166i \(0.120357\pi\)
−0.929363 + 0.369166i \(0.879643\pi\)
\(600\) −6470.50 + 18174.2i −0.440262 + 1.23660i
\(601\) 16512.2i 1.12071i −0.828252 0.560355i \(-0.810665\pi\)
0.828252 0.560355i \(-0.189335\pi\)
\(602\) −10256.0 + 7387.75i −0.694356 + 0.500170i
\(603\) 7451.78 + 19266.5i 0.503250 + 1.30115i
\(604\) −9321.03 + 7789.97i −0.627926 + 0.524783i
\(605\) 1700.30i 0.114260i
\(606\) 7517.07 + 12753.3i 0.503895 + 0.854897i
\(607\) 7537.39i 0.504009i −0.967726 0.252004i \(-0.918910\pi\)
0.967726 0.252004i \(-0.0810898\pi\)
\(608\) −1154.35 6741.00i −0.0769982 0.449644i
\(609\) −7734.68 15584.3i −0.514655 1.03696i
\(610\) −9398.03 25900.4i −0.623796 1.71914i
\(611\) −27752.6 −1.83756
\(612\) −3624.63 + 6547.63i −0.239407 + 0.432471i
\(613\) 10916.9i 0.719297i −0.933088 0.359648i \(-0.882897\pi\)
0.933088 0.359648i \(-0.117103\pi\)
\(614\) 21025.7 7629.25i 1.38197 0.501452i
\(615\) 1321.99 + 7082.74i 0.0866792 + 0.464396i
\(616\) −15358.3 3928.06i −1.00455 0.256926i
\(617\) 27154.5i 1.77180i −0.463881 0.885898i \(-0.653543\pi\)
0.463881 0.885898i \(-0.346457\pi\)
\(618\) 2047.15 + 3473.15i 0.133250 + 0.226069i
\(619\) 12483.7 0.810602 0.405301 0.914183i \(-0.367167\pi\)
0.405301 + 0.914183i \(0.367167\pi\)
\(620\) −17100.4 + 14291.5i −1.10769 + 0.925745i
\(621\) 3532.29 + 5715.32i 0.228254 + 0.369320i
\(622\) 3879.89 1407.83i 0.250112 0.0907537i
\(623\) 3030.12 + 10691.7i 0.194863 + 0.687569i
\(624\) 156.606 + 25906.4i 0.0100469 + 1.66200i
\(625\) −9212.97 −0.589630
\(626\) −5246.25 14458.3i −0.334956 0.923117i
\(627\) −7300.31 + 1362.60i −0.464986 + 0.0867894i
\(628\) −8052.06 + 6729.44i −0.511643 + 0.427601i
\(629\) 5532.48i 0.350707i
\(630\) 13128.1 20147.5i 0.830215 1.27412i
\(631\) 5011.50 0.316172 0.158086 0.987425i \(-0.449468\pi\)
0.158086 + 0.987425i \(0.449468\pi\)
\(632\) 323.224 556.031i 0.0203436 0.0349964i
\(633\) 941.212 + 5042.68i 0.0590992 + 0.316632i
\(634\) 21248.5 7710.09i 1.33105 0.482976i
\(635\) 969.822i 0.0606082i
\(636\) −15499.7 + 18775.5i −0.966354 + 1.17059i
\(637\) −22747.4 + 14019.7i −1.41489 + 0.872023i
\(638\) −18183.7 + 6598.01i −1.12837 + 0.409432i
\(639\) 9012.96 + 23303.0i 0.557977 + 1.44265i
\(640\) 15956.7 18751.7i 0.985534 1.15817i
\(641\) 20433.1i 1.25906i 0.776975 + 0.629531i \(0.216753\pi\)
−0.776975 + 0.629531i \(0.783247\pi\)
\(642\) 14333.3 8448.35i 0.881137 0.519361i
\(643\) 7784.75 0.477450 0.238725 0.971087i \(-0.423270\pi\)
0.238725 + 0.971087i \(0.423270\pi\)
\(644\) −3997.46 + 5862.26i −0.244599 + 0.358704i
\(645\) −20955.6 + 3911.36i −1.27927 + 0.238775i
\(646\) −3480.47 + 1262.90i −0.211977 + 0.0769166i
\(647\) −13288.6 −0.807463 −0.403732 0.914877i \(-0.632287\pi\)
−0.403732 + 0.914877i \(0.632287\pi\)
\(648\) 3463.54 + 16127.7i 0.209970 + 0.977708i
\(649\) 6528.89i 0.394887i
\(650\) 33985.5 12331.7i 2.05080 0.744138i
\(651\) 14123.8 7009.78i 0.850313 0.422020i
\(652\) −16005.7 19151.4i −0.961395 1.15035i
\(653\) −6596.26 −0.395301 −0.197651 0.980273i \(-0.563331\pi\)
−0.197651 + 0.980273i \(0.563331\pi\)
\(654\) −16181.7 27453.6i −0.967515 1.64147i
\(655\) −38167.0 −2.27680
\(656\) 926.641 5136.57i 0.0551513 0.305715i
\(657\) −5755.35 14880.4i −0.341762 0.883623i
\(658\) −10907.3 15141.9i −0.646215 0.897101i
\(659\) 8372.03 0.494883 0.247442 0.968903i \(-0.420410\pi\)
0.247442 + 0.968903i \(0.420410\pi\)
\(660\) −20618.3 17020.9i −1.21601 1.00385i
\(661\) −6191.40 −0.364323 −0.182162 0.983269i \(-0.558309\pi\)
−0.182162 + 0.983269i \(0.558309\pi\)
\(662\) −5704.77 15722.0i −0.334928 0.923040i
\(663\) 13787.2 2573.37i 0.807618 0.150741i
\(664\) 52.0921 + 30.2814i 0.00304452 + 0.00176980i
\(665\) 11446.0 3243.89i 0.667455 0.189162i
\(666\) −8014.31 9190.68i −0.466289 0.534732i
\(667\) 8658.04i 0.502610i
\(668\) 22238.5 18585.6i 1.28807 1.07650i
\(669\) −1363.64 7305.90i −0.0788063 0.422216i
\(670\) −34586.5 + 12549.8i −1.99432 + 0.723644i
\(671\) 21673.7 1.24695
\(672\) −14073.1 + 10267.1i −0.807857 + 0.589379i
\(673\) 1317.91 0.0754855 0.0377428 0.999287i \(-0.487983\pi\)
0.0377428 + 0.999287i \(0.487983\pi\)
\(674\) 29104.7 10560.7i 1.66331 0.603537i
\(675\) 19581.6 12102.2i 1.11659 0.690096i
\(676\) 23767.4 19863.4i 1.35227 1.13014i
\(677\) 11076.8i 0.628826i 0.949286 + 0.314413i \(0.101808\pi\)
−0.949286 + 0.314413i \(0.898192\pi\)
\(678\) −318.759 540.800i −0.0180559 0.0306332i
\(679\) 12537.0 3553.08i 0.708578 0.200817i
\(680\) −11524.1 6698.99i −0.649893 0.377786i
\(681\) 4792.08 + 25674.2i 0.269652 + 1.44470i
\(682\) −5979.63 16479.5i −0.335736 0.925268i
\(683\) −31967.1 −1.79090 −0.895451 0.445161i \(-0.853147\pi\)
−0.895451 + 0.445161i \(0.853147\pi\)
\(684\) −3952.41 + 7139.74i −0.220942 + 0.399115i
\(685\) −21156.9 −1.18009
\(686\) −16589.3 6901.07i −0.923297 0.384088i
\(687\) −22804.8 + 4256.50i −1.26646 + 0.236383i
\(688\) 15197.5 + 2741.64i 0.842151 + 0.151925i
\(689\) 45626.9 2.52285
\(690\) −10309.3 + 6076.51i −0.568794 + 0.335259i
\(691\) −4700.10 −0.258756 −0.129378 0.991595i \(-0.541298\pi\)
−0.129378 + 0.991595i \(0.541298\pi\)
\(692\) −9755.03 11672.3i −0.535882 0.641206i
\(693\) 11375.6 + 15113.4i 0.623556 + 0.828440i
\(694\) −4353.02 + 1579.50i −0.238095 + 0.0863936i
\(695\) 8539.35i 0.466066i
\(696\) −7129.52 + 20025.2i −0.388281 + 1.09059i
\(697\) −2825.69 −0.153559
\(698\) −11944.9 + 4334.25i −0.647739 + 0.235034i
\(699\) −2032.01 10886.8i −0.109954 0.589091i
\(700\) 20085.1 + 13696.0i 1.08449 + 0.739512i
\(701\) −22855.2 −1.23143 −0.615714 0.787970i \(-0.711132\pi\)
−0.615714 + 0.787970i \(0.711132\pi\)
\(702\) 19175.8 24247.0i 1.03098 1.30362i
\(703\) 6032.79i 0.323657i
\(704\) 9584.62 + 16830.5i 0.513116 + 0.901025i
\(705\) −5774.72 30938.9i −0.308494 1.65280i
\(706\) 3648.47 1323.86i 0.194493 0.0705724i
\(707\) 17948.1 5086.62i 0.954748 0.270583i
\(708\) 5532.78 + 4567.45i 0.293693 + 0.242451i
\(709\) 20814.1i 1.10252i 0.834333 + 0.551261i \(0.185853\pi\)
−0.834333 + 0.551261i \(0.814147\pi\)
\(710\) −41832.6 + 15179.1i −2.21119 + 0.802338i
\(711\) −715.764 + 276.838i −0.0377542 + 0.0146023i
\(712\) 6823.43 11738.1i 0.359156 0.617843i
\(713\) −7846.60 −0.412142
\(714\) 6822.64 + 6510.94i 0.357606 + 0.341269i
\(715\) 50105.2i 2.62074i
\(716\) 8159.09 6818.89i 0.425865 0.355913i
\(717\) 6448.55 + 34549.0i 0.335880 + 1.79952i
\(718\) 4937.70 + 13608.0i 0.256648 + 0.707306i
\(719\) −5088.93 −0.263957 −0.131979 0.991253i \(-0.542133\pi\)
−0.131979 + 0.991253i \(0.542133\pi\)
\(720\) −28848.1 + 5565.15i −1.49320 + 0.288057i
\(721\) 4887.86 1385.26i 0.252474 0.0715530i
\(722\) 14441.5 5240.15i 0.744402 0.270108i
\(723\) −2594.92 13902.7i −0.133480 0.715139i
\(724\) −14405.4 + 12039.2i −0.739465 + 0.618002i
\(725\) 29663.9 1.51957
\(726\) 1266.17 746.310i 0.0647274 0.0381517i
\(727\) 1716.37i 0.0875609i −0.999041 0.0437804i \(-0.986060\pi\)
0.999041 0.0437804i \(-0.0139402\pi\)
\(728\) 31628.4 + 8089.32i 1.61020 + 0.411827i
\(729\) 8802.37 17605.1i 0.447207 0.894431i
\(730\) 26712.7 9692.79i 1.35436 0.491433i
\(731\) 8360.34i 0.423007i
\(732\) 15162.4 18366.9i 0.765596 0.927405i
\(733\) −2487.51 −0.125346 −0.0626728 0.998034i \(-0.519962\pi\)
−0.0626728 + 0.998034i \(0.519962\pi\)
\(734\) 5934.91 + 16356.3i 0.298449 + 0.822508i
\(735\) −20362.5 22441.8i −1.02188 1.12623i
\(736\) 8544.63 1463.21i 0.427934 0.0732806i
\(737\) 28942.3i 1.44654i
\(738\) −4694.09 + 4093.27i −0.234135 + 0.204167i
\(739\) 16167.7i 0.804786i −0.915467 0.402393i \(-0.868179\pi\)
0.915467 0.402393i \(-0.131821\pi\)
\(740\) 16665.3 13927.9i 0.827877 0.691891i
\(741\) 15034.0 2806.09i 0.745328 0.139115i
\(742\) 17932.1 + 24894.1i 0.887210 + 1.23166i
\(743\) 6261.24i 0.309156i −0.987981 0.154578i \(-0.950598\pi\)
0.987981 0.154578i \(-0.0494017\pi\)
\(744\) −18148.4 6461.33i −0.894292 0.318392i
\(745\) 45415.0i 2.23339i
\(746\) 12401.6 + 34178.2i 0.608654 + 1.67741i
\(747\) −25.9358 67.0568i −0.00127033 0.00328444i
\(748\) 8045.61 6724.05i 0.393284 0.328684i
\(749\) −5716.80 20171.6i −0.278888 0.984053i
\(750\) 4958.53 + 8412.54i 0.241413 + 0.409576i
\(751\) 26131.4 1.26971 0.634853 0.772633i \(-0.281061\pi\)
0.634853 + 0.772633i \(0.281061\pi\)
\(752\) −4047.76 + 22437.6i −0.196285 + 1.08805i
\(753\) 5208.41 + 27904.8i 0.252065 + 1.35047i
\(754\) 37446.9 13587.7i 1.80867 0.656280i
\(755\) 25817.3i 1.24448i
\(756\) 20765.6 + 932.888i 0.998992 + 0.0448794i
\(757\) 2301.88i 0.110519i 0.998472 + 0.0552596i \(0.0175987\pi\)
−0.998472 + 0.0552596i \(0.982401\pi\)
\(758\) −2204.26 6074.81i −0.105623 0.291091i
\(759\) −1727.18 9253.60i −0.0825989 0.442535i
\(760\) −12566.2 7304.80i −0.599768 0.348648i
\(761\) −22624.8 −1.07772 −0.538862 0.842394i \(-0.681146\pi\)
−0.538862 + 0.842394i \(0.681146\pi\)
\(762\) −722.204 + 425.682i −0.0343342 + 0.0202373i
\(763\) −38636.1 + 10949.8i −1.83319 + 0.519540i
\(764\) 10925.6 + 13072.9i 0.517374 + 0.619060i
\(765\) 5737.63 + 14834.6i 0.271169 + 0.701107i
\(766\) 8141.01 2953.99i 0.384003 0.139337i
\(767\) 13445.4i 0.632965i
\(768\) 20967.8 + 3651.87i 0.985170 + 0.171583i
\(769\) 12312.9i 0.577393i −0.957421 0.288697i \(-0.906778\pi\)
0.957421 0.288697i \(-0.0932219\pi\)
\(770\) −27337.5 + 19692.2i −1.27945 + 0.921632i
\(771\) 34877.8 6509.92i 1.62917 0.304084i
\(772\) 5392.68 4506.88i 0.251408 0.210112i
\(773\) 18738.9i 0.871916i −0.899967 0.435958i \(-0.856410\pi\)
0.899967 0.435958i \(-0.143590\pi\)
\(774\) −12110.7 13888.4i −0.562417 0.644970i
\(775\) 26883.7i 1.24606i
\(776\) −13763.9 8001.04i −0.636722 0.370130i
\(777\) −13764.4 + 6831.42i −0.635514 + 0.315413i
\(778\) −6248.98 + 2267.46i −0.287965 + 0.104489i
\(779\) −3081.22 −0.141715
\(780\) 42460.6 + 35052.3i 1.94915 + 1.60907i
\(781\) 35005.8i 1.60385i
\(782\) −1600.80 4411.72i −0.0732029 0.201743i
\(783\) 21576.0 13334.8i 0.984756 0.608618i
\(784\) 8016.94 + 20435.7i 0.365203 + 0.930928i
\(785\) 22302.5i 1.01403i
\(786\) −16752.6 28422.0i −0.760234 1.28980i
\(787\) −7115.83 −0.322302 −0.161151 0.986930i \(-0.551521\pi\)
−0.161151 + 0.986930i \(0.551521\pi\)
\(788\) 20903.9 17470.3i 0.945015 0.789788i
\(789\) 634.204 + 3397.84i 0.0286163 + 0.153316i
\(790\) −466.234 1284.91i −0.0209973 0.0578672i
\(791\) −761.083 + 215.697i −0.0342111 + 0.00969570i
\(792\) 3625.13 22824.9i 0.162643 1.02405i
\(793\) −44634.0 −1.99874
\(794\) 3559.93 1291.73i 0.159115 0.0577353i
\(795\) 9493.96 + 50865.2i 0.423542 + 2.26919i
\(796\) −13357.6 15982.9i −0.594784 0.711684i
\(797\) 12278.2i 0.545693i −0.962058 0.272846i \(-0.912035\pi\)
0.962058 0.272846i \(-0.0879650\pi\)
\(798\) 7439.63 + 7099.74i 0.330025 + 0.314947i
\(799\) 12343.2 0.546521
\(800\) −5013.19 29275.3i −0.221554 1.29380i
\(801\) −15110.2 + 5844.21i −0.666531 + 0.257796i
\(802\) 7456.06 + 20548.4i 0.328282 + 0.904726i
\(803\) 22353.4i 0.982360i
\(804\) −24526.6 20247.3i −1.07585 0.888143i
\(805\) 4111.83 + 14508.5i 0.180029 + 0.635228i
\(806\) 12314.2 + 33937.3i 0.538152 + 1.48311i
\(807\) −4631.57 24814.3i −0.202031 1.08241i
\(808\) −19704.6 11454.4i −0.857927 0.498718i
\(809\) 9226.15i 0.400957i −0.979698 0.200479i \(-0.935750\pi\)
0.979698 0.200479i \(-0.0642497\pi\)
\(810\) 31020.8 + 16332.1i 1.34563 + 0.708458i
\(811\) −36172.6 −1.56621 −0.783103 0.621892i \(-0.786364\pi\)
−0.783103 + 0.621892i \(0.786364\pi\)
\(812\) 22130.7 + 15090.9i 0.956449 + 0.652200i
\(813\) 1025.60 + 5494.82i 0.0442430 + 0.237038i
\(814\) 5827.48 + 16060.2i 0.250925 + 0.691534i
\(815\) −53045.4 −2.27988
\(816\) −69.6517 11522.1i −0.00298811 0.494305i
\(817\) 9116.38i 0.390381i
\(818\) 12826.3 + 35348.6i 0.548243 + 1.51092i
\(819\) −23426.5 31123.9i −0.999499 1.32791i
\(820\) −7113.60 8511.72i −0.302948 0.362491i
\(821\) 7181.84 0.305296 0.152648 0.988281i \(-0.451220\pi\)
0.152648 + 0.988281i \(0.451220\pi\)
\(822\) −9286.37 15755.1i −0.394038 0.668517i
\(823\) −2266.38 −0.0959916 −0.0479958 0.998848i \(-0.515283\pi\)
−0.0479958 + 0.998848i \(0.515283\pi\)
\(824\) −5366.22 3119.41i −0.226870 0.131881i
\(825\) −31704.4 + 5917.60i −1.33794 + 0.249726i
\(826\) 7335.82 5284.26i 0.309014 0.222594i
\(827\) 5411.98 0.227561 0.113781 0.993506i \(-0.463704\pi\)
0.113781 + 0.993506i \(0.463704\pi\)
\(828\) −9050.07 5009.92i −0.379845 0.210274i
\(829\) 27630.7 1.15760 0.578802 0.815468i \(-0.303520\pi\)
0.578802 + 0.815468i \(0.303520\pi\)
\(830\) 120.378 43.6794i 0.00503418 0.00182667i
\(831\) −5834.76 31260.5i −0.243569 1.30495i
\(832\) −19738.2 34660.0i −0.822476 1.44426i
\(833\) 10117.1 6235.34i 0.420811 0.259354i
\(834\) −6359.05 + 3748.16i −0.264024 + 0.155621i
\(835\) 61595.9i 2.55283i
\(836\) 8773.19 7332.11i 0.362951 0.303333i
\(837\) 12085.1 + 19553.9i 0.499069 + 0.807504i
\(838\) −8166.89 22507.4i −0.336659 0.927812i
\(839\) 38177.4 1.57095 0.785476 0.618892i \(-0.212418\pi\)
0.785476 + 0.618892i \(0.212418\pi\)
\(840\) −2436.86 + 36942.8i −0.100095 + 1.51744i
\(841\) 8296.14 0.340159
\(842\) −1101.22 3034.90i −0.0450720 0.124216i
\(843\) 553.439 + 2965.13i 0.0226115 + 0.121144i
\(844\) −5064.64 6060.06i −0.206555 0.247152i
\(845\) 65830.7i 2.68005i
\(846\) 20504.8 17880.2i 0.833296 0.726638i
\(847\) −505.010 1781.92i −0.0204868 0.0722875i
\(848\) 6654.74 36888.6i 0.269487 1.49382i
\(849\) 30510.9 5694.84i 1.23337 0.230208i
\(850\) −15115.3 + 5484.62i −0.609941 + 0.221319i
\(851\) 7646.94 0.308030
\(852\) −29665.0 24489.2i −1.19285 0.984725i
\(853\) 5549.77 0.222767 0.111384 0.993777i \(-0.464472\pi\)
0.111384 + 0.993777i \(0.464472\pi\)
\(854\) −17541.9 24352.4i −0.702894 0.975786i
\(855\) 6256.50 + 16176.1i 0.250255 + 0.647032i
\(856\) −12873.5 + 22145.8i −0.514025 + 0.884261i
\(857\) 22763.4 0.907332 0.453666 0.891172i \(-0.350116\pi\)
0.453666 + 0.891172i \(0.350116\pi\)
\(858\) −37312.1 + 21992.6i −1.48463 + 0.875074i
\(859\) 672.946 0.0267295 0.0133647 0.999911i \(-0.495746\pi\)
0.0133647 + 0.999911i \(0.495746\pi\)
\(860\) 25183.6 21046.9i 0.998550 0.834529i
\(861\) 3489.11 + 7030.09i 0.138105 + 0.278263i
\(862\) −6389.86 17610.0i −0.252482 0.695824i
\(863\) 38773.2i 1.52938i −0.644397 0.764691i \(-0.722892\pi\)
0.644397 0.764691i \(-0.277108\pi\)
\(864\) −16806.5 19039.8i −0.661769 0.749708i
\(865\) −32329.8 −1.27081
\(866\) 146.574 + 403.948i 0.00575147 + 0.0158507i
\(867\) 18963.4 3539.50i 0.742825 0.138648i
\(868\) −13676.5 + 20056.6i −0.534807 + 0.784292i
\(869\) 1075.22 0.0419729
\(870\) 22939.6 + 38918.8i 0.893936 + 1.51663i
\(871\) 59602.7i 2.31867i
\(872\) 42417.3 + 24657.4i 1.64728 + 0.957575i
\(873\) 6852.83 + 17717.9i 0.265674 + 0.686898i
\(874\) −1745.57 4810.68i −0.0675569 0.186183i
\(875\) 11839.2 3355.32i 0.457415 0.129635i
\(876\) 18943.0 + 15637.9i 0.730620 + 0.603146i
\(877\) 5911.60i 0.227617i 0.993503 + 0.113809i \(0.0363051\pi\)
−0.993503 + 0.113809i \(0.963695\pi\)
\(878\) 9482.03 + 26131.9i 0.364468 + 1.00445i
\(879\) 498.085 + 2668.56i 0.0191126 + 0.102399i
\(880\) 40509.3 + 7307.90i 1.55178 + 0.279942i
\(881\) 1628.16 0.0622635 0.0311317 0.999515i \(-0.490089\pi\)
0.0311317 + 0.999515i \(0.490089\pi\)
\(882\) 7774.23 25013.8i 0.296794 0.954942i
\(883\) 13348.7i 0.508743i −0.967107 0.254371i \(-0.918131\pi\)
0.967107 0.254371i \(-0.0818686\pi\)
\(884\) −16568.8 + 13847.3i −0.630397 + 0.526848i
\(885\) 14989.0 2797.69i 0.569322 0.106264i
\(886\) −5869.50 + 2129.76i −0.222562 + 0.0807571i
\(887\) 35230.3 1.33362 0.666808 0.745230i \(-0.267660\pi\)
0.666808 + 0.745230i \(0.267660\pi\)
\(888\) 17686.6 + 6296.92i 0.668384 + 0.237963i
\(889\) 288.049 + 1016.38i 0.0108671 + 0.0383444i
\(890\) −9842.45 27125.2i −0.370696 1.02162i
\(891\) −20400.0 + 18556.2i −0.767032 + 0.697708i
\(892\) 7337.73 + 8779.90i 0.275432 + 0.329566i
\(893\) 13459.4 0.504369
\(894\) −33819.4 + 19933.9i −1.26520 + 0.745738i
\(895\) 22598.9i 0.844022i
\(896\) 11153.1 24391.2i 0.415848 0.909434i
\(897\) 3556.89 + 19056.5i 0.132398 + 0.709341i
\(898\) 7679.47 + 21164.1i 0.285375 + 0.786477i
\(899\) 29621.8i 1.09894i
\(900\) −17164.8 + 31007.0i −0.635735 + 1.14841i
\(901\) −20292.9 −0.750337
\(902\) 8202.65 2976.36i 0.302792 0.109869i
\(903\) −20799.9 + 10323.2i −0.766529 + 0.380437i
\(904\) 835.568 + 485.720i 0.0307418 + 0.0178704i
\(905\) 39899.9i 1.46554i
\(906\) −19225.5 + 11331.9i −0.704994 + 0.415538i
\(907\) 41269.7i 1.51085i 0.655237 + 0.755423i \(0.272569\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(908\) −25786.1 30854.2i −0.942447 1.12768i
\(909\) 9810.58 + 25365.2i 0.357972 + 0.925535i
\(910\) 56297.8 40553.4i 2.05083 1.47729i
\(911\) 11899.0i 0.432747i −0.976311 0.216373i \(-0.930577\pi\)
0.976311 0.216373i \(-0.0694228\pi\)
\(912\) −75.9504 12564.0i −0.00275764 0.456181i
\(913\) 100.733i 0.00365145i
\(914\) −9636.66 + 3496.69i −0.348744 + 0.126543i
\(915\) −9287.36 49758.3i −0.335552 1.79777i
\(916\) 27405.8 22904.1i 0.988550 0.826172i
\(917\) −39999.1 + 11336.1i −1.44044 + 0.408233i
\(918\) −8528.58 + 10784.0i −0.306629 + 0.387718i
\(919\) −19268.9 −0.691647 −0.345823 0.938300i \(-0.612400\pi\)
−0.345823 + 0.938300i \(0.612400\pi\)
\(920\) 9259.29 15928.4i 0.331815 0.570810i
\(921\) 40393.4 7539.40i 1.44518 0.269741i
\(922\) 5677.87 + 15647.9i 0.202810 + 0.558931i
\(923\) 72089.7i 2.57081i
\(924\) −26663.5 11714.1i −0.949312 0.417063i
\(925\) 26199.7i 0.931287i
\(926\) −36841.0 + 13367.9i −1.30742 + 0.474401i
\(927\) 2671.75 + 6907.80i 0.0946621 + 0.244748i
\(928\) −5523.78 32257.0i −0.195395 1.14104i
\(929\) −22796.3 −0.805083 −0.402542 0.915402i \(-0.631873\pi\)
−0.402542 + 0.915402i \(0.631873\pi\)
\(930\) −35271.3 + 20789.6i −1.24365 + 0.733031i
\(931\) 11032.0 6799.21i 0.388355 0.239350i
\(932\) 10934.2 + 13083.2i 0.384293 + 0.459823i
\(933\) 7453.81 1391.25i 0.261551 0.0488183i
\(934\) −11884.7 32753.4i −0.416358 1.14746i
\(935\) 22284.6i 0.779449i
\(936\) −7465.47 + 47004.9i −0.260701 + 1.64146i
\(937\) 34878.2i 1.21603i 0.793925 + 0.608016i \(0.208034\pi\)
−0.793925 + 0.608016i \(0.791966\pi\)
\(938\) −32519.3 + 23424.9i −1.13198 + 0.815404i
\(939\) −5184.46 27776.5i −0.180180 0.965337i
\(940\) 31073.7 + 37181.0i 1.07820 + 1.29012i
\(941\) 34823.7i 1.20640i 0.797591 + 0.603198i \(0.206107\pi\)
−0.797591 + 0.603198i \(0.793893\pi\)
\(942\) −16608.1 + 9789.19i −0.574440 + 0.338587i
\(943\) 3905.64i 0.134873i
\(944\) −10870.4 1961.02i −0.374789 0.0676122i
\(945\) 29822.6 32592.3i 1.02659 1.12193i
\(946\) 8806.12 + 24269.1i 0.302655 + 0.834099i
\(947\) 44753.6 1.53569 0.767844 0.640637i \(-0.221329\pi\)
0.767844 + 0.640637i \(0.221329\pi\)
\(948\) 752.200 911.177i 0.0257704 0.0312169i
\(949\) 46033.8i 1.57463i
\(950\) −16482.2 + 5980.60i −0.562897 + 0.204249i
\(951\) 40821.4 7619.29i 1.39193 0.259803i
\(952\) −14066.9 3597.78i −0.478899 0.122484i
\(953\) 27410.7i 0.931709i 0.884861 + 0.465854i \(0.154253\pi\)
−0.884861 + 0.465854i \(0.845747\pi\)
\(954\) −33711.0 + 29396.1i −1.14406 + 0.997625i
\(955\) 36209.2 1.22691
\(956\) −34699.5 41519.5i −1.17392 1.40464i
\(957\) −34933.4 + 6520.30i −1.17998 + 0.220242i
\(958\) −15111.1 + 5483.09i −0.509620 + 0.184917i
\(959\) −22172.5 + 6283.87i −0.746599 + 0.211592i
\(960\) 34532.2 29216.3i 1.16096 0.982243i
\(961\) 2945.36 0.0988674
\(962\) −12000.9 33073.8i −0.402209 1.10846i
\(963\) 28507.7 11026.0i 0.953943 0.368960i
\(964\) 13963.2 + 16707.6i 0.466520 + 0.558211i
\(965\) 14936.6i 0.498264i
\(966\) −8999.36 + 9430.19i −0.299741 + 0.314090i
\(967\) 19242.8 0.639923 0.319961 0.947431i \(-0.396330\pi\)
0.319961 + 0.947431i \(0.396330\pi\)
\(968\) −1137.21 + 1956.31i −0.0377598 + 0.0649569i
\(969\) −6686.48 + 1248.03i −0.221672 + 0.0413750i
\(970\) −31806.6 + 11541.1i −1.05283 + 0.382023i
\(971\) 9065.66i 0.299620i −0.988715 0.149810i \(-0.952134\pi\)
0.988715 0.149810i \(-0.0478661\pi\)
\(972\) 1453.78 + 30269.1i 0.0479733 + 0.998849i
\(973\) 2536.29 + 8949.27i 0.0835661 + 0.294862i
\(974\) −8648.48 + 3138.13i −0.284512 + 0.103236i
\(975\) 65290.9 12186.5i 2.14460 0.400287i
\(976\) −6509.92 + 36085.9i −0.213501 + 1.18348i
\(977\) 59374.1i 1.94426i 0.234435 + 0.972132i \(0.424676\pi\)
−0.234435 + 0.972132i \(0.575324\pi\)
\(978\) −23283.1 39501.7i −0.761260 1.29154i
\(979\) 22698.6 0.741010
\(980\) 44252.0 + 14778.0i 1.44243 + 0.481701i
\(981\) −21118.9 54602.7i −0.687333 1.77710i
\(982\) 23907.3 8674.82i 0.776896 0.281899i
\(983\) −22834.0 −0.740886 −0.370443 0.928855i \(-0.620794\pi\)
−0.370443 + 0.928855i \(0.620794\pi\)
\(984\) 3216.12 9033.36i 0.104193 0.292656i
\(985\) 57899.4i 1.87292i
\(986\) −16654.8 + 6043.23i −0.537927 + 0.195188i
\(987\) −15241.2 30708.9i −0.491521 0.990349i
\(988\) −18067.2 + 15099.5i −0.581775 + 0.486214i
\(989\) 11555.6 0.371533
\(990\) −32281.3 37019.7i −1.03633 1.18845i
\(991\) 33338.9 1.06866 0.534331 0.845275i \(-0.320563\pi\)
0.534331 + 0.845275i \(0.320563\pi\)
\(992\) 29233.8 5006.08i 0.935660 0.160225i
\(993\) −5637.59 30204.2i −0.180165 0.965257i
\(994\) −39332.3 + 28332.5i −1.25507 + 0.904077i
\(995\) −44269.4 −1.41049
\(996\) 85.3641 + 70.4703i 0.00271573 + 0.00224190i
\(997\) −17170.3 −0.545427 −0.272713 0.962095i \(-0.587921\pi\)
−0.272713 + 0.962095i \(0.587921\pi\)
\(998\) 10158.2 + 27995.3i 0.322196 + 0.887951i
\(999\) −11777.6 19056.3i −0.372999 0.603519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.7 yes 80
3.2 odd 2 inner 168.4.i.c.125.73 yes 80
4.3 odd 2 672.4.i.c.209.74 80
7.6 odd 2 inner 168.4.i.c.125.8 yes 80
8.3 odd 2 672.4.i.c.209.7 80
8.5 even 2 inner 168.4.i.c.125.76 yes 80
12.11 even 2 672.4.i.c.209.75 80
21.20 even 2 inner 168.4.i.c.125.74 yes 80
24.5 odd 2 inner 168.4.i.c.125.6 yes 80
24.11 even 2 672.4.i.c.209.6 80
28.27 even 2 672.4.i.c.209.8 80
56.13 odd 2 inner 168.4.i.c.125.75 yes 80
56.27 even 2 672.4.i.c.209.73 80
84.83 odd 2 672.4.i.c.209.5 80
168.83 odd 2 672.4.i.c.209.76 80
168.125 even 2 inner 168.4.i.c.125.5 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.5 80 168.125 even 2 inner
168.4.i.c.125.6 yes 80 24.5 odd 2 inner
168.4.i.c.125.7 yes 80 1.1 even 1 trivial
168.4.i.c.125.8 yes 80 7.6 odd 2 inner
168.4.i.c.125.73 yes 80 3.2 odd 2 inner
168.4.i.c.125.74 yes 80 21.20 even 2 inner
168.4.i.c.125.75 yes 80 56.13 odd 2 inner
168.4.i.c.125.76 yes 80 8.5 even 2 inner
672.4.i.c.209.5 80 84.83 odd 2
672.4.i.c.209.6 80 24.11 even 2
672.4.i.c.209.7 80 8.3 odd 2
672.4.i.c.209.8 80 28.27 even 2
672.4.i.c.209.73 80 56.27 even 2
672.4.i.c.209.74 80 4.3 odd 2
672.4.i.c.209.75 80 12.11 even 2
672.4.i.c.209.76 80 168.83 odd 2