Properties

Label 168.4.i.c.125.8
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.8
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.65881 + 0.964755i) q^{2} +(5.10794 - 0.953394i) q^{3} +(6.13849 - 5.13019i) q^{4} +17.0023i q^{5} +(-12.6612 + 7.46280i) q^{6} +(-5.04990 + 17.8185i) q^{7} +(-11.3717 + 19.5623i) q^{8} +(25.1821 - 9.73975i) q^{9} +(-16.4031 - 45.2059i) q^{10} -37.8286 q^{11} +(26.4640 - 32.0571i) q^{12} -77.9029 q^{13} +(-3.76378 - 52.2478i) q^{14} +(16.2099 + 86.8468i) q^{15} +(11.3622 - 62.9833i) q^{16} +34.6479 q^{17} +(-57.5578 + 50.1907i) q^{18} +37.7811 q^{19} +(87.2252 + 104.369i) q^{20} +(-8.80655 + 95.8303i) q^{21} +(100.579 - 36.4954i) q^{22} -47.8900i q^{23} +(-39.4353 + 110.765i) q^{24} -164.079 q^{25} +(207.129 - 75.1572i) q^{26} +(119.343 - 73.7585i) q^{27} +(60.4135 + 135.286i) q^{28} -180.790 q^{29} +(-126.885 - 215.270i) q^{30} +163.846i q^{31} +(30.5535 + 178.422i) q^{32} +(-193.226 + 36.0656i) q^{33} +(-92.1220 + 33.4267i) q^{34} +(-302.956 - 85.8600i) q^{35} +(104.613 - 188.976i) q^{36} +159.677i q^{37} +(-100.453 + 36.4496i) q^{38} +(-397.923 + 74.2721i) q^{39} +(-332.605 - 193.345i) q^{40} -81.5544 q^{41} +(-69.0379 - 263.290i) q^{42} +241.294i q^{43} +(-232.211 + 194.068i) q^{44} +(165.598 + 428.154i) q^{45} +(46.2021 + 127.330i) q^{46} +356.246 q^{47} +(-2.01027 - 332.548i) q^{48} +(-291.997 - 179.963i) q^{49} +(436.254 - 158.296i) q^{50} +(176.979 - 33.0331i) q^{51} +(-478.207 + 399.657i) q^{52} +585.689 q^{53} +(-246.150 + 311.246i) q^{54} -643.174i q^{55} +(-291.145 - 301.414i) q^{56} +(192.984 - 36.0203i) q^{57} +(480.686 - 174.418i) q^{58} +172.591i q^{59} +(545.045 + 449.949i) q^{60} +572.943 q^{61} +(-158.072 - 435.636i) q^{62} +(46.3807 + 497.891i) q^{63} +(-253.370 - 444.913i) q^{64} -1324.53i q^{65} +(478.957 - 282.307i) q^{66} +765.089i q^{67} +(212.686 - 177.750i) q^{68} +(-45.6580 - 244.619i) q^{69} +(888.334 - 63.9930i) q^{70} +925.379i q^{71} +(-95.8304 + 603.378i) q^{72} +590.913i q^{73} +(-154.050 - 424.551i) q^{74} +(-838.105 + 156.432i) q^{75} +(231.919 - 193.825i) q^{76} +(191.031 - 674.049i) q^{77} +(986.346 - 581.374i) q^{78} -28.4235 q^{79} +(1070.86 + 193.184i) q^{80} +(539.274 - 490.534i) q^{81} +(216.837 - 78.6800i) q^{82} +2.66288i q^{83} +(437.569 + 633.433i) q^{84} +589.094i q^{85} +(-232.790 - 641.555i) q^{86} +(-923.466 + 172.364i) q^{87} +(430.175 - 740.016i) q^{88} +600.037 q^{89} +(-853.358 - 978.616i) q^{90} +(393.402 - 1388.11i) q^{91} +(-245.685 - 293.972i) q^{92} +(156.210 + 836.917i) q^{93} +(-947.190 + 343.691i) q^{94} +642.367i q^{95} +(326.172 + 882.240i) q^{96} -703.593i q^{97} +(949.984 + 196.781i) q^{98} +(-952.603 + 368.441i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.65881 + 0.964755i −0.940030 + 0.341092i
\(3\) 5.10794 0.953394i 0.983023 0.183481i
\(4\) 6.13849 5.13019i 0.767312 0.641274i
\(5\) 17.0023i 1.52073i 0.649494 + 0.760367i \(0.274981\pi\)
−0.649494 + 0.760367i \(0.725019\pi\)
\(6\) −12.6612 + 7.46280i −0.861487 + 0.507779i
\(7\) −5.04990 + 17.8185i −0.272669 + 0.962108i
\(8\) −11.3717 + 19.5623i −0.502562 + 0.864541i
\(9\) 25.1821 9.73975i 0.932670 0.360732i
\(10\) −16.4031 45.2059i −0.518711 1.42954i
\(11\) −37.8286 −1.03689 −0.518443 0.855112i \(-0.673488\pi\)
−0.518443 + 0.855112i \(0.673488\pi\)
\(12\) 26.4640 32.0571i 0.636624 0.771174i
\(13\) −77.9029 −1.66203 −0.831015 0.556250i \(-0.812240\pi\)
−0.831015 + 0.556250i \(0.812240\pi\)
\(14\) −3.76378 52.2478i −0.0718508 0.997415i
\(15\) 16.2099 + 86.8468i 0.279025 + 1.49492i
\(16\) 11.3622 62.9833i 0.177535 0.984114i
\(17\) 34.6479 0.494314 0.247157 0.968975i \(-0.420504\pi\)
0.247157 + 0.968975i \(0.420504\pi\)
\(18\) −57.5578 + 50.1907i −0.753694 + 0.657225i
\(19\) 37.7811 0.456189 0.228094 0.973639i \(-0.426751\pi\)
0.228094 + 0.973639i \(0.426751\pi\)
\(20\) 87.2252 + 104.369i 0.975207 + 1.16688i
\(21\) −8.80655 + 95.8303i −0.0915117 + 0.995804i
\(22\) 100.579 36.4954i 0.974705 0.353674i
\(23\) 47.8900i 0.434163i −0.976153 0.217081i \(-0.930346\pi\)
0.976153 0.217081i \(-0.0696537\pi\)
\(24\) −39.4353 + 110.765i −0.335404 + 0.942074i
\(25\) −164.079 −1.31263
\(26\) 207.129 75.1572i 1.56236 0.566906i
\(27\) 119.343 73.7585i 0.850649 0.525734i
\(28\) 60.4135 + 135.286i 0.407753 + 0.913092i
\(29\) −180.790 −1.15765 −0.578826 0.815451i \(-0.696489\pi\)
−0.578826 + 0.815451i \(0.696489\pi\)
\(30\) −126.885 215.270i −0.772197 1.31009i
\(31\) 163.846i 0.949280i 0.880180 + 0.474640i \(0.157422\pi\)
−0.880180 + 0.474640i \(0.842578\pi\)
\(32\) 30.5535 + 178.422i 0.168786 + 0.985653i
\(33\) −193.226 + 36.0656i −1.01928 + 0.190249i
\(34\) −92.1220 + 33.4267i −0.464670 + 0.168607i
\(35\) −302.956 85.8600i −1.46311 0.414657i
\(36\) 104.613 188.976i 0.484321 0.874891i
\(37\) 159.677i 0.709481i 0.934965 + 0.354741i \(0.115431\pi\)
−0.934965 + 0.354741i \(0.884569\pi\)
\(38\) −100.453 + 36.4496i −0.428831 + 0.155603i
\(39\) −397.923 + 74.2721i −1.63381 + 0.304950i
\(40\) −332.605 193.345i −1.31474 0.764263i
\(41\) −81.5544 −0.310650 −0.155325 0.987863i \(-0.549642\pi\)
−0.155325 + 0.987863i \(0.549642\pi\)
\(42\) −69.0379 263.290i −0.253638 0.967299i
\(43\) 241.294i 0.855745i 0.903839 + 0.427873i \(0.140737\pi\)
−0.903839 + 0.427873i \(0.859263\pi\)
\(44\) −232.211 + 194.068i −0.795616 + 0.664929i
\(45\) 165.598 + 428.154i 0.548577 + 1.41834i
\(46\) 46.2021 + 127.330i 0.148090 + 0.408126i
\(47\) 356.246 1.10561 0.552807 0.833309i \(-0.313557\pi\)
0.552807 + 0.833309i \(0.313557\pi\)
\(48\) −2.01027 332.548i −0.00604496 0.999982i
\(49\) −291.997 179.963i −0.851303 0.524674i
\(50\) 436.254 158.296i 1.23391 0.447729i
\(51\) 176.979 33.0331i 0.485923 0.0906971i
\(52\) −478.207 + 399.657i −1.27529 + 1.06582i
\(53\) 585.689 1.51794 0.758968 0.651128i \(-0.225704\pi\)
0.758968 + 0.651128i \(0.225704\pi\)
\(54\) −246.150 + 311.246i −0.620311 + 0.784356i
\(55\) 643.174i 1.57683i
\(56\) −291.145 301.414i −0.694749 0.719253i
\(57\) 192.984 36.0203i 0.448444 0.0837018i
\(58\) 480.686 174.418i 1.08823 0.394867i
\(59\) 172.591i 0.380839i 0.981703 + 0.190419i \(0.0609848\pi\)
−0.981703 + 0.190419i \(0.939015\pi\)
\(60\) 545.045 + 449.949i 1.17275 + 0.968136i
\(61\) 572.943 1.20259 0.601294 0.799028i \(-0.294652\pi\)
0.601294 + 0.799028i \(0.294652\pi\)
\(62\) −158.072 435.636i −0.323792 0.892351i
\(63\) 46.3807 + 497.891i 0.0927527 + 0.995689i
\(64\) −253.370 444.913i −0.494862 0.868971i
\(65\) 1324.53i 2.52750i
\(66\) 478.957 282.307i 0.893265 0.526510i
\(67\) 765.089i 1.39508i 0.716545 + 0.697541i \(0.245723\pi\)
−0.716545 + 0.697541i \(0.754277\pi\)
\(68\) 212.686 177.750i 0.379293 0.316991i
\(69\) −45.6580 244.619i −0.0796605 0.426792i
\(70\) 888.334 63.9930i 1.51680 0.109266i
\(71\) 925.379i 1.54679i 0.633923 + 0.773396i \(0.281444\pi\)
−0.633923 + 0.773396i \(0.718556\pi\)
\(72\) −95.8304 + 603.378i −0.156857 + 0.987621i
\(73\) 590.913i 0.947413i 0.880683 + 0.473706i \(0.157084\pi\)
−0.880683 + 0.473706i \(0.842916\pi\)
\(74\) −154.050 424.551i −0.241999 0.666933i
\(75\) −838.105 + 156.432i −1.29035 + 0.240843i
\(76\) 231.919 193.825i 0.350039 0.292542i
\(77\) 191.031 674.049i 0.282727 0.997597i
\(78\) 986.346 581.374i 1.43182 0.843944i
\(79\) −28.4235 −0.0404797 −0.0202399 0.999795i \(-0.506443\pi\)
−0.0202399 + 0.999795i \(0.506443\pi\)
\(80\) 1070.86 + 193.184i 1.49658 + 0.269983i
\(81\) 539.274 490.534i 0.739745 0.672887i
\(82\) 216.837 78.6800i 0.292020 0.105960i
\(83\) 2.66288i 0.00352155i 0.999998 + 0.00176077i \(0.000560472\pi\)
−0.999998 + 0.00176077i \(0.999440\pi\)
\(84\) 437.569 + 633.433i 0.568365 + 0.822776i
\(85\) 589.094i 0.751721i
\(86\) −232.790 641.555i −0.291888 0.804426i
\(87\) −923.466 + 172.364i −1.13800 + 0.212407i
\(88\) 430.175 740.016i 0.521100 0.896431i
\(89\) 600.037 0.714649 0.357324 0.933980i \(-0.383689\pi\)
0.357324 + 0.933980i \(0.383689\pi\)
\(90\) −853.358 978.616i −0.999464 1.14617i
\(91\) 393.402 1388.11i 0.453184 1.59905i
\(92\) −245.685 293.972i −0.278417 0.333138i
\(93\) 156.210 + 836.917i 0.174175 + 0.933164i
\(94\) −947.190 + 343.691i −1.03931 + 0.377117i
\(95\) 642.367i 0.693742i
\(96\) 326.172 + 882.240i 0.346769 + 0.937951i
\(97\) 703.593i 0.736485i −0.929730 0.368243i \(-0.879960\pi\)
0.929730 0.368243i \(-0.120040\pi\)
\(98\) 949.984 + 196.781i 0.979213 + 0.202836i
\(99\) −952.603 + 368.441i −0.967073 + 0.374038i
\(100\) −1007.20 + 841.757i −1.00720 + 0.841757i
\(101\) 1007.27i 0.992350i −0.868223 0.496175i \(-0.834737\pi\)
0.868223 0.496175i \(-0.165263\pi\)
\(102\) −438.685 + 258.570i −0.425846 + 0.251003i
\(103\) 274.314i 0.262417i −0.991355 0.131209i \(-0.958114\pi\)
0.991355 0.131209i \(-0.0418857\pi\)
\(104\) 885.887 1523.96i 0.835273 1.43689i
\(105\) −1629.34 149.732i −1.51435 0.139165i
\(106\) −1557.23 + 565.047i −1.42690 + 0.517756i
\(107\) 1132.06 1.02281 0.511405 0.859340i \(-0.329125\pi\)
0.511405 + 0.859340i \(0.329125\pi\)
\(108\) 354.189 1065.02i 0.315573 0.948901i
\(109\) 2168.32i 1.90539i −0.303934 0.952693i \(-0.598300\pi\)
0.303934 0.952693i \(-0.401700\pi\)
\(110\) 620.506 + 1710.08i 0.537845 + 1.48227i
\(111\) 152.235 + 815.622i 0.130176 + 0.697436i
\(112\) 1064.89 + 520.517i 0.898416 + 0.439145i
\(113\) 42.7131i 0.0355585i −0.999842 0.0177793i \(-0.994340\pi\)
0.999842 0.0177793i \(-0.00565961\pi\)
\(114\) −478.356 + 281.953i −0.393001 + 0.231643i
\(115\) 814.240 0.660246
\(116\) −1109.78 + 927.489i −0.888280 + 0.742373i
\(117\) −1961.76 + 758.755i −1.55012 + 0.599546i
\(118\) −166.508 458.887i −0.129901 0.358000i
\(119\) −174.968 + 617.373i −0.134784 + 0.475584i
\(120\) −1883.26 670.491i −1.43264 0.510060i
\(121\) 100.004 0.0751345
\(122\) −1523.34 + 552.750i −1.13047 + 0.410194i
\(123\) −416.575 + 77.7534i −0.305376 + 0.0569983i
\(124\) 840.564 + 1005.77i 0.608749 + 0.728394i
\(125\) 664.433i 0.475430i
\(126\) −603.661 1279.05i −0.426812 0.904340i
\(127\) −57.0406 −0.0398546 −0.0199273 0.999801i \(-0.506343\pi\)
−0.0199273 + 0.999801i \(0.506343\pi\)
\(128\) 1102.89 + 938.498i 0.761585 + 0.648065i
\(129\) 230.048 + 1232.52i 0.157013 + 0.841217i
\(130\) 1277.85 + 3521.67i 0.862113 + 2.37593i
\(131\) 2244.81i 1.49717i 0.663036 + 0.748587i \(0.269268\pi\)
−0.663036 + 0.748587i \(0.730732\pi\)
\(132\) −1001.10 + 1212.68i −0.660107 + 0.799621i
\(133\) −190.791 + 673.203i −0.124389 + 0.438903i
\(134\) −738.124 2034.22i −0.475852 1.31142i
\(135\) 1254.07 + 2029.10i 0.799502 + 1.29361i
\(136\) −394.005 + 677.793i −0.248424 + 0.427355i
\(137\) 1244.36i 0.776003i −0.921659 0.388002i \(-0.873165\pi\)
0.921659 0.388002i \(-0.126835\pi\)
\(138\) 357.393 + 606.346i 0.220459 + 0.374026i
\(139\) 502.246 0.306475 0.153237 0.988189i \(-0.451030\pi\)
0.153237 + 0.988189i \(0.451030\pi\)
\(140\) −2300.17 + 1027.17i −1.38857 + 0.620084i
\(141\) 1819.69 339.643i 1.08684 0.202859i
\(142\) −892.764 2460.40i −0.527599 1.45403i
\(143\) 2946.96 1.72334
\(144\) −327.317 1696.72i −0.189420 0.981896i
\(145\) 3073.86i 1.76048i
\(146\) −570.086 1571.12i −0.323155 0.890596i
\(147\) −1663.08 640.853i −0.933119 0.359569i
\(148\) 819.176 + 980.179i 0.454972 + 0.544393i
\(149\) −2671.10 −1.46863 −0.734313 0.678811i \(-0.762496\pi\)
−0.734313 + 0.678811i \(0.762496\pi\)
\(150\) 2077.44 1224.49i 1.13082 0.666527i
\(151\) −1518.45 −0.818345 −0.409172 0.912457i \(-0.634183\pi\)
−0.409172 + 0.912457i \(0.634183\pi\)
\(152\) −429.635 + 739.087i −0.229263 + 0.394394i
\(153\) 872.506 337.462i 0.461032 0.178315i
\(154\) 142.378 + 1976.46i 0.0745012 + 1.03421i
\(155\) −2785.77 −1.44360
\(156\) −2061.62 + 2497.34i −1.05809 + 1.28171i
\(157\) 1311.73 0.666800 0.333400 0.942785i \(-0.391804\pi\)
0.333400 + 0.942785i \(0.391804\pi\)
\(158\) 75.5727 27.4218i 0.0380521 0.0138073i
\(159\) 2991.66 558.392i 1.49217 0.278512i
\(160\) −3033.59 + 519.481i −1.49892 + 0.256678i
\(161\) 853.327 + 241.839i 0.417712 + 0.118383i
\(162\) −960.580 + 1824.50i −0.465866 + 0.884855i
\(163\) 3119.89i 1.49920i −0.661894 0.749598i \(-0.730247\pi\)
0.661894 0.749598i \(-0.269753\pi\)
\(164\) −500.621 + 418.390i −0.238366 + 0.199212i
\(165\) −613.198 3285.29i −0.289318 1.55006i
\(166\) −2.56902 7.08007i −0.00120117 0.00331036i
\(167\) −3622.79 −1.67868 −0.839342 0.543604i \(-0.817059\pi\)
−0.839342 + 0.543604i \(0.817059\pi\)
\(168\) −1774.52 1262.03i −0.814923 0.579569i
\(169\) 3871.87 1.76234
\(170\) −568.332 1566.29i −0.256406 0.706640i
\(171\) 951.408 367.979i 0.425474 0.164562i
\(172\) 1237.89 + 1481.18i 0.548767 + 0.656623i
\(173\) 1901.49i 0.835653i 0.908527 + 0.417826i \(0.137208\pi\)
−0.908527 + 0.417826i \(0.862792\pi\)
\(174\) 2289.03 1349.20i 0.997303 0.587832i
\(175\) 828.582 2923.64i 0.357914 1.26289i
\(176\) −429.818 + 2382.57i −0.184084 + 1.02042i
\(177\) 164.548 + 881.586i 0.0698766 + 0.374373i
\(178\) −1595.38 + 578.888i −0.671791 + 0.243761i
\(179\) 1329.17 0.555010 0.277505 0.960724i \(-0.410493\pi\)
0.277505 + 0.960724i \(0.410493\pi\)
\(180\) 3213.04 + 1778.67i 1.33048 + 0.736523i
\(181\) 2346.73 0.963709 0.481855 0.876251i \(-0.339963\pi\)
0.481855 + 0.876251i \(0.339963\pi\)
\(182\) 293.209 + 4070.26i 0.119418 + 1.65773i
\(183\) 2926.56 546.240i 1.18217 0.220652i
\(184\) 936.839 + 544.589i 0.375352 + 0.218194i
\(185\) −2714.89 −1.07893
\(186\) −1222.75 2074.50i −0.482025 0.817793i
\(187\) −1310.68 −0.512548
\(188\) 2186.82 1827.61i 0.848351 0.709002i
\(189\) 711.596 + 2498.98i 0.273868 + 0.961767i
\(190\) −619.727 1707.93i −0.236630 0.652138i
\(191\) 2129.66i 0.806791i 0.915026 + 0.403395i \(0.132170\pi\)
−0.915026 + 0.403395i \(0.867830\pi\)
\(192\) −1718.37 2031.03i −0.645901 0.763421i
\(193\) 878.502 0.327647 0.163824 0.986490i \(-0.447617\pi\)
0.163824 + 0.986490i \(0.447617\pi\)
\(194\) 678.795 + 1870.72i 0.251210 + 0.692318i
\(195\) −1262.80 6765.62i −0.463748 2.48460i
\(196\) −2715.67 + 393.298i −0.989675 + 0.143330i
\(197\) 3405.38 1.23159 0.615796 0.787906i \(-0.288835\pi\)
0.615796 + 0.787906i \(0.288835\pi\)
\(198\) 2177.33 1898.64i 0.781496 0.681468i
\(199\) 2603.72i 0.927503i 0.885965 + 0.463752i \(0.153497\pi\)
−0.885965 + 0.463752i \(0.846503\pi\)
\(200\) 1865.85 3209.77i 0.659679 1.13482i
\(201\) 729.431 + 3908.03i 0.255971 + 1.37140i
\(202\) 971.771 + 2678.14i 0.338483 + 0.932838i
\(203\) 912.973 3221.41i 0.315656 1.11379i
\(204\) 916.920 1110.71i 0.314692 0.381203i
\(205\) 1386.61i 0.472416i
\(206\) 264.646 + 729.348i 0.0895085 + 0.246680i
\(207\) −466.436 1205.97i −0.156616 0.404931i
\(208\) −885.152 + 4906.59i −0.295068 + 1.63563i
\(209\) −1429.21 −0.473016
\(210\) 4476.55 1173.80i 1.47100 0.385715i
\(211\) 987.223i 0.322101i −0.986946 0.161050i \(-0.948512\pi\)
0.986946 0.161050i \(-0.0514881\pi\)
\(212\) 3595.25 3004.70i 1.16473 0.973413i
\(213\) 882.250 + 4726.78i 0.283807 + 1.52053i
\(214\) −3009.93 + 1092.16i −0.961471 + 0.348873i
\(215\) −4102.56 −1.30136
\(216\) 85.7603 + 3173.38i 0.0270151 + 0.999635i
\(217\) −2919.50 827.408i −0.913310 0.258839i
\(218\) 2091.90 + 5765.13i 0.649913 + 1.79112i
\(219\) 563.373 + 3018.35i 0.173832 + 0.931329i
\(220\) −3299.61 3948.12i −1.01118 1.20992i
\(221\) −2699.17 −0.821565
\(222\) −1191.64 2021.71i −0.360260 0.611209i
\(223\) 1430.30i 0.429507i −0.976668 0.214754i \(-0.931105\pi\)
0.976668 0.214754i \(-0.0688949\pi\)
\(224\) −3333.51 356.597i −0.994327 0.106367i
\(225\) −4131.85 + 1598.09i −1.22425 + 0.473508i
\(226\) 41.2077 + 113.566i 0.0121287 + 0.0334261i
\(227\) 5026.34i 1.46965i 0.678258 + 0.734824i \(0.262735\pi\)
−0.678258 + 0.734824i \(0.737265\pi\)
\(228\) 999.839 1211.15i 0.290421 0.351801i
\(229\) −4464.57 −1.28833 −0.644164 0.764887i \(-0.722795\pi\)
−0.644164 + 0.764887i \(0.722795\pi\)
\(230\) −2164.91 + 785.543i −0.620651 + 0.225205i
\(231\) 333.139 3625.13i 0.0948873 1.03254i
\(232\) 2055.89 3536.68i 0.581792 1.00084i
\(233\) 2131.34i 0.599265i 0.954055 + 0.299632i \(0.0968641\pi\)
−0.954055 + 0.299632i \(0.903136\pi\)
\(234\) 4483.92 3910.00i 1.25266 1.09233i
\(235\) 6057.02i 1.68135i
\(236\) 885.427 + 1059.45i 0.244222 + 0.292222i
\(237\) −145.186 + 27.0988i −0.0397925 + 0.00742725i
\(238\) −130.407 1810.28i −0.0355169 0.493037i
\(239\) 6763.79i 1.83060i −0.402774 0.915299i \(-0.631954\pi\)
0.402774 0.915299i \(-0.368046\pi\)
\(240\) 5654.08 34.1793i 1.52071 0.00919277i
\(241\) 2721.77i 0.727489i −0.931499 0.363744i \(-0.881498\pi\)
0.931499 0.363744i \(-0.118502\pi\)
\(242\) −265.891 + 96.4794i −0.0706287 + 0.0256278i
\(243\) 2286.91 3019.76i 0.603725 0.797192i
\(244\) 3517.01 2939.31i 0.922760 0.771189i
\(245\) 3059.79 4964.63i 0.797889 1.29461i
\(246\) 1032.58 608.624i 0.267621 0.157742i
\(247\) −2943.26 −0.758199
\(248\) −3205.22 1863.21i −0.820692 0.477072i
\(249\) 2.53877 + 13.6018i 0.000646136 + 0.00346177i
\(250\) 641.015 + 1766.60i 0.162165 + 0.446918i
\(251\) 5463.02i 1.37380i 0.726754 + 0.686898i \(0.241028\pi\)
−0.726754 + 0.686898i \(0.758972\pi\)
\(252\) 2838.99 + 2818.36i 0.709680 + 0.704524i
\(253\) 1811.61i 0.450178i
\(254\) 151.660 55.0302i 0.0374645 0.0135941i
\(255\) 561.639 + 3009.06i 0.137926 + 0.738959i
\(256\) −3837.80 1431.26i −0.936963 0.349430i
\(257\) 6828.16 1.65731 0.828655 0.559760i \(-0.189107\pi\)
0.828655 + 0.559760i \(0.189107\pi\)
\(258\) −1800.73 3055.08i −0.434530 0.737214i
\(259\) −2845.21 806.355i −0.682597 0.193453i
\(260\) −6795.10 8130.62i −1.62082 1.93938i
\(261\) −4552.68 + 1760.85i −1.07971 + 0.417602i
\(262\) −2165.69 5968.51i −0.510675 1.40739i
\(263\) 665.207i 0.155964i −0.996955 0.0779818i \(-0.975152\pi\)
0.996955 0.0779818i \(-0.0248476\pi\)
\(264\) 1491.78 4190.08i 0.347776 0.976825i
\(265\) 9958.08i 2.30838i
\(266\) −142.200 1973.98i −0.0327776 0.455010i
\(267\) 3064.95 572.071i 0.702517 0.131124i
\(268\) 3925.06 + 4696.50i 0.894630 + 1.07046i
\(269\) 4857.98i 1.10110i −0.834802 0.550550i \(-0.814418\pi\)
0.834802 0.550550i \(-0.185582\pi\)
\(270\) −5291.90 4185.12i −1.19280 0.943328i
\(271\) 1075.74i 0.241131i 0.992705 + 0.120566i \(0.0384709\pi\)
−0.992705 + 0.120566i \(0.961529\pi\)
\(272\) 393.677 2182.24i 0.0877581 0.486462i
\(273\) 686.056 7465.46i 0.152095 1.65506i
\(274\) 1200.50 + 3308.50i 0.264689 + 0.729466i
\(275\) 6206.88 1.36105
\(276\) −1535.21 1267.36i −0.334815 0.276399i
\(277\) 6119.99i 1.32749i 0.747959 + 0.663745i \(0.231034\pi\)
−0.747959 + 0.663745i \(0.768966\pi\)
\(278\) −1335.38 + 484.545i −0.288095 + 0.104536i
\(279\) 1595.82 + 4125.99i 0.342435 + 0.885365i
\(280\) 5124.74 4950.15i 1.09379 1.05653i
\(281\) 580.494i 0.123236i −0.998100 0.0616181i \(-0.980374\pi\)
0.998100 0.0616181i \(-0.0196261\pi\)
\(282\) −4510.52 + 2658.60i −0.952473 + 0.561408i
\(283\) 5973.23 1.25467 0.627335 0.778750i \(-0.284146\pi\)
0.627335 + 0.778750i \(0.284146\pi\)
\(284\) 4747.37 + 5680.43i 0.991918 + 1.18687i
\(285\) 612.429 + 3281.17i 0.127288 + 0.681964i
\(286\) −7835.39 + 2843.09i −1.61999 + 0.587817i
\(287\) 411.841 1453.18i 0.0847046 0.298879i
\(288\) 2507.19 + 4195.46i 0.512978 + 0.858402i
\(289\) −3712.52 −0.755653
\(290\) 2965.52 + 8172.78i 0.600487 + 1.65490i
\(291\) −670.801 3593.91i −0.135131 0.723982i
\(292\) 3031.50 + 3627.32i 0.607551 + 0.726961i
\(293\) 522.434i 0.104167i 0.998643 + 0.0520835i \(0.0165862\pi\)
−0.998643 + 0.0520835i \(0.983414\pi\)
\(294\) 5040.07 + 99.4388i 0.999805 + 0.0197258i
\(295\) −2934.45 −0.579154
\(296\) −3123.66 1815.80i −0.613376 0.356558i
\(297\) −4514.57 + 2790.18i −0.882027 + 0.545127i
\(298\) 7101.95 2576.96i 1.38055 0.500937i
\(299\) 3730.77i 0.721591i
\(300\) −4342.18 + 5259.90i −0.835653 + 1.01227i
\(301\) −4299.50 1218.51i −0.823319 0.233335i
\(302\) 4037.28 1464.94i 0.769269 0.279131i
\(303\) −960.327 5145.08i −0.182077 0.975503i
\(304\) 429.278 2379.58i 0.0809895 0.448942i
\(305\) 9741.37i 1.82882i
\(306\) −1994.25 + 1739.00i −0.372562 + 0.324876i
\(307\) 7907.97 1.47014 0.735068 0.677994i \(-0.237150\pi\)
0.735068 + 0.677994i \(0.237150\pi\)
\(308\) −2285.36 5117.67i −0.422794 0.946774i
\(309\) −261.529 1401.18i −0.0481485 0.257962i
\(310\) 7406.82 2687.59i 1.35703 0.492402i
\(311\) 1459.26 0.266068 0.133034 0.991111i \(-0.457528\pi\)
0.133034 + 0.991111i \(0.457528\pi\)
\(312\) 3072.12 8628.91i 0.557451 1.56576i
\(313\) 5437.91i 0.982008i −0.871157 0.491004i \(-0.836630\pi\)
0.871157 0.491004i \(-0.163370\pi\)
\(314\) −3487.64 + 1265.50i −0.626812 + 0.227440i
\(315\) −8465.31 + 788.579i −1.51418 + 0.141052i
\(316\) −174.478 + 145.818i −0.0310606 + 0.0259586i
\(317\) −7991.76 −1.41597 −0.707984 0.706228i \(-0.750395\pi\)
−0.707984 + 0.706228i \(0.750395\pi\)
\(318\) −7415.54 + 4370.88i −1.30768 + 0.770776i
\(319\) 6839.05 1.20035
\(320\) 7564.56 4307.87i 1.32147 0.752554i
\(321\) 5782.51 1079.30i 1.00545 0.187666i
\(322\) −2502.15 + 180.247i −0.433041 + 0.0311950i
\(323\) 1309.04 0.225501
\(324\) 793.797 5777.73i 0.136111 0.990694i
\(325\) 12782.2 2.18163
\(326\) 3009.93 + 8295.19i 0.511364 + 1.40929i
\(327\) −2067.26 11075.6i −0.349602 1.87304i
\(328\) 927.411 1595.39i 0.156121 0.268570i
\(329\) −1799.01 + 6347.77i −0.301467 + 1.06372i
\(330\) 4799.88 + 8143.37i 0.800681 + 1.35842i
\(331\) 5913.18i 0.981927i 0.871180 + 0.490963i \(0.163355\pi\)
−0.871180 + 0.490963i \(0.836645\pi\)
\(332\) 13.6611 + 16.3461i 0.00225828 + 0.00270213i
\(333\) 1555.22 + 4021.01i 0.255932 + 0.661712i
\(334\) 9632.31 3495.11i 1.57801 0.572586i
\(335\) −13008.3 −2.12155
\(336\) 5935.65 + 1643.51i 0.963739 + 0.266848i
\(337\) −10946.5 −1.76942 −0.884712 0.466138i \(-0.845645\pi\)
−0.884712 + 0.466138i \(0.845645\pi\)
\(338\) −10294.5 + 3735.40i −1.65665 + 0.601122i
\(339\) −40.7224 218.176i −0.00652430 0.0349549i
\(340\) 3022.17 + 3616.15i 0.482059 + 0.576804i
\(341\) 6198.08i 0.984296i
\(342\) −2174.60 + 1896.26i −0.343827 + 0.299819i
\(343\) 4681.23 4294.15i 0.736917 0.675983i
\(344\) −4720.28 2743.92i −0.739827 0.430065i
\(345\) 4159.09 776.292i 0.649037 0.121142i
\(346\) −1834.48 5055.70i −0.285035 0.785538i
\(347\) 1637.21 0.253285 0.126643 0.991948i \(-0.459580\pi\)
0.126643 + 0.991948i \(0.459580\pi\)
\(348\) −4784.43 + 5795.62i −0.736989 + 0.892752i
\(349\) −4492.59 −0.689062 −0.344531 0.938775i \(-0.611962\pi\)
−0.344531 + 0.938775i \(0.611962\pi\)
\(350\) 617.557 + 8572.77i 0.0943137 + 1.30924i
\(351\) −9297.15 + 5746.00i −1.41380 + 0.873786i
\(352\) −1155.80 6749.46i −0.175012 1.02201i
\(353\) 1372.22 0.206901 0.103451 0.994635i \(-0.467012\pi\)
0.103451 + 0.994635i \(0.467012\pi\)
\(354\) −1288.01 2185.22i −0.193382 0.328088i
\(355\) −15733.6 −2.35226
\(356\) 3683.32 3078.30i 0.548359 0.458286i
\(357\) −305.128 + 3320.32i −0.0452355 + 0.492240i
\(358\) −3534.00 + 1282.32i −0.521725 + 0.189310i
\(359\) 5118.09i 0.752430i −0.926532 0.376215i \(-0.877225\pi\)
0.926532 0.376215i \(-0.122775\pi\)
\(360\) −10258.8 1629.34i −1.50191 0.238538i
\(361\) −5431.59 −0.791892
\(362\) −6239.51 + 2264.02i −0.905915 + 0.328714i
\(363\) 510.814 95.3432i 0.0738590 0.0137857i
\(364\) −4706.39 10539.1i −0.677697 1.51759i
\(365\) −10046.9 −1.44076
\(366\) −7254.16 + 4275.76i −1.03601 + 0.610649i
\(367\) 6151.73i 0.874980i 0.899223 + 0.437490i \(0.144133\pi\)
−0.899223 + 0.437490i \(0.855867\pi\)
\(368\) −3016.27 544.137i −0.427266 0.0770791i
\(369\) −2053.71 + 794.320i −0.289734 + 0.112061i
\(370\) 7218.36 2619.20i 1.01423 0.368016i
\(371\) −2957.67 + 10436.1i −0.413894 + 1.46042i
\(372\) 5252.44 + 4336.03i 0.732060 + 0.604334i
\(373\) 12854.7i 1.78443i −0.451614 0.892213i \(-0.649152\pi\)
0.451614 0.892213i \(-0.350848\pi\)
\(374\) 3484.85 1264.49i 0.481810 0.174826i
\(375\) −633.466 3393.88i −0.0872321 0.467358i
\(376\) −4051.12 + 6969.01i −0.555640 + 0.955849i
\(377\) 14084.1 1.92405
\(378\) −4302.90 5957.79i −0.585495 0.810676i
\(379\) 2284.79i 0.309662i 0.987941 + 0.154831i \(0.0494832\pi\)
−0.987941 + 0.154831i \(0.950517\pi\)
\(380\) 3295.47 + 3943.17i 0.444879 + 0.532316i
\(381\) −291.360 + 54.3821i −0.0391780 + 0.00731255i
\(382\) −2054.60 5662.36i −0.275190 0.758407i
\(383\) 3061.90 0.408501 0.204251 0.978919i \(-0.434524\pi\)
0.204251 + 0.978919i \(0.434524\pi\)
\(384\) 6528.27 + 3742.30i 0.867563 + 0.497327i
\(385\) 11460.4 + 3247.97i 1.51708 + 0.429952i
\(386\) −2335.77 + 847.539i −0.307998 + 0.111758i
\(387\) 2350.15 + 6076.29i 0.308694 + 0.798128i
\(388\) −3609.57 4319.00i −0.472289 0.565114i
\(389\) 2350.30 0.306336 0.153168 0.988200i \(-0.451052\pi\)
0.153168 + 0.988200i \(0.451052\pi\)
\(390\) 9884.71 + 16770.2i 1.28341 + 2.17741i
\(391\) 1659.29i 0.214613i
\(392\) 6841.00 3665.66i 0.881435 0.472305i
\(393\) 2140.19 + 11466.3i 0.274703 + 1.47176i
\(394\) −9054.25 + 3285.36i −1.15773 + 0.420086i
\(395\) 483.266i 0.0615589i
\(396\) −3957.37 + 7148.71i −0.502186 + 0.907163i
\(397\) 1338.92 0.169266 0.0846329 0.996412i \(-0.473028\pi\)
0.0846329 + 0.996412i \(0.473028\pi\)
\(398\) −2511.96 6922.80i −0.316364 0.871880i
\(399\) −332.721 + 3620.58i −0.0417466 + 0.454275i
\(400\) −1864.30 + 10334.2i −0.233038 + 1.29178i
\(401\) 7728.45i 0.962444i −0.876599 0.481222i \(-0.840193\pi\)
0.876599 0.481222i \(-0.159807\pi\)
\(402\) −5709.71 9686.97i −0.708394 1.20185i
\(403\) 12764.1i 1.57773i
\(404\) −5167.50 6183.14i −0.636368 0.761442i
\(405\) 8340.23 + 9168.92i 1.02328 + 1.12496i
\(406\) 680.455 + 9445.90i 0.0831783 + 1.15466i
\(407\) 6040.37i 0.735652i
\(408\) −1366.35 + 3837.77i −0.165795 + 0.465681i
\(409\) 13294.9i 1.60731i 0.595093 + 0.803657i \(0.297115\pi\)
−0.595093 + 0.803657i \(0.702885\pi\)
\(410\) 1337.74 + 3686.74i 0.161138 + 0.444085i
\(411\) −1186.36 6356.09i −0.142382 0.762829i
\(412\) −1407.28 1683.87i −0.168281 0.201356i
\(413\) −3075.32 871.569i −0.366408 0.103843i
\(414\) 2403.63 + 2756.44i 0.285343 + 0.327226i
\(415\) −45.2751 −0.00535534
\(416\) −2380.21 13899.6i −0.280527 1.63818i
\(417\) 2565.44 478.838i 0.301272 0.0562322i
\(418\) 3799.99 1378.84i 0.444649 0.161342i
\(419\) 8465.25i 0.987003i −0.869745 0.493502i \(-0.835717\pi\)
0.869745 0.493502i \(-0.164283\pi\)
\(420\) −10769.8 + 7439.69i −1.25122 + 0.864332i
\(421\) 1141.45i 0.132140i 0.997815 + 0.0660701i \(0.0210461\pi\)
−0.997815 + 0.0660701i \(0.978954\pi\)
\(422\) 952.429 + 2624.83i 0.109866 + 0.302784i
\(423\) 8971.03 3469.75i 1.03117 0.398830i
\(424\) −6660.27 + 11457.4i −0.762857 + 1.31232i
\(425\) −5684.99 −0.648853
\(426\) −6905.92 11716.4i −0.785429 1.33254i
\(427\) −2893.31 + 10209.0i −0.327908 + 1.15702i
\(428\) 6949.16 5807.70i 0.784814 0.655901i
\(429\) 15052.9 2809.61i 1.69408 0.316199i
\(430\) 10907.9 3957.97i 1.22332 0.443884i
\(431\) 6623.29i 0.740215i 0.928989 + 0.370108i \(0.120679\pi\)
−0.928989 + 0.370108i \(0.879321\pi\)
\(432\) −3289.55 8354.66i −0.366363 0.930472i
\(433\) 151.928i 0.0168619i 0.999964 + 0.00843095i \(0.00268369\pi\)
−0.999964 + 0.00843095i \(0.997316\pi\)
\(434\) 8560.62 616.681i 0.946827 0.0682066i
\(435\) −2930.59 15701.1i −0.323014 1.73059i
\(436\) −11123.9 13310.2i −1.22187 1.46203i
\(437\) 1809.34i 0.198060i
\(438\) −4409.86 7481.68i −0.481076 0.816184i
\(439\) 9828.43i 1.06853i 0.845317 + 0.534266i \(0.179412\pi\)
−0.845317 + 0.534266i \(0.820588\pi\)
\(440\) 12582.0 + 7313.98i 1.36323 + 0.792455i
\(441\) −9105.89 1687.87i −0.983251 0.182255i
\(442\) 7176.57 2604.04i 0.772296 0.280230i
\(443\) 2207.57 0.236760 0.118380 0.992968i \(-0.462230\pi\)
0.118380 + 0.992968i \(0.462230\pi\)
\(444\) 5118.80 + 4225.70i 0.547134 + 0.451673i
\(445\) 10202.0i 1.08679i
\(446\) 1379.89 + 3802.90i 0.146502 + 0.403750i
\(447\) −13643.8 + 2546.61i −1.44369 + 0.269465i
\(448\) 9207.17 2267.90i 0.970978 0.239170i
\(449\) 7960.02i 0.836651i −0.908297 0.418326i \(-0.862617\pi\)
0.908297 0.418326i \(-0.137383\pi\)
\(450\) 9444.02 8235.23i 0.989323 0.862694i
\(451\) 3085.09 0.322109
\(452\) −219.127 262.194i −0.0228028 0.0272845i
\(453\) −7756.17 + 1447.68i −0.804452 + 0.150150i
\(454\) −4849.19 13364.1i −0.501286 1.38151i
\(455\) 23601.1 + 6688.75i 2.43173 + 0.689172i
\(456\) −1489.91 + 4184.82i −0.153007 + 0.429764i
\(457\) 3624.43 0.370993 0.185496 0.982645i \(-0.440611\pi\)
0.185496 + 0.982645i \(0.440611\pi\)
\(458\) 11870.4 4307.22i 1.21107 0.439439i
\(459\) 4134.97 2555.58i 0.420488 0.259878i
\(460\) 4998.21 4177.21i 0.506615 0.423399i
\(461\) 5885.29i 0.594589i 0.954786 + 0.297294i \(0.0960843\pi\)
−0.954786 + 0.297294i \(0.903916\pi\)
\(462\) 2611.61 + 9959.91i 0.262993 + 1.00298i
\(463\) 13856.2 1.39083 0.695415 0.718609i \(-0.255221\pi\)
0.695415 + 0.718609i \(0.255221\pi\)
\(464\) −2054.18 + 11386.8i −0.205524 + 1.13926i
\(465\) −14229.5 + 2655.93i −1.41909 + 0.264873i
\(466\) −2056.22 5666.82i −0.204405 0.563327i
\(467\) 12318.9i 1.22066i −0.792147 0.610330i \(-0.791037\pi\)
0.792147 0.610330i \(-0.208963\pi\)
\(468\) −8149.68 + 14721.8i −0.804955 + 1.45409i
\(469\) −13632.7 3863.62i −1.34222 0.380396i
\(470\) −5843.54 16104.4i −0.573494 1.58051i
\(471\) 6700.24 1250.60i 0.655480 0.122345i
\(472\) −3376.29 1962.65i −0.329251 0.191395i
\(473\) 9127.83i 0.887311i
\(474\) 359.877 212.119i 0.0348728 0.0205548i
\(475\) −6199.09 −0.598808
\(476\) 2093.20 + 4687.36i 0.201558 + 0.451355i
\(477\) 14748.9 5704.47i 1.41573 0.547567i
\(478\) 6525.40 + 17983.6i 0.624403 + 1.72082i
\(479\) −5683.40 −0.542132 −0.271066 0.962561i \(-0.587376\pi\)
−0.271066 + 0.962561i \(0.587376\pi\)
\(480\) −15000.1 + 5545.68i −1.42637 + 0.527343i
\(481\) 12439.3i 1.17918i
\(482\) 2625.84 + 7236.67i 0.248141 + 0.683861i
\(483\) 4589.31 + 421.745i 0.432341 + 0.0397310i
\(484\) 613.874 513.040i 0.0576516 0.0481818i
\(485\) 11962.7 1.12000
\(486\) −3167.12 + 10235.3i −0.295603 + 0.955311i
\(487\) 3252.77 0.302663 0.151332 0.988483i \(-0.451644\pi\)
0.151332 + 0.988483i \(0.451644\pi\)
\(488\) −6515.33 + 11208.1i −0.604375 + 1.03969i
\(489\) −2974.49 15936.2i −0.275073 1.47374i
\(490\) −3345.74 + 16151.9i −0.308459 + 1.48912i
\(491\) −8991.73 −0.826459 −0.413229 0.910627i \(-0.635599\pi\)
−0.413229 + 0.910627i \(0.635599\pi\)
\(492\) −2158.25 + 2614.40i −0.197767 + 0.239565i
\(493\) −6264.00 −0.572244
\(494\) 7825.56 2839.53i 0.712730 0.258616i
\(495\) −6264.36 16196.5i −0.568812 1.47066i
\(496\) 10319.6 + 1861.66i 0.934200 + 0.168530i
\(497\) −16488.9 4673.07i −1.48818 0.421762i
\(498\) −19.8725 33.7153i −0.00178817 0.00303377i
\(499\) 10529.3i 0.944599i −0.881438 0.472300i \(-0.843424\pi\)
0.881438 0.472300i \(-0.156576\pi\)
\(500\) −3408.67 4078.62i −0.304881 0.364803i
\(501\) −18505.0 + 3453.95i −1.65019 + 0.308006i
\(502\) −5270.48 14525.1i −0.468592 1.29141i
\(503\) 1886.42 0.167220 0.0836098 0.996499i \(-0.473355\pi\)
0.0836098 + 0.996499i \(0.473355\pi\)
\(504\) −10267.3 4754.55i −0.907428 0.420207i
\(505\) 17126.0 1.50910
\(506\) −1747.76 4816.72i −0.153552 0.423181i
\(507\) 19777.3 3691.41i 1.73242 0.323356i
\(508\) −350.143 + 292.629i −0.0305809 + 0.0255577i
\(509\) 10860.9i 0.945781i −0.881121 0.472891i \(-0.843211\pi\)
0.881121 0.472891i \(-0.156789\pi\)
\(510\) −4396.29 7458.66i −0.381708 0.647598i
\(511\) −10529.2 2984.05i −0.911513 0.258330i
\(512\) 11584.8 + 102.914i 0.999961 + 0.00888324i
\(513\) 4508.90 2786.68i 0.388057 0.239834i
\(514\) −18154.7 + 6587.50i −1.55792 + 0.565296i
\(515\) 4663.97 0.399067
\(516\) 7735.20 + 6385.60i 0.659929 + 0.544788i
\(517\) −13476.3 −1.14640
\(518\) 8342.79 600.990i 0.707647 0.0509768i
\(519\) 1812.87 + 9712.71i 0.153326 + 0.821466i
\(520\) 25910.9 + 15062.1i 2.18513 + 1.27023i
\(521\) −6930.38 −0.582774 −0.291387 0.956605i \(-0.594117\pi\)
−0.291387 + 0.956605i \(0.594117\pi\)
\(522\) 10405.9 9073.98i 0.872516 0.760838i
\(523\) 9140.75 0.764239 0.382119 0.924113i \(-0.375194\pi\)
0.382119 + 0.924113i \(0.375194\pi\)
\(524\) 11516.3 + 13779.7i 0.960099 + 1.14880i
\(525\) 1444.97 15723.7i 0.120121 1.30712i
\(526\) 641.762 + 1768.66i 0.0531980 + 0.146610i
\(527\) 5676.93i 0.469243i
\(528\) 76.0459 + 12579.8i 0.00626794 + 1.03687i
\(529\) 9873.55 0.811503
\(530\) −9607.10 26476.6i −0.787370 2.16994i
\(531\) 1681.00 + 4346.21i 0.137381 + 0.355197i
\(532\) 2282.49 + 5111.25i 0.186012 + 0.416543i
\(533\) 6353.33 0.516310
\(534\) −7597.20 + 4477.95i −0.615661 + 0.362884i
\(535\) 19247.7i 1.55542i
\(536\) −14966.9 8700.35i −1.20611 0.701116i
\(537\) 6789.31 1267.22i 0.545587 0.101834i
\(538\) 4686.76 + 12916.4i 0.375577 + 1.03507i
\(539\) 11045.8 + 6807.76i 0.882705 + 0.544027i
\(540\) 18107.8 + 6022.04i 1.44303 + 0.479903i
\(541\) 1327.06i 0.105461i −0.998609 0.0527307i \(-0.983207\pi\)
0.998609 0.0527307i \(-0.0167925\pi\)
\(542\) −1037.83 2860.19i −0.0822481 0.226671i
\(543\) 11987.0 2237.36i 0.947348 0.176822i
\(544\) 1058.61 + 6181.95i 0.0834333 + 0.487222i
\(545\) 36866.4 2.89759
\(546\) 5378.25 + 20511.1i 0.421553 + 1.60768i
\(547\) 6943.34i 0.542735i −0.962476 0.271367i \(-0.912524\pi\)
0.962476 0.271367i \(-0.0874758\pi\)
\(548\) −6383.78 7638.47i −0.497631 0.595437i
\(549\) 14427.9 5580.33i 1.12162 0.433811i
\(550\) −16502.9 + 5988.12i −1.27943 + 0.464244i
\(551\) −6830.47 −0.528108
\(552\) 5304.53 + 1888.55i 0.409014 + 0.145620i
\(553\) 143.536 506.465i 0.0110376 0.0389459i
\(554\) −5904.29 16271.9i −0.452797 1.24788i
\(555\) −13867.5 + 2588.36i −1.06062 + 0.197963i
\(556\) 3083.04 2576.62i 0.235162 0.196534i
\(557\) 12038.4 0.915770 0.457885 0.889012i \(-0.348607\pi\)
0.457885 + 0.889012i \(0.348607\pi\)
\(558\) −8223.56 9430.64i −0.623891 0.715467i
\(559\) 18797.5i 1.42227i
\(560\) −8850.00 + 18105.6i −0.667823 + 1.36625i
\(561\) −6694.88 + 1249.59i −0.503847 + 0.0940427i
\(562\) 560.035 + 1543.42i 0.0420349 + 0.115846i
\(563\) 10849.1i 0.812139i 0.913842 + 0.406070i \(0.133101\pi\)
−0.913842 + 0.406070i \(0.866899\pi\)
\(564\) 9427.69 11420.2i 0.703861 0.852622i
\(565\) 726.222 0.0540750
\(566\) −15881.6 + 5762.70i −1.17943 + 0.427958i
\(567\) 6017.30 + 12086.2i 0.445684 + 0.895190i
\(568\) −18102.6 10523.1i −1.33727 0.777359i
\(569\) 10335.0i 0.761450i 0.924688 + 0.380725i \(0.124326\pi\)
−0.924688 + 0.380725i \(0.875674\pi\)
\(570\) −4793.86 8133.16i −0.352268 0.597650i
\(571\) 2025.81i 0.148472i −0.997241 0.0742360i \(-0.976348\pi\)
0.997241 0.0742360i \(-0.0236518\pi\)
\(572\) 18089.9 15118.5i 1.32234 1.10513i
\(573\) 2030.41 + 10878.2i 0.148030 + 0.793094i
\(574\) 306.953 + 4261.04i 0.0223205 + 0.309847i
\(575\) 7857.73i 0.569896i
\(576\) −10713.7 8736.09i −0.775009 0.631951i
\(577\) 3778.32i 0.272606i 0.990667 + 0.136303i \(0.0435220\pi\)
−0.990667 + 0.136303i \(0.956478\pi\)
\(578\) 9870.88 3581.68i 0.710337 0.257748i
\(579\) 4487.33 837.558i 0.322085 0.0601170i
\(580\) −15769.5 18868.8i −1.12895 1.35084i
\(581\) −47.4484 13.4473i −0.00338811 0.000960217i
\(582\) 5250.78 + 8908.35i 0.373972 + 0.634473i
\(583\) −22155.8 −1.57393
\(584\) −11559.6 6719.67i −0.819077 0.476134i
\(585\) −12900.6 33354.4i −0.911751 2.35733i
\(586\) −504.021 1389.05i −0.0355306 0.0979200i
\(587\) 1814.70i 0.127599i 0.997963 + 0.0637997i \(0.0203219\pi\)
−0.997963 + 0.0637997i \(0.979678\pi\)
\(588\) −13496.5 + 4598.04i −0.946575 + 0.322483i
\(589\) 6190.30i 0.433051i
\(590\) 7802.14 2831.03i 0.544422 0.197545i
\(591\) 17394.5 3246.67i 1.21068 0.225973i
\(592\) 10057.0 + 1814.29i 0.698211 + 0.125958i
\(593\) −9793.33 −0.678185 −0.339093 0.940753i \(-0.610120\pi\)
−0.339093 + 0.940753i \(0.610120\pi\)
\(594\) 9311.52 11774.0i 0.643192 0.813288i
\(595\) −10496.8 2974.87i −0.723236 0.204971i
\(596\) −16396.6 + 13703.3i −1.12689 + 0.941792i
\(597\) 2482.37 + 13299.7i 0.170179 + 0.911757i
\(598\) −3599.28 9919.39i −0.246129 0.678317i
\(599\) 10824.1i 0.738332i 0.929363 + 0.369166i \(0.120357\pi\)
−0.929363 + 0.369166i \(0.879643\pi\)
\(600\) 6470.50 18174.2i 0.440262 1.23660i
\(601\) 16512.2i 1.12071i 0.828252 + 0.560355i \(0.189335\pi\)
−0.828252 + 0.560355i \(0.810665\pi\)
\(602\) 12607.1 908.178i 0.853533 0.0614860i
\(603\) 7451.78 + 19266.5i 0.503250 + 1.30115i
\(604\) −9321.03 + 7789.97i −0.627926 + 0.524783i
\(605\) 1700.30i 0.114260i
\(606\) 7517.07 + 12753.3i 0.503895 + 0.854897i
\(607\) 7537.39i 0.504009i 0.967726 + 0.252004i \(0.0810898\pi\)
−0.967726 + 0.252004i \(0.918910\pi\)
\(608\) 1154.35 + 6741.00i 0.0769982 + 0.449644i
\(609\) 1592.14 17325.2i 0.105939 1.15279i
\(610\) −9398.03 25900.4i −0.623796 1.71914i
\(611\) −27752.6 −1.83756
\(612\) 3624.63 6547.63i 0.239407 0.432471i
\(613\) 10916.9i 0.719297i −0.933088 0.359648i \(-0.882897\pi\)
0.933088 0.359648i \(-0.117103\pi\)
\(614\) −21025.7 + 7629.25i −1.38197 + 0.501452i
\(615\) −1321.99 7082.74i −0.0866792 0.464396i
\(616\) 11013.6 + 11402.1i 0.720376 + 0.745784i
\(617\) 27154.5i 1.77180i −0.463881 0.885898i \(-0.653543\pi\)
0.463881 0.885898i \(-0.346457\pi\)
\(618\) 2047.15 + 3473.15i 0.133250 + 0.226069i
\(619\) −12483.7 −0.810602 −0.405301 0.914183i \(-0.632833\pi\)
−0.405301 + 0.914183i \(0.632833\pi\)
\(620\) −17100.4 + 14291.5i −1.10769 + 0.925745i
\(621\) −3532.29 5715.32i −0.228254 0.369320i
\(622\) −3879.89 + 1407.83i −0.250112 + 0.0907537i
\(623\) −3030.12 + 10691.7i −0.194863 + 0.687569i
\(624\) 156.606 + 25906.4i 0.0100469 + 1.66200i
\(625\) −9212.97 −0.589630
\(626\) 5246.25 + 14458.3i 0.334956 + 0.923117i
\(627\) −7300.31 + 1362.60i −0.464986 + 0.0867894i
\(628\) 8052.06 6729.44i 0.511643 0.427601i
\(629\) 5532.48i 0.350707i
\(630\) 21746.8 10263.6i 1.37526 0.649068i
\(631\) 5011.50 0.316172 0.158086 0.987425i \(-0.449468\pi\)
0.158086 + 0.987425i \(0.449468\pi\)
\(632\) 323.224 556.031i 0.0203436 0.0349964i
\(633\) −941.212 5042.68i −0.0590992 0.316632i
\(634\) 21248.5 7710.09i 1.33105 0.482976i
\(635\) 969.822i 0.0606082i
\(636\) 15499.7 18775.5i 0.966354 1.17059i
\(637\) 22747.4 + 14019.7i 1.41489 + 0.872023i
\(638\) −18183.7 + 6598.01i −1.12837 + 0.409432i
\(639\) 9012.96 + 23303.0i 0.557977 + 1.44265i
\(640\) −15956.7 + 18751.7i −0.985534 + 1.15817i
\(641\) 20433.1i 1.25906i 0.776975 + 0.629531i \(0.216753\pi\)
−0.776975 + 0.629531i \(0.783247\pi\)
\(642\) −14333.3 + 8448.35i −0.881137 + 0.519361i
\(643\) −7784.75 −0.477450 −0.238725 0.971087i \(-0.576730\pi\)
−0.238725 + 0.971087i \(0.576730\pi\)
\(644\) 6478.82 2893.20i 0.396431 0.177031i
\(645\) −20955.6 + 3911.36i −1.27927 + 0.238775i
\(646\) −3480.47 + 1262.90i −0.211977 + 0.0769166i
\(647\) 13288.6 0.807463 0.403732 0.914877i \(-0.367713\pi\)
0.403732 + 0.914877i \(0.367713\pi\)
\(648\) 3463.54 + 16127.7i 0.209970 + 0.977708i
\(649\) 6528.89i 0.394887i
\(650\) −33985.5 + 12331.7i −2.05080 + 0.744138i
\(651\) −15701.4 1442.92i −0.945297 0.0868702i
\(652\) −16005.7 19151.4i −0.961395 1.15035i
\(653\) −6596.26 −0.395301 −0.197651 0.980273i \(-0.563331\pi\)
−0.197651 + 0.980273i \(0.563331\pi\)
\(654\) 16181.7 + 27453.6i 0.967515 + 1.64147i
\(655\) −38167.0 −2.27680
\(656\) −926.641 + 5136.57i −0.0551513 + 0.305715i
\(657\) 5755.35 + 14880.4i 0.341762 + 0.883623i
\(658\) −1340.83 18613.1i −0.0794393 1.10276i
\(659\) 8372.03 0.494883 0.247442 0.968903i \(-0.420410\pi\)
0.247442 + 0.968903i \(0.420410\pi\)
\(660\) −20618.3 17020.9i −1.21601 1.00385i
\(661\) 6191.40 0.364323 0.182162 0.983269i \(-0.441691\pi\)
0.182162 + 0.983269i \(0.441691\pi\)
\(662\) −5704.77 15722.0i −0.334928 0.923040i
\(663\) −13787.2 + 2573.37i −0.807618 + 0.150741i
\(664\) −52.0921 30.2814i −0.00304452 0.00176980i
\(665\) −11446.0 3243.89i −0.667455 0.189162i
\(666\) −8014.31 9190.68i −0.466289 0.534732i
\(667\) 8658.04i 0.502610i
\(668\) −22238.5 + 18585.6i −1.28807 + 1.07650i
\(669\) −1363.64 7305.90i −0.0788063 0.422216i
\(670\) 34586.5 12549.8i 1.99432 0.723644i
\(671\) −21673.7 −1.24695
\(672\) −17367.3 + 1356.67i −0.996963 + 0.0778789i
\(673\) 1317.91 0.0754855 0.0377428 0.999287i \(-0.487983\pi\)
0.0377428 + 0.999287i \(0.487983\pi\)
\(674\) 29104.7 10560.7i 1.66331 0.603537i
\(675\) −19581.6 + 12102.2i −1.11659 + 0.690096i
\(676\) 23767.4 19863.4i 1.35227 1.13014i
\(677\) 11076.8i 0.628826i −0.949286 0.314413i \(-0.898192\pi\)
0.949286 0.314413i \(-0.101808\pi\)
\(678\) 318.759 + 540.800i 0.0180559 + 0.0306332i
\(679\) 12537.0 + 3553.08i 0.708578 + 0.200817i
\(680\) −11524.1 6698.99i −0.649893 0.377786i
\(681\) 4792.08 + 25674.2i 0.269652 + 1.44470i
\(682\) 5979.63 + 16479.5i 0.335736 + 0.925268i
\(683\) −31967.1 −1.79090 −0.895451 0.445161i \(-0.853147\pi\)
−0.895451 + 0.445161i \(0.853147\pi\)
\(684\) 3952.41 7139.74i 0.220942 0.399115i
\(685\) 21156.9 1.18009
\(686\) −8303.67 + 15933.5i −0.462151 + 0.886801i
\(687\) −22804.8 + 4256.50i −1.26646 + 0.236383i
\(688\) 15197.5 + 2741.64i 0.842151 + 0.151925i
\(689\) −45626.9 −2.52285
\(690\) −10309.3 + 6076.51i −0.568794 + 0.335259i
\(691\) 4700.10 0.258756 0.129378 0.991595i \(-0.458702\pi\)
0.129378 + 0.991595i \(0.458702\pi\)
\(692\) 9755.03 + 11672.3i 0.535882 + 0.641206i
\(693\) −1754.52 18834.5i −0.0961740 1.03242i
\(694\) −4353.02 + 1579.50i −0.238095 + 0.0863936i
\(695\) 8539.35i 0.466066i
\(696\) 7129.52 20025.2i 0.388281 1.09059i
\(697\) −2825.69 −0.153559
\(698\) 11944.9 4334.25i 0.647739 0.235034i
\(699\) 2032.01 + 10886.8i 0.109954 + 0.589091i
\(700\) −9912.58 22197.5i −0.535229 1.19855i
\(701\) −22855.2 −1.23143 −0.615714 0.787970i \(-0.711132\pi\)
−0.615714 + 0.787970i \(0.711132\pi\)
\(702\) 19175.8 24247.0i 1.03098 1.30362i
\(703\) 6032.79i 0.323657i
\(704\) 9584.62 + 16830.5i 0.513116 + 0.901025i
\(705\) 5774.72 + 30938.9i 0.308494 + 1.65280i
\(706\) −3648.47 + 1323.86i −0.194493 + 0.0705724i
\(707\) 17948.1 + 5086.62i 0.954748 + 0.270583i
\(708\) 5532.78 + 4567.45i 0.293693 + 0.242451i
\(709\) 20814.1i 1.10252i 0.834333 + 0.551261i \(0.185853\pi\)
−0.834333 + 0.551261i \(0.814147\pi\)
\(710\) 41832.6 15179.1i 2.21119 0.802338i
\(711\) −715.764 + 276.838i −0.0377542 + 0.0146023i
\(712\) −6823.43 + 11738.1i −0.359156 + 0.617843i
\(713\) 7846.60 0.412142
\(714\) −2392.02 9122.45i −0.125377 0.478150i
\(715\) 50105.2i 2.62074i
\(716\) 8159.09 6818.89i 0.425865 0.355913i
\(717\) −6448.55 34549.0i −0.335880 1.79952i
\(718\) 4937.70 + 13608.0i 0.256648 + 0.707306i
\(719\) 5088.93 0.263957 0.131979 0.991253i \(-0.457867\pi\)
0.131979 + 0.991253i \(0.457867\pi\)
\(720\) 28848.1 5565.15i 1.49320 0.288057i
\(721\) 4887.86 + 1385.26i 0.252474 + 0.0715530i
\(722\) 14441.5 5240.15i 0.744402 0.270108i
\(723\) −2594.92 13902.7i −0.133480 0.715139i
\(724\) 14405.4 12039.2i 0.739465 0.618002i
\(725\) 29663.9 1.51957
\(726\) −1266.17 + 746.310i −0.0647274 + 0.0381517i
\(727\) 1716.37i 0.0875609i 0.999041 + 0.0437804i \(0.0139402\pi\)
−0.999041 + 0.0437804i \(0.986060\pi\)
\(728\) 22681.1 + 23481.0i 1.15469 + 1.19542i
\(729\) 8802.37 17605.1i 0.447207 0.894431i
\(730\) 26712.7 9692.79i 1.35436 0.491433i
\(731\) 8360.34i 0.423007i
\(732\) 15162.4 18366.9i 0.765596 0.927405i
\(733\) 2487.51 0.125346 0.0626728 0.998034i \(-0.480038\pi\)
0.0626728 + 0.998034i \(0.480038\pi\)
\(734\) −5934.91 16356.3i −0.298449 0.822508i
\(735\) 10896.0 28276.2i 0.546809 1.41902i
\(736\) 8544.63 1463.21i 0.427934 0.0732806i
\(737\) 28942.3i 1.44654i
\(738\) 4694.09 4093.27i 0.234135 0.204167i
\(739\) 16167.7i 0.804786i −0.915467 0.402393i \(-0.868179\pi\)
0.915467 0.402393i \(-0.131821\pi\)
\(740\) −16665.3 + 13927.9i −0.827877 + 0.691891i
\(741\) −15034.0 + 2806.09i −0.745328 + 0.139115i
\(742\) −2204.40 30601.0i −0.109065 1.51401i
\(743\) 6261.24i 0.309156i −0.987981 0.154578i \(-0.950598\pi\)
0.987981 0.154578i \(-0.0494017\pi\)
\(744\) −18148.4 6461.33i −0.894292 0.318392i
\(745\) 45415.0i 2.23339i
\(746\) 12401.6 + 34178.2i 0.608654 + 1.67741i
\(747\) 25.9358 + 67.0568i 0.00127033 + 0.00328444i
\(748\) −8045.61 + 6724.05i −0.393284 + 0.328684i
\(749\) −5716.80 + 20171.6i −0.278888 + 0.984053i
\(750\) 4958.53 + 8412.54i 0.241413 + 0.409576i
\(751\) 26131.4 1.26971 0.634853 0.772633i \(-0.281061\pi\)
0.634853 + 0.772633i \(0.281061\pi\)
\(752\) 4047.76 22437.6i 0.196285 1.08805i
\(753\) 5208.41 + 27904.8i 0.252065 + 1.35047i
\(754\) −37446.9 + 13587.7i −1.80867 + 0.656280i
\(755\) 25817.3i 1.24448i
\(756\) 17188.4 + 11689.3i 0.826898 + 0.562351i
\(757\) 2301.88i 0.110519i 0.998472 + 0.0552596i \(0.0175987\pi\)
−0.998472 + 0.0552596i \(0.982401\pi\)
\(758\) −2204.26 6074.81i −0.105623 0.291091i
\(759\) 1727.18 + 9253.60i 0.0825989 + 0.442535i
\(760\) −12566.2 7304.80i −0.599768 0.348648i
\(761\) 22624.8 1.07772 0.538862 0.842394i \(-0.318854\pi\)
0.538862 + 0.842394i \(0.318854\pi\)
\(762\) 722.204 425.682i 0.0343342 0.0202373i
\(763\) 38636.1 + 10949.8i 1.83319 + 0.519540i
\(764\) 10925.6 + 13072.9i 0.517374 + 0.619060i
\(765\) 5737.63 + 14834.6i 0.271169 + 0.701107i
\(766\) −8141.01 + 2953.99i −0.384003 + 0.139337i
\(767\) 13445.4i 0.632965i
\(768\) −20967.8 3651.87i −0.985170 0.171583i
\(769\) 12312.9i 0.577393i 0.957421 + 0.288697i \(0.0932219\pi\)
−0.957421 + 0.288697i \(0.906778\pi\)
\(770\) −33604.4 + 2420.76i −1.57275 + 0.113297i
\(771\) 34877.8 6509.92i 1.62917 0.304084i
\(772\) 5392.68 4506.88i 0.251408 0.210112i
\(773\) 18738.9i 0.871916i 0.899967 + 0.435958i \(0.143590\pi\)
−0.899967 + 0.435958i \(0.856410\pi\)
\(774\) −12110.7 13888.4i −0.562417 0.644970i
\(775\) 26883.7i 1.24606i
\(776\) 13763.9 + 8001.04i 0.636722 + 0.370130i
\(777\) −15301.9 1406.21i −0.706504 0.0649258i
\(778\) −6248.98 + 2267.46i −0.287965 + 0.104489i
\(779\) −3081.22 −0.141715
\(780\) −42460.6 35052.3i −1.94915 1.60907i
\(781\) 35005.8i 1.60385i
\(782\) 1600.80 + 4411.72i 0.0732029 + 0.201743i
\(783\) −21576.0 + 13334.8i −0.984756 + 0.608618i
\(784\) −14652.4 + 16346.2i −0.667475 + 0.744632i
\(785\) 22302.5i 1.01403i
\(786\) −16752.6 28422.0i −0.760234 1.28980i
\(787\) 7115.83 0.322302 0.161151 0.986930i \(-0.448479\pi\)
0.161151 + 0.986930i \(0.448479\pi\)
\(788\) 20903.9 17470.3i 0.945015 0.789788i
\(789\) −634.204 3397.84i −0.0286163 0.153316i
\(790\) 466.234 + 1284.91i 0.0209973 + 0.0578672i
\(791\) 761.083 + 215.697i 0.0342111 + 0.00969570i
\(792\) 3625.13 22824.9i 0.162643 1.02405i
\(793\) −44634.0 −1.99874
\(794\) −3559.93 + 1291.73i −0.159115 + 0.0577353i
\(795\) 9493.96 + 50865.2i 0.423542 + 2.26919i
\(796\) 13357.6 + 15982.9i 0.594784 + 0.711684i
\(797\) 12278.2i 0.545693i 0.962058 + 0.272846i \(0.0879650\pi\)
−0.962058 + 0.272846i \(0.912035\pi\)
\(798\) −2608.33 9947.41i −0.115707 0.441271i
\(799\) 12343.2 0.546521
\(800\) −5013.19 29275.3i −0.221554 1.29380i
\(801\) 15110.2 5844.21i 0.666531 0.257796i
\(802\) 7456.06 + 20548.4i 0.328282 + 0.904726i
\(803\) 22353.4i 0.982360i
\(804\) 24526.6 + 20247.3i 1.07585 + 0.888143i
\(805\) −4111.83 + 14508.5i −0.180029 + 0.635228i
\(806\) 12314.2 + 33937.3i 0.538152 + 1.48311i
\(807\) −4631.57 24814.3i −0.202031 1.08241i
\(808\) 19704.6 + 11454.4i 0.857927 + 0.498718i
\(809\) 9226.15i 0.400957i −0.979698 0.200479i \(-0.935750\pi\)
0.979698 0.200479i \(-0.0642497\pi\)
\(810\) −31020.8 16332.1i −1.34563 0.708458i
\(811\) 36172.6 1.56621 0.783103 0.621892i \(-0.213636\pi\)
0.783103 + 0.621892i \(0.213636\pi\)
\(812\) −10922.2 24458.3i −0.472036 1.05704i
\(813\) 1025.60 + 5494.82i 0.0442430 + 0.237038i
\(814\) 5827.48 + 16060.2i 0.250925 + 0.691534i
\(815\) 53045.4 2.27988
\(816\) −69.6517 11522.1i −0.00298811 0.494305i
\(817\) 9116.38i 0.390381i
\(818\) −12826.3 35348.6i −0.548243 1.51092i
\(819\) −3613.19 38787.2i −0.154158 1.65486i
\(820\) −7113.60 8511.72i −0.302948 0.362491i
\(821\) 7181.84 0.305296 0.152648 0.988281i \(-0.451220\pi\)
0.152648 + 0.988281i \(0.451220\pi\)
\(822\) 9286.37 + 15755.1i 0.394038 + 0.668517i
\(823\) −2266.38 −0.0959916 −0.0479958 0.998848i \(-0.515283\pi\)
−0.0479958 + 0.998848i \(0.515283\pi\)
\(824\) 5366.22 + 3119.41i 0.226870 + 0.131881i
\(825\) 31704.4 5917.60i 1.33794 0.249726i
\(826\) 9017.52 649.596i 0.379854 0.0273636i
\(827\) 5411.98 0.227561 0.113781 0.993506i \(-0.463704\pi\)
0.113781 + 0.993506i \(0.463704\pi\)
\(828\) −9050.07 5009.92i −0.379845 0.210274i
\(829\) −27630.7 −1.15760 −0.578802 0.815468i \(-0.696480\pi\)
−0.578802 + 0.815468i \(0.696480\pi\)
\(830\) 120.378 43.6794i 0.00503418 0.00182667i
\(831\) 5834.76 + 31260.5i 0.243569 + 1.30495i
\(832\) 19738.2 + 34660.0i 0.822476 + 1.44426i
\(833\) −10117.1 6235.34i −0.420811 0.259354i
\(834\) −6359.05 + 3748.16i −0.264024 + 0.155621i
\(835\) 61595.9i 2.55283i
\(836\) −8773.19 + 7332.11i −0.362951 + 0.303333i
\(837\) 12085.1 + 19553.9i 0.499069 + 0.807504i
\(838\) 8166.89 + 22507.4i 0.336659 + 0.927812i
\(839\) −38177.4 −1.57095 −0.785476 0.618892i \(-0.787582\pi\)
−0.785476 + 0.618892i \(0.787582\pi\)
\(840\) 21457.4 30170.9i 0.881370 1.23928i
\(841\) 8296.14 0.340159
\(842\) −1101.22 3034.90i −0.0450720 0.124216i
\(843\) −553.439 2965.13i −0.0226115 0.121144i
\(844\) −5064.64 6060.06i −0.206555 0.247152i
\(845\) 65830.7i 2.68005i
\(846\) −20504.8 + 17880.2i −0.833296 + 0.726638i
\(847\) −505.010 + 1781.92i −0.0204868 + 0.0722875i
\(848\) 6654.74 36888.6i 0.269487 1.49382i
\(849\) 30510.9 5694.84i 1.23337 0.230208i
\(850\) 15115.3 5484.62i 0.609941 0.221319i
\(851\) 7646.94 0.308030
\(852\) 29665.0 + 24489.2i 1.19285 + 0.984725i
\(853\) −5549.77 −0.222767 −0.111384 0.993777i \(-0.535528\pi\)
−0.111384 + 0.993777i \(0.535528\pi\)
\(854\) −2156.43 29935.0i −0.0864070 1.19948i
\(855\) 6256.50 + 16176.1i 0.250255 + 0.647032i
\(856\) −12873.5 + 22145.8i −0.514025 + 0.884261i
\(857\) −22763.4 −0.907332 −0.453666 0.891172i \(-0.649884\pi\)
−0.453666 + 0.891172i \(0.649884\pi\)
\(858\) −37312.1 + 21992.6i −1.48463 + 0.875074i
\(859\) −672.946 −0.0267295 −0.0133647 0.999911i \(-0.504254\pi\)
−0.0133647 + 0.999911i \(0.504254\pi\)
\(860\) −25183.6 + 21046.9i −0.998550 + 0.834529i
\(861\) 718.212 7815.38i 0.0284281 0.309347i
\(862\) −6389.86 17610.0i −0.252482 0.695824i
\(863\) 38773.2i 1.52938i −0.644397 0.764691i \(-0.722892\pi\)
0.644397 0.764691i \(-0.277108\pi\)
\(864\) 16806.5 + 19039.8i 0.661769 + 0.749708i
\(865\) −32329.8 −1.27081
\(866\) −146.574 403.948i −0.00575147 0.0158507i
\(867\) −18963.4 + 3539.50i −0.742825 + 0.138648i
\(868\) −22166.1 + 9898.53i −0.866780 + 0.387072i
\(869\) 1075.22 0.0419729
\(870\) 22939.6 + 38918.8i 0.893936 + 1.51663i
\(871\) 59602.7i 2.31867i
\(872\) 42417.3 + 24657.4i 1.64728 + 0.957575i
\(873\) −6852.83 17717.9i −0.265674 0.686898i
\(874\) 1745.57 + 4810.68i 0.0675569 + 0.186183i
\(875\) 11839.2 + 3355.32i 0.457415 + 0.129635i
\(876\) 18943.0 + 15637.9i 0.730620 + 0.603146i
\(877\) 5911.60i 0.227617i 0.993503 + 0.113809i \(0.0363051\pi\)
−0.993503 + 0.113809i \(0.963695\pi\)
\(878\) −9482.03 26131.9i −0.364468 1.00445i
\(879\) 498.085 + 2668.56i 0.0191126 + 0.102399i
\(880\) −40509.3 7307.90i −1.55178 0.279942i
\(881\) −1628.16 −0.0622635 −0.0311317 0.999515i \(-0.509911\pi\)
−0.0311317 + 0.999515i \(0.509911\pi\)
\(882\) 25839.2 4297.24i 0.986451 0.164054i
\(883\) 13348.7i 0.508743i −0.967107 0.254371i \(-0.918131\pi\)
0.967107 0.254371i \(-0.0818686\pi\)
\(884\) −16568.8 + 13847.3i −0.630397 + 0.526848i
\(885\) −14989.0 + 2797.69i −0.569322 + 0.106264i
\(886\) −5869.50 + 2129.76i −0.222562 + 0.0807571i
\(887\) −35230.3 −1.33362 −0.666808 0.745230i \(-0.732340\pi\)
−0.666808 + 0.745230i \(0.732340\pi\)
\(888\) −17686.6 6296.92i −0.668384 0.237963i
\(889\) 288.049 1016.38i 0.0108671 0.0383444i
\(890\) −9842.45 27125.2i −0.370696 1.02162i
\(891\) −20400.0 + 18556.2i −0.767032 + 0.697708i
\(892\) −7337.73 8779.90i −0.275432 0.329566i
\(893\) 13459.4 0.504369
\(894\) 33819.4 19933.9i 1.26520 0.745738i
\(895\) 22598.9i 0.844022i
\(896\) −22292.1 + 14912.6i −0.831169 + 0.556020i
\(897\) 3556.89 + 19056.5i 0.132398 + 0.709341i
\(898\) 7679.47 + 21164.1i 0.285375 + 0.786477i
\(899\) 29621.8i 1.09894i
\(900\) −17164.8 + 31007.0i −0.635735 + 1.14841i
\(901\) 20292.9 0.750337
\(902\) −8202.65 + 2976.36i −0.302792 + 0.109869i
\(903\) −23123.3 2124.97i −0.852154 0.0783107i
\(904\) 835.568 + 485.720i 0.0307418 + 0.0178704i
\(905\) 39899.9i 1.46554i
\(906\) 19225.5 11331.9i 0.704994 0.415538i
\(907\) 41269.7i 1.51085i 0.655237 + 0.755423i \(0.272569\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(908\) 25786.1 + 30854.2i 0.942447 + 1.12768i
\(909\) −9810.58 25365.2i −0.357972 0.925535i
\(910\) −69203.8 + 4985.24i −2.52097 + 0.181603i
\(911\) 11899.0i 0.432747i −0.976311 0.216373i \(-0.930577\pi\)
0.976311 0.216373i \(-0.0694228\pi\)
\(912\) −75.9504 12564.0i −0.00275764 0.456181i
\(913\) 100.733i 0.00365145i
\(914\) −9636.66 + 3496.69i −0.348744 + 0.126543i
\(915\) 9287.36 + 49758.3i 0.335552 + 1.79777i
\(916\) −27405.8 + 22904.1i −0.988550 + 0.826172i
\(917\) −39999.1 11336.1i −1.44044 0.408233i
\(918\) −8528.58 + 10784.0i −0.306629 + 0.387718i
\(919\) −19268.9 −0.691647 −0.345823 0.938300i \(-0.612400\pi\)
−0.345823 + 0.938300i \(0.612400\pi\)
\(920\) −9259.29 + 15928.4i −0.331815 + 0.570810i
\(921\) 40393.4 7539.40i 1.44518 0.269741i
\(922\) −5677.87 15647.9i −0.202810 0.558931i
\(923\) 72089.7i 2.57081i
\(924\) −16552.6 23961.9i −0.589331 0.853126i
\(925\) 26199.7i 0.931287i
\(926\) −36841.0 + 13367.9i −1.30742 + 0.474401i
\(927\) −2671.75 6907.80i −0.0946621 0.244748i
\(928\) −5523.78 32257.0i −0.195395 1.14104i
\(929\) 22796.3 0.805083 0.402542 0.915402i \(-0.368127\pi\)
0.402542 + 0.915402i \(0.368127\pi\)
\(930\) 35271.3 20789.6i 1.24365 0.733031i
\(931\) −11032.0 6799.21i −0.388355 0.239350i
\(932\) 10934.2 + 13083.2i 0.384293 + 0.459823i
\(933\) 7453.81 1391.25i 0.261551 0.0488183i
\(934\) 11884.7 + 32753.4i 0.416358 + 1.14746i
\(935\) 22284.6i 0.779449i
\(936\) 7465.47 47004.9i 0.260701 1.64146i
\(937\) 34878.2i 1.21603i −0.793925 0.608016i \(-0.791966\pi\)
0.793925 0.608016i \(-0.208034\pi\)
\(938\) 39974.2 2879.63i 1.39148 0.100238i
\(939\) −5184.46 27776.5i −0.180180 0.965337i
\(940\) 31073.7 + 37181.0i 1.07820 + 1.29012i
\(941\) 34823.7i 1.20640i −0.797591 0.603198i \(-0.793893\pi\)
0.797591 0.603198i \(-0.206107\pi\)
\(942\) −16608.1 + 9789.19i −0.574440 + 0.338587i
\(943\) 3905.64i 0.134873i
\(944\) 10870.4 + 1961.02i 0.374789 + 0.0676122i
\(945\) −42488.5 + 12098.8i −1.46259 + 0.416480i
\(946\) 8806.12 + 24269.1i 0.302655 + 0.834099i
\(947\) 44753.6 1.53569 0.767844 0.640637i \(-0.221329\pi\)
0.767844 + 0.640637i \(0.221329\pi\)
\(948\) −752.200 + 911.177i −0.0257704 + 0.0312169i
\(949\) 46033.8i 1.57463i
\(950\) 16482.2 5980.60i 0.562897 0.204249i
\(951\) −40821.4 + 7619.29i −1.39193 + 0.259803i
\(952\) −10087.6 10443.4i −0.343424 0.355537i
\(953\) 27410.7i 0.931709i 0.884861 + 0.465854i \(0.154253\pi\)
−0.884861 + 0.465854i \(0.845747\pi\)
\(954\) −33711.0 + 29396.1i −1.14406 + 0.997625i
\(955\) −36209.2 −1.22691
\(956\) −34699.5 41519.5i −1.17392 1.40464i
\(957\) 34933.4 6520.30i 1.17998 0.220242i
\(958\) 15111.1 5483.09i 0.509620 0.184917i
\(959\) 22172.5 + 6283.87i 0.746599 + 0.211592i
\(960\) 34532.2 29216.3i 1.16096 0.982243i
\(961\) 2945.36 0.0988674
\(962\) 12000.9 + 33073.8i 0.402209 + 1.10846i
\(963\) 28507.7 11026.0i 0.953943 0.368960i
\(964\) −13963.2 16707.6i −0.466520 0.558211i
\(965\) 14936.6i 0.498264i
\(966\) −12609.0 + 3306.22i −0.419965 + 0.110120i
\(967\) 19242.8 0.639923 0.319961 0.947431i \(-0.396330\pi\)
0.319961 + 0.947431i \(0.396330\pi\)
\(968\) −1137.21 + 1956.31i −0.0377598 + 0.0649569i
\(969\) 6686.48 1248.03i 0.221672 0.0413750i
\(970\) −31806.6 + 11541.1i −1.05283 + 0.382023i
\(971\) 9065.66i 0.299620i 0.988715 + 0.149810i \(0.0478661\pi\)
−0.988715 + 0.149810i \(0.952134\pi\)
\(972\) −1453.78 30269.1i −0.0479733 0.998849i
\(973\) −2536.29 + 8949.27i −0.0835661 + 0.294862i
\(974\) −8648.48 + 3138.13i −0.284512 + 0.103236i
\(975\) 65290.9 12186.5i 2.14460 0.400287i
\(976\) 6509.92 36085.9i 0.213501 1.18348i
\(977\) 59374.1i 1.94426i 0.234435 + 0.972132i \(0.424676\pi\)
−0.234435 + 0.972132i \(0.575324\pi\)
\(978\) 23283.1 + 39501.7i 0.761260 + 1.29154i
\(979\) −22698.6 −0.741010
\(980\) −6686.98 46172.7i −0.217967 1.50503i
\(981\) −21118.9 54602.7i −0.687333 1.77710i
\(982\) 23907.3 8674.82i 0.776896 0.281899i
\(983\) 22834.0 0.740886 0.370443 0.928855i \(-0.379206\pi\)
0.370443 + 0.928855i \(0.379206\pi\)
\(984\) 3216.12 9033.36i 0.104193 0.292656i
\(985\) 57899.4i 1.87292i
\(986\) 16654.8 6043.23i 0.537927 0.195188i
\(987\) −3137.30 + 34139.2i −0.101177 + 1.10098i
\(988\) −18067.2 + 15099.5i −0.581775 + 0.486214i
\(989\) 11555.6 0.371533
\(990\) 32281.3 + 37019.7i 1.03633 + 1.18845i
\(991\) 33338.9 1.06866 0.534331 0.845275i \(-0.320563\pi\)
0.534331 + 0.845275i \(0.320563\pi\)
\(992\) −29233.8 + 5006.08i −0.935660 + 0.160225i
\(993\) 5637.59 + 30204.2i 0.180165 + 0.965257i
\(994\) 48349.0 3482.92i 1.54279 0.111138i
\(995\) −44269.4 −1.41049
\(996\) 85.3641 + 70.4703i 0.00271573 + 0.00224190i
\(997\) 17170.3 0.545427 0.272713 0.962095i \(-0.412079\pi\)
0.272713 + 0.962095i \(0.412079\pi\)
\(998\) 10158.2 + 27995.3i 0.322196 + 0.887951i
\(999\) 11777.6 + 19056.3i 0.372999 + 0.603519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.8 yes 80
3.2 odd 2 inner 168.4.i.c.125.74 yes 80
4.3 odd 2 672.4.i.c.209.8 80
7.6 odd 2 inner 168.4.i.c.125.7 yes 80
8.3 odd 2 672.4.i.c.209.73 80
8.5 even 2 inner 168.4.i.c.125.75 yes 80
12.11 even 2 672.4.i.c.209.5 80
21.20 even 2 inner 168.4.i.c.125.73 yes 80
24.5 odd 2 inner 168.4.i.c.125.5 80
24.11 even 2 672.4.i.c.209.76 80
28.27 even 2 672.4.i.c.209.74 80
56.13 odd 2 inner 168.4.i.c.125.76 yes 80
56.27 even 2 672.4.i.c.209.7 80
84.83 odd 2 672.4.i.c.209.75 80
168.83 odd 2 672.4.i.c.209.6 80
168.125 even 2 inner 168.4.i.c.125.6 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.5 80 24.5 odd 2 inner
168.4.i.c.125.6 yes 80 168.125 even 2 inner
168.4.i.c.125.7 yes 80 7.6 odd 2 inner
168.4.i.c.125.8 yes 80 1.1 even 1 trivial
168.4.i.c.125.73 yes 80 21.20 even 2 inner
168.4.i.c.125.74 yes 80 3.2 odd 2 inner
168.4.i.c.125.75 yes 80 8.5 even 2 inner
168.4.i.c.125.76 yes 80 56.13 odd 2 inner
672.4.i.c.209.5 80 12.11 even 2
672.4.i.c.209.6 80 168.83 odd 2
672.4.i.c.209.7 80 56.27 even 2
672.4.i.c.209.8 80 4.3 odd 2
672.4.i.c.209.73 80 8.3 odd 2
672.4.i.c.209.74 80 28.27 even 2
672.4.i.c.209.75 80 84.83 odd 2
672.4.i.c.209.76 80 24.11 even 2